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Infinitely many radial solutions of an elliptic system

D. TERMAN

Department of Mathematics
Ohio State University
Columbus, Ohio 43210

Dedicated to the Memory of Pro-
fessor Charles Conley

Ann. Inst. Henri Poincaré,

Vol. 4, n° 6, 1987, p. 549-604. Analyse non linéaire

ABSTRACT. - We consider a system of equations of the form

Au + V F (u) = 0. In this and two subsequent papers we find conditions on
F ( u) to guarantee that this system has infinitely many radial solutions.
We also define a notion of winding number for each radial solution and
prove that for each positive integer K there exists a radial solution with
winding number K.

RESUME. - L’on considère un systeme d’equations de la forme

u + F ( u) = ~. Dans cet article et dans deux articles a paraitre, l’on trouve
des conditions sur F (u) qui garantissent que le systeme a une infinite de
solutions radiales. L’on definit egalement un nombre d’enlacements pour
chaque solution radiale et l’on demontre que pour tout entier K non nul
il existe une solution radiale dont le nombre d’enlacements est K.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 4/87/06/549/56/$7,60/(6) Gauthier-Villars



550 D. TERMAN

1

A. Introduction

In recent years a number of authors have considered the question of
the existence of radial solutions of the scalar equation

Here A is the usual Laplace operator and u is a function of x E n > 1.

By a radial solution of ( lA.1) we mean a nonconstant, bounded solution
of the form u (x) = U (r), r = II x We also assume that each radial solution

satisfies lim U r) = 0. Two questions related to this problem are

( 1) find conditions-on g (u) to guarantee that ( lA.1) has a positive radial
solution;

(2) find conditions on g (u) to guarantee that ( lA.1) has infinitely many
radial solutions.

There have been two general approaches to answering these questions.
The first approach has been to use variational methods. For references to
this approach see [2], [3], [8]. The second approach for studying the
existence of radial solutions of (1.A1) has been topological or phase space
techniques. Using these methods, Atkinson and Peletier [1] have proven
the existence of a positive solution of (lA.1) under very weak conditions
on g (u). Jones and Kupper [7] .use topological methods to find conditions
on g (u) which guarantee the existence of infinitely many radial solutions
of ( lA.1). Moreover, they were able to characterize the radial solutions
by their nodal properties; that is, under appropriate conditions on g (u),
for each nonnegative integer K there exists a radial solution of ( lA.1)
with precisely K zeroes.

Recently, Brezis and Lieb [4] have shown how the variational approach
can be generalized to systems of elliptic equations. They consider systems
of the form

where the m functions f i : [Rm -~ R are gradients of some function

FE C1 that is, for each i,
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551INFINITELY MANY RADIAL SOLUTIONS

They prove that there is a function u (x) which minimizes the action
associated with ( 1 A . 2) .

In this paper we show how topological methods can be used to prove
the existence of infinitely many radial solutions for a system of equations.
We consider a system of the form (lA.2), ( 1A.3) and find conditions of
F (U) which guarantee the existence of infinitely many radial solutions.
We are also able to define a notion of winding number for each radial
solution, and prove that for each positive integer K there exists a radial
solution with winding number K.

B. Precise statement
of the problem and the first main result

The system we consider is

where ul and u2 are functions of x E n > 1. We assume that there exists
a function F E C2 ( (~2) such that for i = 1, 2,

for u2) ~ By a radial solution of (1B.1) we mean a nonconstant
bounded solution of the form

We always assume that a radial solution satisfies, for i =1, 2,

If (U1 (r), U2 (r)) is a radial solution of ( 1 B.1 ), and

Vol. 4, n° 6-1987.



552 D. TERMAN

then (U 1, U2, Vi, V2) satisfies the first order systems of ordinary differen-
tial equations, for r > o,

together with the boundary conditions

for some real numbers U~ and U2. The equalities in ( 1 B.4) are meant to
be taken componentwise. We prove the existence of radial solutions of

( 1 B.1 ) by proving the existence of solutions of ( 1 B. 3) and ( 1 B. 4) .

NOTATION. - For convenience we set

and

ASSUMPTIONS ON F. - We wish to assume that F looks someting like
what is shown in Figure 1. The precise assumptions on Fare :

(F1) FEC2 (2).
(F2) F has at least three nondegenerate local maxima. These are at

A = (A 1, A 2) _ (o, 0), B = (B 1, B2), and C = (C 1, C2). F also has two

saddles. These are at D = ( D 1, D~) and E = ( E 1, E2) .
(F3) F (A)  F (B)  F (C) and B1 D1 A1 E1 C1. Moreover, there

exists ao such that if a is any critical point of F with {A, B, C}, then
F (a)  F (A) - ao. For convenience, we assume that F (A)=0.

(F4) There exists W such that if K  W, then the level set {U: F (U) >_ K~
is convex.
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553INFINITELY MANY RADIAL SOLUTIONS

(F6) Let

and

Suppose that (U (r), V (r)) is a bounded solution of ( 1B.3) with n =1
which satisfies, for i =1, 2, or 3,

and

Then U (r) is identically equal to one of the critical points A, B, or C,
and V (r) _ (0,0) for all r > 0.
Remarks concerning these assumptions are certainly in order. These

remarks will be given shortly. We first state our first main result.

Vol. 4, n° 6-1987.



554 D. TERMAN

THEOREM 1. - Assume that fl and f2 satisfy (lB.2) where F (U2, U2)
satisfies (F1)-(F6). Then there exists infinitely many radial solutions of
(1B.1).
We also prove another theorem which is stated explicitly in Section 1 E.

For that Theorem we define a notion of winding number for each radial
solution. Our second Theorem states that for each positive integer K there
exists a radial solution with winding number K.
The proof of these two results is split into three papers. In this paper

we introduce a family of equations which depend on a small parameter E.
As E -~ 0, the family of equations approach (lB.1). We prove, in this

paper, that for each E there exists infinitely many solutions of the new

equations. In [10] we reduce the problem of proving that for each ~ > 0
and positive integer K there exists a solution of the new equation with

winding number K to an algebraic problem. In [9] we solve the algebraic
problem. Hence, [9] together with [10] prove that for each ~ > 0 and positive
integer K there does indeed exist a solution of the new equations with

winding number K. In Section 6 of this paper we prove that as E - 0,
some sequence of the set of solutions with winding number K for the new

’ 

equations converge to a solution of (lB.1) with winding number K.

C. Remarks on the assumptions on F

Remark 1. - ( F4) will be used to prove that the set of bounded solutions

of ( 1 B. 3) is compact.

Remark 2. - (F6) guarantees that the set of bounded solutions of

( 1B.3) is not too bizarre. One may think of ( lB. 3) with n =1 as describing
the motion of a ball rolling along the landscape defined by the graph of

F without friction. There may exist bounded solutions of ( lB.3) because

the ball may roll back and forth between the mountain peaks given by
F ( A), F (B), and F (C). Assumption (F6) implies that these are the only
bounded solutions of ( lB.3) with n =1, besides the critical points, which

lie above F (A) - ao for some r. We are not interested in bounded solutions

which lie below F (A) - ao for all r, because if U (r)=(Ui (r), U 2 (r)) is a

radial solution, then lim U (r) = A implies that F (U (r)) > A - oco for r

sufficiently large.
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555INFINITELY MANY RADIAL SOLUTIONS

Remark 3. - (F5) is the most unreasonable assumption. It can be
weakened slightly as follows. Let

and

I

Then (F5) implies that if U E ID n N 1 or then VF(U) is

tangent to lD or lE, respectively. Our result remains valid if this property
holds for some line lD and lE through D and E, not necessarily the ones
given by ( 1C.1). We choose lD and lE as in (lC.1) only for convenience.
We do feel that our method of proof should carry over to more general
assumptions than (F5). The main place where (F5) is used is to define the
notion of winding number. In Appendix B we comment how one should
be able to weaken this assumption.

D. The winding number

Recall that for the scalar equation ( lA.1) it has been proven that under
appropriate conditions on g (u), for each nonnegative integer K there
exists a radial solution with K zeroes. We wish to prove an analogous
result for the system (lB.1). However, instead of counting the number of
zeroes we introduce a notion of winding number which measures how
many times a trajectory (U 1 (r), U2 (r), V1 (r), V2 (r)) winds around in
phase space.
For the scalar equation, the notion of winding number is simple because

it makes sense to count the number of times a trajectory winds around a
point (the origin, for example). For ( lB.3) the phase space is four dimen-
sional (or five dimensional if one includes r as a dependent variable as we
shall do shortly), and it does not make sense to count how many times a
trajectory winds around a point. Instead, we define two, two dimensional
planes, PD and PE, and count how many times the solutions wind around
these objects. PD and PE are defined as follows:

and

Vol. 4, n° 6-1987.



556 D. TERMAN

Clearly, PD and PE are two dimensional. Perhaps the most important
property of PD and PE is

PROPOSITION 1.D.1. - PD and PE are invariant with respect to the flow
defined by ( 1 B. 3) . That is, if

for some ro, then

for all r.

Proof - From ( lB. 3) and (F5) we conclude that on PD or PE,

and

These two equalities prove the proposition.

It now makes sense to count the number of times a radial solution

winds around PD and P~. This is done as follows. Let

and

DEFINITION. - Suppose that U (r) is a radial solution of ( 1 B.1 ) . Then
the winding number of U is defined by

By card X we mean the cardinality of the set X.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Remark. - The notion of winding number may seem complicated
because it involves trajectories in four dimensional phase space which is
difficult to picture. However, one can easily compute the winding number
by just considering U (r) _ (U 1 (r), U~ (r)) in the two dimensional state
space. Recall that h (U) equals to the number of times U (z) intersects Qo
or Q. Now U (zo) E QD if and only if U and V 1 (zo)  o. Since

this implies that U (zo) E Qo if and only if U (zo) E lD, and at
Z = Z 0’ U (z) crosses 10 from right to left. Similarily, U (zo) E QE if and

only if U (zo) E lE and at Z=Zo, U (z) crosses lE from left to right. Of
course, this remark depends on our assumption (F5). In Appendix B, we
will discuss how one should be able to weaken (F5). Under the weaker
assumptions we will still be able to define two surfaces, PD and PE, which
do not intersect the radial solutions. Hence, we will still be able to define
the notion of winding number. However, we will not be able to compute
the winding number by just considering the trajectories in the state space.

E. The second main result

THEOREM 2. - Let K be any positive integer. Then there exists a radial
solution, U (r), of ( 1 B.1) such that either h (U) = K or h (U) = K + 1.

Remark 1. - The fact that we have either h (U) = K or h (U) = K + 1
may be disturbing because one would expect there to exist a radial solution
with h (U) = K. The reason that we obtain the weaker result is that we
are counting the number of times solutions wind around two objects,
namely PD and P~.

Remark 2. - We actually prove that for each integer K there exists at
least two radial solutions of (lB.1), each with winding number K or K + 1.
We explain why this is true in Appendix C.

F. Reduction to a connection problem

The boundary conditions (lB.4) state that we must find a trajectory in
phase space which begins (at r = o) on the U-plane and ends (at r = oo) at
the origin. These boundary conditions are awkward to work with because
we don’t really know where to begin on the U-plane. It will be more

Vol. 4, n° 6-1987.
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convenient to transform ( 1 B. 3), ( 1 B. 4) to a problem where we look for a

trajectory which connects two critical points. This is done as follows.
We first consider r as a dependent variable by introducing z = r as the

new independent variable. We compactify by letting

Then ( 1 B. 3) becomes

where

A radial solution must satisfy

and

for some Uo. Now for E > 0 let

where Pt satisfies

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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Consider the system

together with the boundary conditions

and

It will be convenient to make the change in variables

Then ( 1 F. 2), (IF. 3) become, after dropping the hats,

and

In this paper we prove

THEOREM 3. - There exists go such that if 0  s  go, then there exists

infinitely many solutions of ( lF. 5), (IF.6).

Vol. 4, n° 6-1987.
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Of course, if we make the change in variables ( lF.4), then this implies
that there exists infinitely many solutions of (IF.2), (IF.3).

In two subsequent papers, [9] and [10], we prove

THEOREM 4. - There exists Eo such that if 0  E  Eo and K is any

positive integer, then there exists a solution

of( lF.2), (IF.3) such that either h (UE) = K or h (UE) = K + 1. In Section 6

of this paper we prove, assuming Theorem 4,

THEOREM 5. - Let K be a positive integer. Then there exists a sequence
such that as k - 00, {Uek (z)} converges to a radial solution, U (z), of

( 1 B.1 ) . Moreover, either h ( U) = K or h ( U) = K + 1.

G. Description of the proof

The proof of Theorem 3 is quite geometrical. The purpose of this

subsection is to introduce the basic geometrical features of the proof. Each
solution of (IF. 5) corresponds to a trajectory in five dimensional phase
space. The boundary conditions (IF. 6) imply that we are looking for a
trajectory which approaches (A, U, -1) as z - - oo and (B, (9, + 1) as
z - + oo. Hence, we are looking for a trajectory which lies in both W~,
the unstable manifold at (A, C~, -1), and WB, the stable manifold at

(B, U, + 1).
The first step in the proof of Theorem 3 is to obtain a priori bounds

on the bounded solutions of (IF. 5). This is done in Section 2. We construct
a five dimensional box, N, which contains all of the bounded solutions of

(IF. 5). We then construct, in Section 4B, a subset ~ of the boundary of
N with the property that each nontrivial trajectory in WA can only leave
N through ~. The most interesting feature of ~ is that it has four

topological holes.
We then analyze the unstable manifold at (A, (~, -1 ) . Because the

dimension of WA is three, we show that it is possible to parametrize the
nontrivial trajectories in WA be the points in the disc

That is, to each d E ~ there corresponds a unique trajectory, y (d, z),
which lies in WA. This parametrizations is defined in Section 3A. To each

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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trajectory in WA there is a winding number, as described in Section ID.
Hence, to each d~D we can assign the integer h (d) which is equal to the

winding number of y (d, z).
Now the solutions of (IF. 5), (IF. 6) correspond to a certain subset of

~, which we denote by X. That is,

Let Y = D~X. We shall prove that for each y E Y, y (y, z) must leave N
(see Proposition 2C.1). Because y (y, z) can only leave N through ~, we
have a (continuous) mapping A : Y --~ ~ defined by, A (y) is equal to the
place where y (y, z) leaves N.

Suppose that g (s) is a continuous function from I = [o,1] to Y such that
g (o) = g ( 1 ). The ( A . g) (I) defines a continuous, closed curve in G. In
Section 4B we define an algebraic object, r (g), which describes how
(A. g) (I) winds around the four holes in G. r (g) will be an element of
F~, the free group on four elements. It will have the following important
property:

PROPOSITION A (see Proposition 4 B). - If gl is homotopic to g2 relative
to Y, then r (gl)=r 
The next step in the proof of Theorem 3 is to assign to each element

0393~F4 a positive integer We prove

PROPOSITION B (see Proposition 5 A.1). - Let M be a positive integer.
There exists a continuous function g : I -~ Y such that g (o) = g ( 1 ) and

Theorem 3 will then follow from Propositions A and B.
The key steps in the proof of Proposition B are Propositions 3B.1 and

4C.1. In Proposition 4C.1 we derive a relationship between I~‘ (g) f and
the winding number of the various trajectories y (g (s), . ), 0 - s __ 1. In

Proposition 3B.1 we show that there must exist trajectories in WA with
arbitrarily high winding number.

Vol. 4, n° 6-1987.
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2. THE ISOLATING NEIGHBORHOOD

A. Basic definitions

Until stated otherwise we fixE>O. Our immediate goal is to define a
set N in phase space which contains all of the bounded solutions of (IF. 5).
Recall the set N 1 defined in ( lB. 5). Let

where V is a large number to be determined, and

Remark. - N is topologically a five dimensional box with two "tubes",
PD and PE, removed. This is topologically equivalent to a two dimensional
disc with two points removed.
We wish to prove

PROPOSITION 2A. I. - IfV-, appearing in (2A.1), is sufficiently large, then
all solutions of (IF.5), ( 1 F. 6) lie in N.

This result is proved in the next section. The proof is broken up .into a
number of lemmas.

B. Proof of Proposition 2A.1

LEMMA 2B.1. - The projection onto U-space of every bounded solution

of ( lF. 5) lies in N l. Moreover, there cannot exist a solution of ( lF. 5) whose

projection onto U-space is internally tangent to a N1, the boundary of N1.

Proof - The proof follows Conley [5]. Choose K _ W and suppose
that (U (z), V (z), p (z)) is a solution of (IF.5) which satisfies for some

zo~

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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and

Then

since the assumption that the level set {F (U)=K} is convex implies that

This implies that there cannot be any internal tangencies on the level set

{F (U) = K} for all K _ W.
On any solution which leaves the set where F > W there is a point where

F  W and either dFjdzO or dFjdz>O. Suppose that

Then (2B.1) implies that F (U (z)) is strictly decreasing for There-

fore, if the solution were bounded, it would have to go to a rest point ~.

where F .W.Since there aren’t any such rest points, the solution must be
unbounded in forward time. A similar argument shows that if

then the solution is unbounded in backward time.

Remark. - The proof of this last result shows that if U (z) leaves N 1
in forwards or backwards time, it can never return to N~.

LEMMA 2B.2. - V, as in (2A.1), can be chosen so that if

then U (z) leaves N1 in backwards time.

Vol. 4, n° 6-1987.
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Proof. - Suppose that II V (zo) II> V, where V is to be determined.
Then either

We assume that V~ (zo) > 1 /2 V, and, for convenience, Zo=0. Choose M~
so that ( ~J) ~ ~  M 1 in N 1. Then, from ( 1 F. 5),

as long as V 1 >__ o. Therefore, if V 1 >_ o, then

to obtain

or

which we assume to be true. Therefore,

f or -1 - z ~ 0, which implies, upon integration, that

Let M2 =diameter of N1 and choose V so that
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Then (2B . 3) and (2B . 4) imply that U ( -1) ~ N1. Similar arguments hold
for the other cases in (2B. 2).
We assume throughout the rest of the paper that V is chosen so that

Lemma 2B. 2 is valid. We can now present the

Completion of the proof of Proposition 2A. l. - Suppose that

(U (z), V (z), p (z)) is a solution of (IF. 5), (IF. 6). From Lemma 2B. 1 and
2B. 2 we conclude that

for all z. From Corollary 1D . 2 it follows that

for all z. From the definitions this implies that

for all z. Together with (2B. 5) and the definition of N, this implies the
desired result.

C. The energy H and the critical point C

Consider the function .

where  V, V) is the usual inner product in 1R2. If (U (z), V (z), p (z)) is a
solution of (IF. 5) we write H (z) = H (U (z), V (z)). Note that on a solution
of ( l F . 5),

Therefore,

and H (z) is increasing on solutions. An immediate consequence of this is

PROPOSITION 2C . 1. - The only bounded solutions of ( 1 F . 5) which lies
in the set ~ p ~ -1 ~ are the critical points and trajectories which connect
the critical points.

Vol. 4, n° 6-19$7.



566 D. TERMAN

We conclude from (2C. 3) and (2C. 4) that on a solution of (IF. 5), (IF. 6),

This immediately implies

LEMMA 2C. 2. - There exists 6 such that if (U (z), V (z), p (z)) is a

solution of ( l F . 5), (IF.6), z.

This lemma demonstrates that, since we are only interested in solutions
of (IF. 5), (IF. 6), the values of F in Cs = { U : ~ ~ U-C ~) I  S ~ do not matter.
In particular, F (U) may be chosen to be arbitrarily large in Cs. We change
F (U) in Cs so that if (U (z), V (z), p(Z))EWA, the unstable manifold at
(A, (~, -1), then U (z) ~ C for all z. This is possible for the following
reason. Suppose that (U (z), V (z), and U (zo) = C for some zo.
If F ( C) is very large, then we must have is very
large for some z 1  zo. However, as Lemma 2B. 2 shows, if II is too

large, then U (z) will leave N~ in backwards time. The remark following
Lemma 2B. 1 implies that U (z) can then never return to Ni, in backwards
time, after leaving N~. This contradicts the assumption that

(U (z), V (z), p (z)) E WA. To make this all precise would be very tedious
so we do not give the details.

3. THE LOCAL UNSTABLE MANIFOLD AT A

A. A parametrization of the trajectories
in the unstable manifold at (A, C~, -1 )

Let WA be the unstable manifold at A = ( A, (~, -1) . We assume
throughout that if (U, V, p) E W A’ then p> -1. The behavior of WA near
A is determined by linearizing (IF. 5) at A. If we set
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