D. G. Aronson
J. L. Vazquez

The porous medium equation as a finite-speed approximation to a Hamilton-Jacobi equation

<http://www.numdam.org/item?id=AIHPC_1987__4_3_203_0>

© Gauthier-Villars, 1987, tous droits réservés.

NUMDAM
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
The porous medium equation as a finite-speed approximation to a Hamilton-Jacobi equation

by

D. G. ARONSON (1), (2)
School of Mathematics, University of Minnesota, Minneapolis, MN 55455

and

J. L. VAZQUEZ (1) (3)
División de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

ABSTRACT. — It is known that solutions of the porous medium equation \(u_t = (u^m)_{xx} \) converge to solutions of the heat equation \(u_t = u_{xx} \) as \(m \downarrow 1 \) if the initial datum \(u(x, 0) \) is kept fixed. For porous medium flow \(u \) represents a suitably scaled density and \(v = nu^m/(m - 1) \) represents the pressure. We prove that \(v \) converges to a solution of the Hamilton-Jacobi equation \(v_t = (v_x)^2 \) as \(m \downarrow 1 \) if \(v(x, 0) \) is fixed. Moreover, if \(v(x, 0) \) has compact support the interface for the porous medium equation tends to the interface for the latter equation. The limit \(m \uparrow 1 \) is also discussed. In this fast-diffusion case no interfaces appear.

Key-words: Porous medium flow, Hamilton-Jacobi equation, Finite speed of propagation, Viscosity solutions, Interfaces.

(1) Partially supported by USA-Spain Cooperation Agreement under Joint Research Grant CCB-8402023.
(2) Partially supported by National Science Foundation Grant DMS 83-01247.
RESUME. — On sait que les solutions de l'équation des milieux poreux $u = (u^m)_{xx}$ convergent quand $m \downarrow 1$ vers des solutions de l'équation de la chaleur $u_t = u_{xx}$ si l'on fixe la donnée initiale $u(x, 0)$. Comme modèle de l'écoulement d'un gaz dans un milieu poreux u représente la densité et $v = mu^{m-1}/(m-1)$ est la pression. Nous démontrons que v converge quand $m \downarrow 1$ vers une solution de l'équation de Hamilton-Jacobi $v_t = (v_x)^2$ si $v(x, 0)$ reste fixée. Si en plus $v(x, 0)$ est à support compact alors l'interface de la solution de l'équation des milieux poreux tend vers celle correspondant à $v_t = (v_x)^2$. On discute aussi le cas de diffusion rapide $m \uparrow 1$ où il n'y a pas d'interfaces.

INTRODUCTION AND RESULTS

The density $u = u(x, t)$ of an ideal gas flowing isentropically through a one-dimensional $(x \in \mathbb{R})$ porous medium obeys the equation

$$u_t = (u^m)_{xx} \quad \text{in} \quad Q = \mathbb{R} \times \mathbb{R}^+ \tag{0.1}$$

where $m > 1$ is a constant. It is known, [BC1], that the solutions u to (0.1) depend continuously in the $C(\mathbb{R}^+ : L^1(\mathbb{R}))$-norm on both the initial datum $u(., 0) = u_0 \in L^1(\mathbb{R})$ and on m. In particular if u_0 is kept fixed and $m \downarrow 1$, then $u = u(x, t; m)$ converges to a solution of the heat conduction equation

$$u_t = u_{xx} \tag{0.2}$$

with initial datum u_0. Thus, for m near 1, the porous medium equation can be regarded as a perturbation of the heat equation.

Despite the convergence of solutions of the nonlinear equation (0.1) to solutions of the linear equation (0.2), there is a marked difference in the behaviour of solutions of these equations stemming from the fact that (0.1) is of degenerate parabolic type. Perhaps the most striking consequence of that degeneracy is the finite speed of propagation of disturbances from rest for the porous medium equation as opposed to the infinite speed associated with the heat equation. Specifically, suppose that u_0 is a continuous, nonnegative and bounded real function such that $u_0 = 0$ on \mathbb{R}^+ and $u_0 \equiv 0$. Then there exists a unique continuous, nonnegative and bounded function $u(x, t)$ in Q which solves (0.1) in a generalized sense and is such that $u(., 0) = u_0$, cf. [OKC], [AB]. Moreover the support of $u(., t)$ is bounded away from $x = \infty$ for every $t > 0$ and the finite function

$$\zeta(t) = \sup \{ x \in \mathbb{R} : u(x, t) > 0 \} \tag{0.3}$$

is continuous and nondecreasing in \mathbb{R}^+. The curve $x = \zeta(t)$ is called the (right-hand) interface of u. If the support of u_0 is not an interval of the

Annales de l'Institut Henri Poincaré - Analyse non linéaire
form $(-\infty, a)$ other interfaces will exist, but their properties are essentially the same as those of the right-hand interface. The interfaces have been the object of intense study in recent years and their behaviour is now reasonably well understood. Detailed results and references can be found in [V3]. In particular the interface exists and has the properties described above as long as the initial datum is a nonnegative function in $L^1_{\text{loc}}(\mathbb{R})$ which grows at most like $0(|x|^{2/(m-1)})$ as $|x| \to \infty$, cf. [AC], [BCP], [DK].

The finite speed of propagation associated with the porous medium equation is, of course, reminiscent of hyperbolic equations. Our purpose in this paper is to investigate the precise nature of the relationship between (0.1) and the Hamilton-Jacobi equation

$$v_t = (v_x)^2,$$ \hfill (0.4)

sometimes called the nonstationary eikonal equation. To obtain (0.4) as the limit of (0.1) we proceed as follows. In view of the application in mind it is natural to restrict attention to nonnegative solutions of (0.1). We can then replace the variable u by the corresponding scaled pressure

$$v = \frac{m}{m-1} u^{m-1}.$$ \hfill (0.5)

Formally v satisfies the equation

$$v_t = (m-1)v v_{xx} + (v_x)^2.$$ \hfill (0.6)

The local velocity of the flow at any point $(x, t) \in Q$ is given by the function $-v_x$ (Darcy’s law) and the interface is characterized by the relationship

$$\zeta'(t) = -v_x(\zeta(t), t),$$ \hfill (0.7)

where $v_x(\zeta(t), t)$ means $\lim v_x(x, t)$ as $x \uparrow \zeta(t)$ with $t > 0$, cf. [A2], [Kn] (1).

Equations (0.4) and (0.6) share the property of finite propagation speed. Thus we can view (0.6) as a finite-speed viscous approximation to (0.4). In fact (0.4) and (0.6) formally agree on the interfaces. This agreement has been rigorously established in [CF] where it is shown that $v_t - (v_x)^2 \to 0$ as $(x, t) \to (\zeta(t_0), t_0)$ with $t_0 > 0$ and $v(x, t) > 0$ (2).

On the other hand, equations (0.4) and (0.6) formally agree everywhere when $m \to 1$ and it is this limit which is our main concern here. Set

$$\varepsilon = m - 1.$$

(1) If the time t^* at which the interface starts to move (waiting time) is positive then ζ may not be differentiable. In that case formula (0.7) holds at $t = t^*$ with $\zeta'(t)$ replaced by the right-hand derivative $D^+ \zeta(t^*)$, cf. [CF], [ACK], [ACV].

(2) At $t_0 = t^*$ we also need $t \geq t_0$.

For every \(s > 0 \) let \(v_{s}^{0} \) be a continuous, nonnegative and bounded real function and consider the initial-value problem

\[
\begin{aligned}
v_t &= \varepsilon v v_{xx} + (v_x)^2 & \text{in } Q, \\
r(x, 0) &= v_{r0}(x) & \text{in } \mathbb{R}.
\end{aligned}
\]

\(\tag{P_{\varepsilon}} \)

For \(\tau > 0 \) let \(Q_\tau = \{ (x, t) \in Q : t > \tau \} \). The following is our main convergence result:

THEOREM 1. — A) Suppose that for every small \(\varepsilon > 0 \), \(v_{\varepsilon 0} \) is a continuous real function such that

\[
0 \leq v_{\varepsilon 0} \leq N
\]

for some constant \(N > 0 \) and \(\{ v_{\varepsilon 0} \} \) converges to a function \(v_0 \) uniformly on compact subsets of \(\mathbb{R} \) as \(\varepsilon \to 0 \). Let \(v_\varepsilon = v_\varepsilon(x, t) \) denote the solution to \((P_{\varepsilon}) \). Then as \(\varepsilon \to 0 \), the family \(\{ v_\varepsilon \} \) converges uniformly on compact subsets of \(\mathbb{Q} \) to a function \(v \in C(\mathbb{Q}) \) such that

i) \(v \in Lip(Q_t) \) for every \(t > 0 \) and \(v_t = (v_x)^2 \) a.e. in \(Q \),

ii) \(v(x, 0) = v_0(x) \) for all \(x \in \mathbb{R} \).

iii) \(v_{xx} \geq -\frac{1}{2t} \) in \(\mathcal{D}'(Q) \).

Moreover \(v_{xx} \to v_x \) in \(L_{\text{loc}}^p(Q) \) for every \(1 \leq p < \infty \).

B) The limit function \(v = v(x, t) \) is uniquely characterized as a solution in \(C(\mathbb{Q}) \) of the initial-value problem

\[
\begin{aligned}
v_t &= (v_x)^2 & \text{in } Q, \\
v(., 0) &= v_0 & \text{in } \mathbb{R}
\end{aligned}
\]

\(\tag{P_0} \)

by the semiconvexity property iii).

The proof of Theorem 1 is given in section 2 after the required estimates for \(v_\varepsilon \) and its derivatives are derived in Section 1. Here we shall discuss some relevant aspects of our result. First, note that the convergence of \(v_\varepsilon \) to \(v \) is compatible with the statement that \(u_\varepsilon \) converges to a solution of the heat equation. This is possible since (0.5) implies that \(u_\varepsilon \to 0 \) uniformly in \(Q \) as \(\varepsilon \to 0 \) if \(v_\varepsilon \) is bounded.

The semiconvexity property iii), which selects the « correct » solution of problem \((P_0) \), is an immediate consequence of the estimate

\[
v_{xx} \geq -\frac{1}{(\varepsilon + 2)t},
\]

\(\tag{0.9} \)

valid for all nonnegative solutions of (0.1) ([AB]). A similar estimate, \(\Delta u \geq -k/t \), also holds in several space dimensions, the equation being then \(u_t = \Delta(u^m) \) in \(Q = \mathbb{R}^d \times \mathbb{R}^+ \) with \(d > 1 \), and has played a key role in the general theory of the porous medium equation, cf. [AC], [BCP].

Theorem 1(B) sheds a new light on its significance, but it would be interesting
to better understand its physical meaning (in this connection see (0.13) below).

Crandall and P. L. Lions, [CL] (see also [CEL]) have recently introduced
the notion of viscosity solution to characterize the «good» solutions of
Hamilton-Jacobi equations. To be specific, if the equation is

$$u_t + H(Du) = 0 \quad \text{in} \quad Q = \mathbb{R}^d \times (0, T) \quad (0.10)$$

with $H : \mathbb{R}^d \to \mathbb{R}$ continuous and $Du = (u_{x_1}, \ldots, u_{x_d})$, then a function
$u \in C(Q)$ is a viscosity solution of (0.10) if for every $\phi \in C^1(Q)$ we have

$$\phi_t + H(D\phi) \leq 0 \quad (0.11a)$$

at all local maxima of $u - \phi$ and

$$\phi_t + H(D\phi) \geq 0 \quad (0.11b)$$

at all local minima of $u - \phi$. Our limit function $v(x, t)$ of Theorem 1 is a
viscosity solution of $v_t = (v_x)^2$ because v_x is locally bounded and v_{xx} is
locally bounded below in Q. It then follows from Theorem 10.2 of [Li].

It should also be noted that since our estimates break down at $t = 0$
the current uniqueness proofs for viscosity solutions do not apply. In fact
our uniqueness result, Theorem 1(B), is an improvement of Lemma 2.1
of [B] to cover the case in which the bounds for the derivatives are not
uniform in x, t. As explicit examples show, the estimates which we derive
i.e. $v_x = O(t^{-1/2}), v_{xx} \geq 0(1/t)$, are actually attained for general initial data.

The idea that solutions of $v_t = (v_x)^2$ must approximate to leading order
solutions of $v_t = \varepsilon vv_{xx} + (v_x)^2$ for very small $\varepsilon > 0$ is used by Kath and
Cohen in [KC] where they study shock formation at the waiting-time on
the interfaces of solutions of (0.6) for ε small using singular perturbation
methods.

Since the equation $v_t = (v_x)^2$ is invariant under translations, in particular
in v, the restriction to positive bounded solutions is equivalent to working
with just bounded solutions. However, setting the lower bound at $u = v = 0$
plays an important role in the convergence discussed above because of
the degeneracy of the diffusion term $\varepsilon v v_{xx}$ when v vanishes.

We also prove convergence of the interfaces which appear when $v_t \equiv 0$
and v_0 vanish in some interval. To make things simple suppose that $v_{t0} \equiv v_0$
and v_0 vanishes in \mathbb{R}^+, but $v_0 \not\equiv 0$. Let $\zeta(t)$ denote the (right-hand) interface
for the solution v_t of (Pv) and let $\zeta(t)$ denote the interface for the solution v
to (Pv). Then $\zeta(t)$ and $\zeta(t)$ are Lipschitz continuous, nondecreasing func-
tions of t for $0 \leq t < \infty$ and we have the following convergence result.

Theorem 2. — As $\varepsilon \downarrow 0$ we have $\zeta(t) \to \zeta(t)$ uniformly on $[0, T]$ for
every $T > 0$ and $\zeta_{\varepsilon}(t) \to \zeta(t)$ a.e. and in $L^p_{\text{loc}}(\mathbb{R}^+)$ for every $p \in [1, \infty)$.

Further properties of the convergence of the interfaces, as well as proof of these results are given in Section 3.

The convergence results of Theorems 1 and 2 cannot be substantially improved because of the lack of regularity of the solution v to (0.4). In fact v_x is in general discontinuous and so is $\zeta'(t)$, cf. [D] or [La]. Stronger convergence results are obtained in Section 4 under the further assumption that the initial data v_{x0} are concave on their support, cf. Theorem 3. The result depends on the fact that, for concave data, v is a C^1 function on the set where it does not vanish and $\zeta \in C^1 [0, \infty)$. We also prove that if $v_{o\varepsilon} \uparrow v_0$ as $\varepsilon \downarrow 0$ then v_ε also converges monotonically to v (Theorem 4).

As we noted above the local velocity of propagation of solutions of (0.1) is given by $w = -v_x$. As a consequence of Theorem 1 it follows that the family $w_\varepsilon = v_{x\varepsilon}$, $\varepsilon > 0$, converges in $L^p_{loc}(Q)$ to a solution w of the conservation law

$$w_t + (w^2)_x = 0 \quad \text{in} \quad \Delta'(Q) \tag{0.12}$$

and w satisfies the entropy condition

$$w_x \leq \frac{1}{2t}. \tag{0.13}$$

If in addition v_{0x} exists in a suitable sense then w is the unique distributional solution of (0.12) satisfying (0.13) and taking the initial value $w(x, 0) = -v_0'(x)$, cf. [0], [LP].

It is also of some interest to consider what happens if we take the limit $m \to 1$ for $m < 1$ in (0.6). For $m \in (0, 1)$ the initial value problem for (0.1) has a unique solution provided that $u(x, 0)$ is nonnegative and locally integrable ([AB], [HP]). Moreover $u \in C^\infty(Q)$ and is positive everywhere in Q so that, in particular, there are no interfaces. The analog of Theorem 1 with $m \uparrow 1$ is proved in Section 5. Note that in this case v, which is still defined by (0.5), is negative.

Before we turn to the proofs of our results we pause to describe an important connection between equations (0.1) or (0.6) and (0.4). Let $m > 1$. Recall that if u is a nonnegative solution of (0.1) then v satisfies

$$v_t = (m - 1)vw_{xx} + (v_x)^2$$

and

$$v_{xx} \geq -\frac{1}{(m + 1)t}. \tag{0.15}$$

It follows that

$$v_t + \frac{m - 1}{(m + 1)t} v \geq (v_x)^2 \tag{0.16}$$

Now define

$$V(x, \tau) = v(x, \tau)t^{m-\frac{1}{2}}, \tag{0.17}$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire
where t and τ are related by
\[\tau = \frac{m + 1}{2} t^{\frac{2}{m+1}}. \] (0.17b)

With this change of variables (0.16) and (0.15) become
\[V_t \geq (V_x)^2 \quad \text{and} \quad V_{xx} \geq -\frac{1}{2\tau}. \] (0.18)

Thus if u is a solution of porous medium equation (0.1) then the change of variables (0.5), (0.17) transforms it into a viscosity supersolution of the equation (0.4) (3).

The equalities in (0.18) hold for the Barenblatt solutions
\[\bar{u}(x, t) = t^{-\frac{1}{m+1}} \left(C - \frac{m - 1}{2m(m + 1)} \frac{x^2}{t^{2/(m+1)}} \right)^{\frac{1}{m-1}}, \] (0.19)

where $(\cdot)_+$ means $\max(\cdot, 0)$. For each $C > 0$ this function is a solution of (0.1) with initial data which is a multiple of the Dirac measure concentrated at $x = 0$. If \bar{v} is defined through (0.5) from \bar{u} then
\[\bar{v}_{xx} = -\frac{1}{(m + 1)\tau} \]
whenever $\bar{u} > 0$. The change of variables (0.17) gives
\[\bar{V}(x, \tau) = \left(K - \frac{x^2}{4\tau} \right)_+ \quad \text{with} \quad K = \frac{Cm}{m - 1}. \] (0.20)

The functions (0.20) are the well-known bounded self-similar solutions to $V_t = (V_x)^2$. Note that the initial value if
\[V(x, 0) = \begin{cases} 0 & \text{if } x \neq 0, \\ K & \text{if } x = 0. \end{cases} \] (0.21)

This rather striking correspondence has some deep consequences. It is known that as $t \to \infty$ every solution of (0.1) with $u(x, 0) \in L^1(\mathbb{R})$, $u_0 \geq 0$ and $u_0 \neq 0$, converges with the appropriate scaling to the Barenblatt solution \bar{u} with the same mass, $\int u(x, t)dx = \int \bar{u}(x, t)dx = M$. Specifically
\[t^{1/(m+1)} \| u(\cdot, t) - \bar{u}(\cdot, t) \|_{\infty} \to 0 \quad \text{as} \quad t \to \infty, \]
(cf. [K] and also [V1], [V2] for further details). The self-similar solutions

\(^{(3)}\) We say that v is a viscosity supersolution of (0.10) if the condition (0.11 b) is satisfied.

For the proof that v satisfying (0.18) is a viscosity supersolution see [Li], Theorem 10.2.

(0.20) play the same role for bounded solutions for (0.4). Thus we see that the asymptotic behaviour of these classes of solutions for equations (0.1) and (0.4) coincide under the transformation (0.5), (0.17). This asymptotic similarity was first observed in [V2] where, in particular, it was shown that if \(m > 1 \) then the velocity \(w = -v_x \) associated with the solutions of (0.1) behaves at \(t \to \infty \) like the finite N-waves that are the typical profiles of solutions of first-order conservation laws if \(m > 1 \). Corresponding results hold for \(m \leq 1 \) as we show in Section 5.

The convergence results Theorem 1 and its analog for \(m \leq 1 \), Theorem 6, also hold for \(x \in \mathbb{R}^d \) for any \(d > 1 \). While our discussion of the case \(m \leq 1 \) in Section 5 is valid in several space dimensions, the case \(m > 1 \) requires new estimates and will be studied in [LSV].

1. ESTIMATES

In this section we collect various results for the solutions of problem (PE) that are needed in the sequel. In particular we obtain several estimates, none of which is entirely new, but we shall give new proofs in some cases in order to get the precise dependence on \(\varepsilon \).

We consider a family of measurable, nonnegative and bounded initial functions \(\{ v_{0\varepsilon} : \varepsilon > 0 \} \) defined on the real line. We further assume that they are bounded uniformly in \(\varepsilon \), i.e., there exists a constant \(N > 0 \) such that

\[
0 \leq v_{0\varepsilon}(x) \leq N
\]

for a.e. \(x \in \mathbb{R} \) and every \(\varepsilon > 0 \). We define the corresponding initial densities by

\[
u_{e0}(x) = \left(\frac{\varepsilon}{\varepsilon + 1} v_{e0}(x) \right)^{1/\varepsilon}.
\]

For every \(\varepsilon > 0 \) there exists a unique bounded continuous function \(u_\varepsilon \) defined in \(Q \) which satisfies

\[
\begin{align*}
\frac{\partial u_\varepsilon}{\partial t} &= (u^{1+\varepsilon})_{xx} \quad \text{in} \quad Q, \\
u(., t) &\to u_{e0} \quad \text{in} \quad L^1_{\text{loc}}(\mathbb{R}) \quad \text{as} \quad t \downarrow 0.
\end{align*}
\]

This follows from the known existence and uniqueness theory for the porous medium equation, cf. [OKC] [AC] [BCP] [DK]. If we recover the pressure \(v_\varepsilon \) by inverting the change of variables, i.e.

\[
v_\varepsilon(x, t) = \frac{\varepsilon + 1}{\varepsilon} u(x, t)^{\varepsilon},
\]
then \(v_e \) is a solution of (PE):
\[
\begin{align*}
v_t &= \epsilon vv_{xx} + (v_x)^2 \quad \text{in} \quad Q, \quad (1.2\ a) \\
v(x, 0) &= v_{e0}(x) \quad \text{in} \quad \mathbb{R}. \quad (1.2\ b)
\end{align*}
\]
in the sense that \(r \) is continuous, nonnegative and bounded in \(Q \), and satisfies
\[
\iint_Q \{ \epsilon vv_x \psi_x + (\epsilon - 1)(v_x)^2 \psi - v \psi_x \} = \int_\mathbb{R} v_{0e}(x) \psi(x, 0) dx
\]
for every test function \(\psi \in C^\infty(\overline{Q}) \), cf. [A2]. Moreover \(u_e \) and \(v_e \) are \(C^\infty \) functions on the open subset of \(Q \) where they are positive.

The solutions satisfy the maximum principle: if \(v_e^{(1)} \) and \(v_e^{(2)} \) are two solutions of (PE) with initial data \(v_{e0}^{(1)} \) and \(v_{e0}^{(2)} \) and \(v_{e0}^{(1)} \geq v_{e0}^{(2)} \) a.e. then \(v_e^{(1)} \geq v_e^{(2)} \) everywhere in \(Q \), cf. [OKC] [BCP] [DK]. From this we obtain our first estimate.

Lemma 1.1. — For every \((x, t) \in Q\) we have
\[
0 \leq v_e(x, t) \leq \| v_{e0} \|_{L^1(\mathbb{R})} \leq N. \quad (1.3)
\]

The following remark also follows from the maximum principle. If \(x_0 \in \mathbb{R} \) is such that \(\text{ess lim inf} v_{e0}(x) \) is positive as \(x \to x_0 \) then for every \(t > 0 \) \(v_e(x_0, t) > 0 \). (To prove this compare with a small Barenblatt solution centered at \(x = x_0 \).) Using this remark we conclude that if \(v_{e0}(x) \) is \(C^\infty \) and positive everywhere then \(u_e \) is \(C^\infty \) in \(Q \), cf. [OKC]. Since the solutions \(u_e \) depend continuously on the initial data \(u_{e0} \), ([BC1] [BCP] [DK]), every solution can be suitably approximated by \(C^\infty \) solutions.

Our next estimates are taken from [AB]:

Lemma 1.2. — i) For every \(t > 0 \), \(v_{exx}(\cdot, t) \) is a locally bounded measure on \(\mathbb{R} \) and
\[
v_{exx}(\cdot, t) \geq -\frac{1}{(e + 2)t} \quad \text{in} \quad \mathcal{D}'(\mathbb{R}). \quad (1.4)
\]

ii)
\[
v_{et}(\cdot, t) \geq -\frac{\epsilon v(\cdot, t)}{(e + 2)t} \quad \text{in} \quad \mathcal{D}'(\mathbb{R}). \quad (1.5)
\]

We remark that both estimates are sharp as can be seen by checking them on the Barenblatt solutions.

It was proved in [A1] that the velocity \(v_{ex} \) is bounded in \(Q \tau = \{ (x, t) \in Q : t > \tau \} \) for every \(\tau > 0 \). We give a new and simple proof of this bound using
Lemmas 1.1 and 1.2, which exhibits the explicit dependence of the bound on N, t and ε:

Lemma 1.3. — For every $t > 0$ the function $v_\varepsilon(\cdot, t)$ is Lipschitz continuous and satisfies

$$
|v_{xx}(x, t)|^2 \leq \frac{2}{(\varepsilon + 2)t} \|v(\cdot, t)\|_\infty \leq \frac{2N}{(\varepsilon + 2)t} \tag{1.6}
$$
a.e. in Q.

Remark. — Again the bound is attained by the Barenblatt solution.

Proof. — The argument proceeds at fixed time $t > 0$ by applying the estimates $0 \leq v_\varepsilon \leq N$ and $v_{xx} \geq -((\varepsilon + 2)t)^{-1}$ to the function $x \rightarrow v(x, t)$. For $t > 0$ and $y \in \mathbb{R}$ we define

$$
\phi(x) = v(x + y, t) + \frac{x^2}{2(\varepsilon + 2)t}.
$$

Then ϕ is continuous, nonnegative and convex ($\phi'' \geq 0$ in $\mathcal{D}'(\mathbb{R})$). Therefore for every $h > 0$ we have

$$
\phi(x \pm h) \geq \phi(x \pm h) - \phi(x) \geq \pm \phi'(x) h.
$$

Assume that $\phi'(x) \neq 0$. In the above inequality take the sign which gives $|\phi'(x)|h$ in the right-hand member to get

$$
|\phi'(x)| \leq \frac{1}{h} \|\phi\|_{L^\infty(x-h,x+h)}.
$$

Letting $x = 0$ and taking into account the definition of ϕ this means that for every $y \in \mathbb{R}$

$$
|v_{xx}(y, t)| \leq \frac{1}{h} \left(\|v_\varepsilon(\cdot, t)\|_{L^\infty(\mathbb{R})} + \frac{1}{2(\varepsilon + 2)t} h^2 \right).
$$

The result now follows by choosing h so as to minimize the right-hand member of the inequality, i.e.

$$
h^2 = 2(\varepsilon + 2)t \|v_\varepsilon(\cdot, t)\|_{L^\infty(\mathbb{R})}.
$$

In view of Lemma 1.3 the family $\{v_\varepsilon\}$ is uniformly Lipschitz continuous with respect to x in Q_τ, for $\tau > 0$ with Lipschitz constant $L_\varepsilon = (2N/(\varepsilon + 2))^{1/2}$ uniform in ε. Using the results of [G] the solutions are then Hölder-continuous in Q_τ with respect to the variable t with exponent $1/2$. We give a simple direct proof of this fact that shows the dependence on ε.

Lemma 1.4. — The family $\{v_\varepsilon\}$ is uniformly Hölder-continuous with
respect to \(t \) in \(Q_\tau \), \(\tau > 0 \), with exponent \(1/2 \). More precisely, for every \(x \in \mathbb{R} \)
and \(t_1 \geq t_0 \geq \tau > 0 \) we have
\[
| v(x, t_1) - v(x, t_0) | \leq A \varepsilon^{1/2} N^{1/2} L \tau (t_1 - t_0)^{1/2} + BL^2(t_1 - t_0) \tag{1.7}
\]
for some constants \(A, B > 0 \) independent of \(\varepsilon, N, L_\tau \).

Proof. We may assume that \(v_\varepsilon \in C^\infty(Q) \). For convenience we temporarily drop the subscript \(\varepsilon \). If \(x, t_1, t_0 \) and \(\tau \) are as above, it follows from \(| v_x | \leq L_\tau \) in \(Q_\tau \) that for every \(y \in \mathbb{R} \) such that \(|y - x| \leq \lambda \) we have
\[
| v(y, t_1) - v(x, t_1) | \leq L | y - x | \leq L \lambda , \tag{1.8}
\]
where \(L = L_\tau \). We want to estimate \(h = v(x, t_1) - v(x, t_0) \) in terms of \(\delta = t_1 - t_0 \).
Suppose, for example, that \(h > 0 \). Then take \(\lambda < h/(2L) \) and set \(I = [x - \lambda, x + \lambda] \) and \(S = I \times [t_0, t_1] \). Integrating the equation \(v_t = \varepsilon \partial_x v_x + (1 - \varepsilon) v_x^2 \)
in \(S \) we obtain
\[
\int_{t_0}^{t_1} (v(y, t_1) - v(y, t_0))dy = \int_{t_0}^{t_1} dy \int_{t_0}^{t_1} v_i(y, t)dt =
\]
\[
= \varepsilon \int_{t_0}^{t_1} \{ (v_x)(x + \lambda, t) - (v_x)(x - \lambda, t) \} dt + (1 - \varepsilon) \int_S (v_x)^2(y, t)dydt .
\]
In view of (1.8) we have
\[
v(y, t_1) - v(y, t_0) \geq v(x, t_1) - v(x, t_0) - 2L \lambda = h - 2\lambda L .
\]
Therefore, using Lemmas 1 and 2, we find
\[
2(h - 2\lambda L) \lambda \leq 2 \varepsilon N \delta L + 2(1 - \varepsilon)L^2 \lambda \delta .
\]
Now if we set \(\lambda = \frac{h}{4L} \) we get
\[
h^2 \leq 8 \varepsilon NL^2 \delta + 2(1 - \varepsilon)L^2 h \delta ,
\]
from which it follows that
\[
h \leq 2(1 - \varepsilon)L^2 \delta + (8\varepsilon)^{1/2} N^{1/2} L \delta^{1/2} , \tag{1.9}
\]
and the assertion is proved.

In Lemma 1.3 we derived a bound for \(v_{xx} \) which does not depend on smoothness of the initial data but which is only useful for \(t \) bounded away from zero. We shall also need a bound which is valid down to \(t = 0 \). For this we employ the Bernstein method as in reference [A1].

Lemma 1.5. Suppose that \(v_{x0} \) is bounded in some interval \((a, b) \in \mathbb{R} \).
For any \(T \in \mathbb{R}^+ \) and \(\delta \in \left(0, \frac{b - a}{2} \right) \) let \(R = (a, b) \times (0, T) \) and \(R^* = (a + \delta, \)

There exists a constant $C > 0$ independent of $a, b, \varepsilon, \delta, T$ and v_{e0} such that

$$|v_{ex}(x, t)| \leq 2 \|v_{e0}\|_{L^\infty(a, b)} + C_0^{-1} \|v_{e}\|_{L^\infty(R)}$$

for all $(x, t) \in \mathbb{R}^*$.

Proof. — We may assume that v_0 is positive and smooth in R. Set

$$\phi(r) = Mr(4 - r)^{3/2}$$

where $M = \|v_e\|_{L^\infty(R)}$ and define w by $v_\varepsilon = \phi(w)$. Note that $w \in [0, 1]$. Let $p = w_x$ and $z = \zeta^2 p^2$, where $\zeta = \zeta(x)$ is a $C^\infty([a, b])$ function with values in $[0, 1]$ which vanishes in a neighborhood of $x = a$ and $x = b$. Then, as in [A1], at points of R where z has a relative maximum we have

$$\zeta^2 p^4 \leq -\left\{ m \phi'' + (m - 1)\phi(\phi''/\phi') \right\} p^3 \zeta^2$$

$$\leq -\left\{ (m + 1)\phi' + 2(m - 1)\phi \frac{\phi''}{\phi'} \right\} p^3 \zeta^2$$

$$\leq -\left\{ 2(m - 1)\phi |\zeta'|^2 + (m - 1)\phi \zeta'' \right\} p^2.$$}

Now let $\zeta = \zeta(x)$ be a $C^\infty(R)$ function with $\zeta(0) = 1$ and $\zeta = 0$ for all $|x| \geq 1$ such that $\zeta \in [0, 1]$, $|\zeta'| \leq 2$, and $|\zeta''| \leq 4$ in R. For an arbitrary fixed $x \in [a + \delta, b - \delta]$ set $\zeta(x) = \frac{x - x}{\delta}$. Then substituting in (1.11) and taking into account the estimates $\frac{2M}{3} \leq \phi' \leq \frac{4M}{3}$, $\phi'' = -\frac{2M}{3}$, $\left| \frac{\phi''}{\phi'} \right| \leq 1$ and

$$\left(\frac{\phi''}{\phi'} \right)^\prime \leq 0$$

we obtain

$$\zeta^2 p^4 \leq C_1 \delta^{-2} p^2 + C_2 \delta^{-1} \zeta |p|^3,$$

where the constants C_1 and C_2 are independent of $a, b, \varepsilon, \delta, M$ and T. Since $2C_2 \delta^{-1} \zeta |p| \leq \zeta^2 p^2 + C_2 \delta^{-2}$ we conclude that

$$\max z \leq (2C_1 + C_2) \delta^{-2} \equiv C_3 \delta^{-2}.$$}

Suppose now that

$$\|v_{ex}\|_{L^\infty(R^*)} > 2 \|v_{e0}\|_{L^\infty(a, b)}.$$

Let $(\bar{x}, \bar{t}) \in \mathbb{R}^*$ be a point where the maximum value of $|v_{ex}|$ is achieved. Clearly $\bar{t} > 0$. Moreover, since $v_{ex} = \phi'(w)w_x$ we have

$$\|w_x\|_{L^\infty(R)} \geq |w_x(\bar{x}, \bar{t})| > \frac{2}{|\phi'(w)|} \|v_{e0}\|_{L^\infty(a, b)}$$

$$\geq \frac{3}{2M} \|v_{e0}\|_{L^\infty(a, b)} \geq \|w_x(\cdot, 0)\|_{L^\infty(a, b)}.$$
Therefore if \((x, \bar{t}) \in \mathbb{R}^*\) is a point at which \(|w_x|\) attains its maximum value then \(t > 0\). Set

\[
z(x, t) = w^2_x(x, t) \zeta \left(\frac{x - \bar{x}}{\delta} \right)
\]

where \(\zeta\) is the function described in the last paragraph. Since

\[
\|z\|_{L^\infty(\mathbb{R})} \geq z(x, \bar{t}) = |w_x|^2(\bar{x}, \bar{t})
\]

\[
= \|w_x\|_{L^\infty(\mathbb{R}^* \setminus \{x\})}^2 + \|w_x(\cdot, 0)\|_{L^\infty(a,b)}^2 \geq \|z(\cdot, 0)\|_{L^\infty(a,b)}
\]

it follows that for any point \((x, t) \in \mathbb{R}\) where \(z\) achieves its maximum we must have \(t > 0\). Thus we can apply (1.12) to conclude that

\[
w^2_x(\bar{x}, \bar{t}) = z(x, t) \leq \|z\|_{L^\infty(\mathbb{R})} \leq C^2_3 \delta^{-2}.
\]

Therefore

\[
|v_x(x, t)| = |\phi'(w)w_x| \leq \frac{4}{3} MC_3 \delta^{-1}
\]

and (1.10) holds with \(C = \frac{4}{3} C_3\).

Remark. — In case \((a, b) = \mathbb{R}\), the maximum principle holds for \(v_{e\alpha}\) and we have

\[
|v_x(x, t)| \leq \|v'_{\alpha}\|_{L^\infty(\mathbb{R})}.
\]

This can be proved by a slight alteration of the above argument. A proof for more general equations of the form \(u_t = \phi(u)u_x\), with \(\phi\) a continuous increasing real function, can be found in [V2] along with a discussion of the appropriate concept of velocity and its behaviour.

By essentially the same argument used to prove Lemma 1.4 we can derive the following consequences of Lemma 1.5.

Corollary 1.1. — Under the hypothesis of Lemma 5, \(v_{e}\) is Hölder continuous with respect to \(t\) in \(\mathbb{R}^*\) with exponent \(1/2\) and Hölder constant independent of \(\varepsilon\).

2. PROOF OF THEOREM 1

2.1. Passage to the limit \(\varepsilon \downarrow 0\).

In view of Lemma 1 the family \(\{v_{\varepsilon}\}\) of solutions in Theorem 1 is uniformly bounded in \(Q\). Moreover, by Lemmas 1.3 and 1.4, \(\{v_{\varepsilon}\}\) is equicontinuous in \(Q_\tau\) for any \(\tau > 0\). Therefore there exists a sequence \(\varepsilon_n \downarrow 0\) such that \(v_n \equiv v_{\varepsilon_n} \rightarrow v\in C(Q)\) uniformly on \(Q_\tau\) for every \(\tau > 0\). It is clear from Lemmas 1 and 2 that

\[
0 \leq \tau \leq \|v_0\|, \quad \text{in} \quad Q, \quad \text{(2.1)}
\]

\[
v_{xx} \geq -\frac{1}{2\tau} \quad \text{in} \quad \mathcal{D}'(Q) \quad \text{(2.2)}
\]
and
\[v_t \geq 0 \quad \text{in} \quad \mathcal{D}'(Q). \]

By Lemma 3, \(v \) is uniformly Lipschitz continuous with respect to \(x \) in \(Q_\tau \) for any \(\tau > 0 \). Letting \(\varepsilon \to 0 \) in estimate (1.7) it follows that \(v \) is also uniformly Lipschitz continuous with respect to \(t \) in \(Q \), for any \(\tau > 0 \). Moreover, the sequence \(\{ v_{nx} \} \) is relatively compact in \(L^p_{\text{loc}}(Q) \). This is a consequence of the following compactness result, which is a variation of Lemma 10.1 of [Li]

Lemma 2.1. — Let \(\{ V_n \} \geq 1 \) be a sequence in \(C(Q) \) such that on every compact subset \(Q' \subset \subset Q \) we have

i) \(\{ V_n \} \) converges uniformly,

ii) \(\{ V_{nx} \} \) is bounded in \(L^\infty(Q') \),

iii) There exists a constant \(C = C(Q') > 0 \) such that for every \(n \geq 1 \)

\[V_{nxx} \geq -C(Q') \quad \text{in} \quad \mathcal{D}'(Q'). \] (2.3)

Then \(\{ V_{nx} \} \) is relatively compact in \(L^p_{\text{loc}}(Q) \) for every \(p \in [1, \infty) \).

The main idea of the proof is that an estimate of the type (2.3) implies a bound for \(V_{nxx} \) in \(\mathcal{M}_b(Q') \), the space of bounded measures on \(Q' \), cf. also [Li], Lemma 3.1.

In view of the relative compactness of \(\{ v_{nx} \} \) we have, after passing to subsequence if necessary,

\[v_{nx} \to v_x \quad \text{in} \quad L^p_{\text{loc}}(Q) \quad \text{and a.e.} \] (2.4)

Since the \(v_n \) satisfy

\[\int_Q (\varepsilon nu_n v_{nx} \psi_x + (\varepsilon_n - 1)(v_{nx})^2 \psi - v_n \psi_t) = 0 \] (2.5)

for all functions \(\psi \in C^1_0(Q) \), letting \(n \to \infty \) we obtain

\[\int (v_x)^2 \psi + v \psi_t = 0. \]

Thus \(v \) satisfies (0.4) \(v_t = (v_x)^2 \) in \(\mathcal{D}'(Q) \) and almost everywhere. Since it also satisfies (2.2), it is a viscosity solution of (0.4), cf. [Li], Theorem 10.2.

We now consider the convergence at \(t = 0 \). Assume to begin with that \(v_{0x} = v_0 \in C^1(\mathbb{R}) \) and \(\| v_0 \|_\infty = L \). By Lemmas 1.4 and 1.5 and the subsequent Remark, for any \(\delta > 0 \) we can find a \(\tau = \tau(N, L) \) such that if \(\varepsilon \in (0, 1) \) we have

\[|v_t(x, t) - v_0(x)| \leq \delta/2 \] (2.6)

for \(0 < t \leq \tau \) and \(x \in \mathbb{R} \). Letting \(\varepsilon \to 0 \) we get

\[|v(x, t) - v_0(x)| \leq \delta/2, \] (2.7)
THE POROUS MEDIUM EQUATION AS A FINITE-SPEED APPROXIMATION

217

hence $|v_\varepsilon(x, t) - v(x, t)| \leq \delta$ and the convergence is uniform in x near $t = 0$. Thus in this case $v \in W^{1,\infty}(Q)$.

For general $v_0 \in C^1(\mathbb{R})$ with bounded derivative such that for a certain ε_0

\begin{align}
0 < v_0(x) &\leq v_0(x) \leq \bar{v}_0(x), \\
\bar{v}_0(x) - v_0(x) &< \delta/2, \quad \text{on } I,
\end{align}

if $x \in I$ and $0 < \varepsilon < \varepsilon_0$. Denote by $v_\varepsilon(x, t)$, $v_\varepsilon(x, t)$ the solutions to (P_\varepsilon) with initial data \bar{v}_0, v_0 resp. and by $\bar{v}(t)$, $v(t)$ their limits as $\varepsilon \to 0$. Using (2.6), (2.7) on \bar{v}_0 and v_0, there exists a time $\tau > 0$ such that if $x \in I$ and $0 < t \leq \tau$ then

\begin{align}
v_\varepsilon(x, t) &\leq \bar{v}_\varepsilon(x, t) \leq \bar{v}_0(x) + \delta/2 \leq v_0(x) + \delta \\
v(x, t) &\geq v_\varepsilon(x, t) \geq \bar{v}_0(x) - \delta/2 \geq v_0(x) - \delta.
\end{align}

Therefore $v_\varepsilon(x, t) - v(x, t) \leq 2\delta$. In a similar way we obtain $v_\varepsilon(x, t) - v(x, t) \geq 2\delta$. It follows that $v_\varepsilon \to v$ uniformly on compact subsets of \overline{Q}. We conclude that $v \in C(\overline{Q})$ and $v(x, 0) = v_0(x)$.

2.2. Uniqueness.

We have just shown the existence of a sequence $\{v_\varepsilon\}$ from the family $\{v_\varepsilon\}$ which converges to a function $v \in C(Q)$ with the properties i), ii), iii) of Theorem 1(A). We shall now show that the whole family $\{v_\varepsilon\}$ converges to v as $\varepsilon \downarrow 0$ by showing the uniqueness of the solution of problem (P_0) in that class of functions. In fact, part (B) of Theorem 1 follows from the following result which extends a result of Benton [B].

PROPOSITION 2.1. — For $i = 1, 2$ let $v_i \in C(Q)$ be solutions of $v_i = (v_x)^2$ in $\mathcal{D}'(Q)$ which satisfy in the sense of distributions in Q

i) $v_{i,xx} \geq -A/t$

and

ii) $|v_{i,x}| \leq B/t^{1/2}$

for some constants $A, B > 0$. For arbitrary $a, b \in \mathbb{R}$ with $a < b$, let

\[D = \{(x, t) \in \mathbb{R}^2; a + 4Bt^{1/2} \leq x \leq b - 4Bt^{1/2}, 0 \leq t \leq T\}, \]

where $T = \{(b - a)/8B \}^2$ and let $D_\mu = \{x \in \mathbb{R}; (x, t) \in D\}$. Then for every $\mu > 0$ the function

\[\Phi_\mu(t) = t^{-2A} \int_{D_\mu} \{(v_\varepsilon - v_i)^+\}^\mu dx \quad (2.8) \]

is nonincreasing on \([0, T]\). Moreover for every \(t \in [0, T]\)

\[
\max_{x \in D_t} \{v_2(x, t) - v_1(x, t)\}^+ \leq \max_{a \leq x \leq b} \{v_2(x, 0) - v_1(x, 0)\}^+.
\] (2.9)

Remarks. — 1) As we have shown in the proof of Lemma 3, condition ii) is a consequence of i) and bound for the \(v_i\). Indeed if \(0 \leq v_i \leq N\) then \(B \leq \sqrt{2NA}\). Thus the essential assumption is the semiconvexity assumption i).

2) The conditions i) and ii) need only hold in \(D \subset [a, b] \times [0, T]\).

Proof. — We begin by showing that if \(\Phi_\mu\) is nonincreasing for every \(\mu \in \mathbb{R}^+\) then (2.9) holds. For any \(t\) and \(\tau\) with \(0 < \tau < t \leq T\), \(\Phi_\mu(t) \leq \Phi_\mu(\tau)\) implies

\[
\left[\int_{D_t} \{(v_2 - v_1)^+\}^\mu dx\right]^{1/\mu} \leq \left(\frac{t}{\tau}\right)^{2A/\mu} \left[\int_{D_\tau} \{(v_2 - v_1)^+\}^\mu dx\right]^{1/\mu}.
\]

Thus, letting \(\mu \uparrow \infty\) we obtain

\[
\max_{D_t} (v_2 - v_1)^+ \leq \max_{D_\tau} (v_2 - v_1)^+
\]

and (2.9) follows by letting \(\tau \downarrow 0\).

For arbitrary field \(\mu \in \mathbb{R}^+\) set \(W = \{(v_2 - v_1)^+\}^\mu\). Then

\[
W_t = \mathcal{A}W_x \quad \text{in} \quad \mathcal{D}'(Q)
\] (2.10)

where \(\mathcal{A} = v_{1x} + v_{2x}\) satisfies

\(|\mathcal{A}| \leq 2Bt^{-1/2}\).

Assume temporarily that the \(v_i \in C^2(Q)\) and write (2.10) in the form

\[
W_t = (\mathcal{A}W)_x - \mathcal{A}_x W.
\] (2.11)

For \(\sigma, \tau \in (0, T)\) with \(\sigma < \tau\) integrate over \(D_\sigma \equiv \{(x, t) \in D: \sigma \leq t \leq \tau\}\) to obtain

\[
\int_{D_\tau} Wdx = \int_{D_\sigma} Wdx - \int_{D_\sigma} \mathcal{A}_x Wdxdt + \int_{\sigma}^{\tau} W(\mathcal{A} - g')_{x=b-g} dt
\]

\[
\quad - \int_{\sigma}^{\tau} W(\mathcal{A} + g')_{x=a+g} dt,
\]

where \(g = g(t) = 4Bt^{1/2}\). The third and fourth integrals on the right hand side are nonpositive since \(|\mathcal{A}| \leq 2Bt^{-1/2} = g'\). On the other hand, by the semiconvexity condition i), \(-\mathcal{A}_x \leq 2A/t\). Therefore if we set

\[
f(t) = \int_{D_t} Wdx,
\]

then

\[
f(\tau) \leq f(\sigma) + 2A \int_{\sigma}^{\tau} \frac{1}{t} f(t)dt.
\] (2.12)
We conclude that
\[f(\tau) \leq \left(\frac{\tau}{\sigma} \right)^{2A} f(\sigma) \]
so that \(\Phi_{\mu}(t) = t^{-2A} f(t) \) is nonincreasing on \((0, T)\). By continuity, the same holds on \([0, T]\).

If the \(v_i \in C^2(\Omega) \) we approximate \(\mathcal{A} = v_{1x} + v_{2x} \) by a sequence of \(C^2(\Omega) \)-functions \(\mathcal{A}^n \) such that \(|\mathcal{A}^n| \leq 2Bt^{-1/2} \), \(\mathcal{A}_x^n \geq 2At^{-1} \) and \(\mathcal{A}^n \rightarrow \mathcal{A} \) in \(L^1_{\text{loc}}(\Omega) \). Write (2.10) in the form
\[W_t = (\mathcal{A}^n W)_x - \mathcal{A}_x^n W + (\mathcal{A} - \mathcal{A}^n)W_x. \]
Since
\[\left| \int_{D_5} (\mathcal{A} - \mathcal{A}^n) W_x dx dt \right| \leq (2B\sigma^{-1/2})C \| \mathcal{A} - \mathcal{A}^n \|_{L^1(D_5)}, \]
arguing as above we find
\[f(\tau) \leq f(\sigma) + 2A \int_{\sigma}^{t} \frac{1}{t} f(t) dt + (2B\sigma^{-1/2})C \| \mathcal{A} - \mathcal{A}^n \|_{L^1(D_5)}. \]
from which we derive (2.12) by letting \(n \rightarrow \infty \).

3. CONVERGENCE OF THE INTERFACE

In this section we consider problem \((P_\varepsilon)\) with a fixed initial datum \(v_0 \) which we assume to be bounded, nonnegative and continuous. In addition, we assume that \(v_0 \) vanishes on \(\mathbb{R}^+ \). Without loss of generality, we may assume that \(0 = \sup \{ x : v_0(x) > 0 \} \). The right-hand interface of \(v_\varepsilon \) is then \(x = \zeta_\varepsilon(t) \), where
\[\zeta_\varepsilon(t) = \sup \{ x \in \mathbb{R} : v_\varepsilon(x, t) > 0 \}, \quad 0 \leq t < \infty. \tag{3.1a} \]
It is known that \(\zeta_\varepsilon \) is a continuous, nondecreasing function in \([0, \infty)\). We shall prove that as \(\varepsilon \downarrow 0 \), \(\zeta_\varepsilon(t) \) converges to the right-hand interface \(\zeta(t) \) of the solution \(v \) of (0.4) obtained as a limit of \(v_\varepsilon \), i.e., to
\[\zeta(t) = \sup \{ x \in \mathbb{R} : v(x, t) > 0 \}, \quad 0 \leq t < \infty. \tag{3.1b} \]

Before stating our main result we summarize the relevant properties of \(\zeta_\varepsilon(t) \) and \(\zeta(t) \). For every \(\varepsilon > 0 \) and \(\tau > 0 \), \(\zeta_\varepsilon \in C[0, \infty) \cap \text{Lip} \{ \tau, \infty \} \) and there exists a waiting time \(\tau^*_\varepsilon \in [0, \infty) \) such that \(\zeta_\varepsilon(t) = 0 \) for \(0 \leq t \leq \tau^*_\varepsilon \), and \(\zeta_\varepsilon \in C^1(t^*_\varepsilon, \infty) \) with \(\zeta_\varepsilon'(t) > 0 \) if \(t > \tau^*_\varepsilon \). It is shown in [V3] that
\[T_\varepsilon/(B_\varepsilon)^e \leq \tau^*_\varepsilon \leq \mu_\varepsilon T_\varepsilon/(B_\varepsilon)^e. \tag{3.2} \]
where
\[B_\varepsilon = B_\varepsilon(u_0) = \sup_{x < 0} \left\{ x \int_{-\varepsilon}^{0} \frac{e^{-\varepsilon x}}{e^{\varepsilon x}} u_0(\xi)d\xi \right\}, \]
and \(\mu_\varepsilon \) is a constant such that \(\mu_\varepsilon > 1, \mu_\varepsilon \to 1 \) as \(\varepsilon \downarrow 0 \). Note that \(B_\varepsilon < \infty \) is the necessary and sufficient condition to have positive \(t_\varepsilon^* \). The equation \((0.7), \zeta'_\varepsilon(t) = -v_\varepsilon,x(z_\varepsilon(t), t), \) is satisfied on the interface if \(t \neq t_\varepsilon^* \), [CF]. Moreover we have ([V1])
\[
\zeta''_\varepsilon + \frac{\varepsilon + 1}{(\varepsilon + 2)t} \zeta'_\varepsilon \geq 0 \quad \text{in} \quad D'(\mathbb{R}^+) .
\] (3.3)

(3.3) means that the function \(\zeta(t) t^{\varepsilon+2} \) is nondecreasing in \([0, \infty)\). It follows from \((0.7)\) and \((1.6)\) that
\[
\zeta''_\varepsilon \geq -\left(\frac{\varepsilon + 1}{(\varepsilon + 2)}\right)^{1/2} N^{1/2} t^{-3/2} .
\] (3.4)

As for \(\zeta(t) \) it is well-known that \(\zeta \in C[0, \infty) \cap \text{Lip}[\tau, \infty) \) for every \(\tau > 0 \), that \((0.7)\) holds, and that \(\zeta' \) is continuous except for an at most countable number of times \(t_i \) at which the one-sided derivatives \(D^+ \zeta(t_i) \) and \(D^- \zeta(t_i) \) exist and satisfy \(D^+ \zeta(t_i) > D^- \zeta(t_i) \), ([D]). These properties of \(\zeta \) also follow from our results below.

The following is an expanded version of Theorem 2.

Theorem 2'. — **A)** As \(\varepsilon \downarrow 0 \) the family \(\{ \zeta_\varepsilon(t) \} \) converges uniformly on compact subsets of \([0, \infty)\) to the interface \(\zeta(t) \) of the function \(v = \lim v_\varepsilon \).

B) Moreover \(\zeta'_\varepsilon \to \zeta' \) in \(L^p_{\text{loc}}(\mathbb{R}^+) \) for every \(1 \leq p < \infty \) and \(\zeta \) satisfies
\[
\zeta''(t) + \frac{1}{2t} \zeta'(t) \geq 0 \quad \text{in} \quad D'(\mathbb{R}^+) .
\] (3.3')

C) The waiting time \(t^* \) of \(\zeta_\varepsilon \) converges to the waiting time \(t^* \) of \(\zeta \) given by
\[
t^* = 1/4B ,
\]
where
\[
B = \sup_{x < 0} \{ |x|^{-2} v_0(x) \} .
\]

Proof. — **A)** Let \(N = \| v_0 \|_{L^\infty(\mathbb{R})} \). We claim that
\[
0 \leq \zeta_\varepsilon(t) \leq 2\sqrt{Nt} .
\] (3.5)

Annales de l'Institut Henri Poincaré - Analyse non linéaire
To prove this we compare v_ε with the function

$$
\bar{v}(x, t) = \begin{cases}
N & \text{in } \mathbb{R}^- \times \mathbb{R}^+, \\
N - x^2/4t & \text{in } [0, 2\sqrt{Nt}) \times \mathbb{R}^+, \\
0 & \text{in } (2\sqrt{Nt}, \infty) \times \mathbb{R}^+.
\end{cases}
$$

Observe that $\bar{v}_t = (\bar{v}_x)^2$ in Q with initial values

$$
v(x, 0) = \begin{cases}
N & \text{for } x \in \mathbb{R}^-, \\
0 & \text{for } x \in \mathbb{R}^+.
\end{cases}
$$

Moreover, in the support $\overline{\Omega}$ of \bar{v} we have

$$
\bar{v}_{xx} \leq 0 \quad \text{in } D'(\overline{\Omega}).
$$

and in $\{(x, t) \in Q : 0 < x < 2\sqrt{Nt}\}$ we have precisely

$$
\bar{v}_{xx} = -\frac{1}{2t}.
$$

Therefore in $\overline{\Omega}$, \bar{v} satisfies

$$
\bar{v}_t - \varepsilon \bar{v} v_{xx} - (\bar{v}_x)^2 = -\varepsilon \bar{v} v_{xx} \geq 0
$$

while for every $\varepsilon > 0$

$$
v_{tt} - \varepsilon v_{t} v_{txx} - \varepsilon (v_x)^2 = 0
$$

in Q. Since $\bar{v}(x, 0) \geq v_0(x)$ in \mathbb{R} it follows from the maximum principle that $\bar{v} \geq v_\varepsilon$ in Q and this implies (3.5).

Since the solutions are not smooth at the interfaces the maximum principle cannot be applied directly and an auxiliary argument is necessary. Fix $\varepsilon > 0$ and let $w(x, t) = \bar{v}(x - \delta, t)$ with $\delta > 0$. We shall prove that for every t $\zeta_\varepsilon(t) < \zeta(t) + \delta$ and $\bar{v} \leq w$ in Q. Let $t_1 = \inf \{ t > 0 : \zeta_\varepsilon(t) > \zeta(t) + \delta \}$. Clearly $0 < t_1 \leq \infty$. We consider now the region $S = \{(x, t) \in \Omega_\varepsilon : 0 < t \leq t_1 \}$. Since $\overline{\Omega} \supset S$ it follows from the standard maximum principle that $v_\varepsilon \leq w$ in S. Therefore if $t_1 < \infty$ we have $v(., t_1) \leq w(., t_1)$ in $(-\infty, \zeta(t_1))$ and hence in \mathbb{R}. On the other hand at the point (x_1, t_1) with $x_1 = \zeta_\varepsilon(t_1) = \zeta(t_1) + \delta$ we have

1) $v_\varepsilon(x_1, t_1) = w(x_1, t_1)$,

2) $v_{x\varepsilon}(x_1 - , t_1) = -\zeta_\varepsilon'(t_1) \leq -\zeta'(t_1) = w_x(x_1 -, t_1)$

and

3) $v_{xx\varepsilon}(x, t_1) = -\frac{1}{(\varepsilon + 2)t_1} > w_{xx}(x, t_1) = -\frac{1}{2t_1}$ if $0 < x < x_1$.

From 1), 2), 3) it follows that $v_\varepsilon(., t_1) > w(., t_1)$ for $0 < x < x_1$, in contradiction to the above result. Therefore $t_1 = \infty$ and $v_\varepsilon \leq w$ in Q. Finally, let $\delta \downarrow 0$ to obtain $v_\varepsilon \leq \bar{v}$.

In view of (3.5), (0.7) and Lemma 1.3 the family $\{ \zeta_\varepsilon \}$ is uniformly bounded and equicontinuous on any compact subset on \mathbb{R}^+. Thus there

exists a function $Z \in C(\mathbb{R}^+)$ and a sequence $\{\xi_n\}$ such that $\xi_n \downarrow 0$ and $\xi_n \equiv \xi_n(t) \rightarrow Z$ locally uniformly in \mathbb{R}^+. It is easily seen that Z satisfies (3.3') and is locally Lipschitz continuous and nondecreasing. Moreover, (3.5) implies that $Z(0) = 0$ and Z is Hölder continuous with exponent $1/2$ at $t = 0$. Therefore the convergence of ξ_n to Z is uniform on $[0, T]$ for every $T > 0$. We shall now show that Z is the right hand interface for v so that, in particular, the whole family ξ_n converges to ξ.

Suppose that $(\bar{x}, \bar{t}) \in Q$ is such that $Z(\bar{t}) < \bar{x}$. Then $\xi_n(\bar{t}) < \bar{x}$ for all sufficiently large n. It follows that $v_n(\bar{x}, \bar{t}) = 0$ for all sufficiently large n. Therefore $v(\bar{x}, \bar{t}) = \lim v_n(\bar{x}, \bar{t}) = 0$ so that

$$Z(\bar{t}) \geq \sup \{ x \in \mathbb{R} : v(x, \bar{t}) > 0 \} = \xi(\bar{t}).$$

Since $\xi_{n} \geq 0$, it follows that $Z \geq 0$. If for some $t > 0$ we have $Z(\bar{t}) = 0$ then $Z = 0$ on $[0, \bar{t}]$ and Z is the interface for v on $[0, \bar{t}]$. Suppose now $Z(\bar{t}) > 0$ and consider an \bar{x} such that

$$\frac{1}{3} Z(\bar{t}) < \bar{x} < Z(\bar{t}).$$

(3.8)

For sufficiently large $n,$

$$\bar{x} < \xi_n(\bar{t}) = \int_0^{\bar{t}} \zeta_n'(t) dt < (\xi_n + 2)\bar{t} \xi_n'(\bar{t})$$

because of the nondecreasing nature of $\xi_n(t)$. Therefore, in view of (0.7),

$$v_n(\xi_n(\bar{t}), \bar{t}) \leq - \frac{\bar{x}}{(\xi_n + 2)\bar{t}}.$$

By Taylor’s theorem and Lemma 1.2 we have, with $\xi_n = \xi_n(t),$

$$v_n(\bar{x}, \bar{t}) = v_n(\xi_n(\bar{t}), \bar{t}) + (\bar{x} - \xi_n) v_n(\xi_n, \bar{t}) + \frac{1}{2} (\bar{x} - \xi_n)^2 v_{nxx}(\bar{x}, \bar{t})$$

$$\geq \left(\xi_n - \bar{x} \right) \left(\bar{x} - \frac{1}{2} (\xi_n - \bar{x}) \right) > 0 .$$

Thus, if \bar{x} satisfies (3.8) we let $n \rightarrow \infty$ to obtain,

$$v(\bar{x}, \bar{t}) \geq \frac{Z - \bar{x}}{2\bar{t}} \left(\bar{x} - \frac{1}{2} (Z - \bar{x}) \right) > 0 .$$

We conclude that $Z(\bar{t}) \leq \xi(\bar{t})$.

B) In view of (0.7) and Lemma 3, the family $\{\xi'_n\}$ is uniformly bounded in $[\tau, \infty)$ for any $\tau > 0$. Moreover, according to (3.4),

$$\xi'' \geq - \frac{N^{1/2}}{\tau^{3/2}}$$
in \([\tau, \infty)\) if \(\varepsilon \leq 1\). It follows from Lemma 3.1 of [Li] that \(\{\xi'_{\varepsilon}\}\) is relatively compact in \(L^p_{loc}(\mathbb{R}^+)\) for every \(p \in [1, \infty)\). Thus, in particular, \(\xi'_{\varepsilon} \to \xi'\) in \(L^p_{loc}(\mathbb{R}^+)\) for every \(p \in [1, \infty)\) and for almost every time \(t > 0\).

C) By definition
\[
\frac{(B_{\varepsilon})^e}{T_{\varepsilon}} = 2(\varepsilon + 1)\left(\frac{\varepsilon + 2}{\varepsilon}\right)^{\varepsilon+2} \left\{ \sup_{\mathbb{R}^-} \left| x \right|^{\varepsilon+2} \int_{\mathbb{R}^-} u_0 d\xi \right\}^\varepsilon \\
\leq 2(\varepsilon + 2)^{\varepsilon+1} \left(\frac{1}{\varepsilon}\right) \sup_{\mathbb{R}^-} \left\{ \left| x \right|^{-2} \left(\frac{1}{\left| x \right|} \int_{\mathbb{R}^-} v_0 d\xi \right)^\varepsilon \right\}.
\]

If
\[
B = \sup_{\mathbb{R}^-} \left\{ \frac{v_0(x)}{\left| x \right|^2} \right\}
\]
then
\[
\left(\frac{1}{\left| x \right|} \int_{\mathbb{R}^-} v_0 d\xi \right)^\varepsilon \leq \frac{B}{\left| x \right|^2} \frac{\varepsilon}{2}.
\]
Therefore
\[
\limsup_{\varepsilon \downarrow 0} \frac{(B_{\varepsilon})^e}{T_{\varepsilon}} \leq 4B.
\]

On the other hand, for each \(B_1 \in (0, B)\) there exist \(x_1 = x_1(B_1) < 0\) and \(\delta_1 = \delta_1(B_1) \in (0, -x_1)\) such that
\[
v_0(x) \geq B_1 \left| x \right|^2 \quad \text{for} \quad \left| x - x_1 \right| \leq \delta_1.
\]
For \(\delta \in (0, \delta_1]\) set \(I_\delta = [x_1 - \delta, x_1 + \delta] \subset [x_1 - \delta, 0)\). If \(x = x_1 - \delta\) then
\[
\left| x \right|^{-2} \left(\frac{1}{\left| x \right|} \int_{\mathbb{R}^-} v_0 d\xi \right)^\varepsilon \geq \left| x \right|^{-2} \left(\frac{1}{\left| x \right|} \int_{I_\delta} v_0 d\xi \right)^\varepsilon \geq \left(\frac{2\delta}{\left| x_1 - \delta \right|} \right)^\varepsilon B_1 \left| x_1 + \delta \right|^2 \left| x_1 - \delta \right|.
\]
Hence
\[
\frac{(B_{\varepsilon})^e}{T_{\varepsilon}} \geq \frac{2(\varepsilon + 2)^{\varepsilon+1}}{\varepsilon} \left(\frac{2\delta}{\left| x_1 - \delta \right|} \right)^\varepsilon B_1 \left| x_1 + \frac{\delta}{x_1 - \delta} \right|^2,
\]
which implies
\[
\liminf_{\varepsilon \downarrow 0} \frac{(B_{\varepsilon})^e}{T_{\varepsilon}} \geq 4B_1 \left| x_1 + \frac{\delta}{x_1 - \delta} \right|^2.
\]
Now let \(\delta \downarrow 0\) and \(B_1 \uparrow B\) to obtain
\[
\liminf_{\varepsilon \downarrow 0} \frac{(B_{\varepsilon})^e}{T_{\varepsilon}} \geq 4B. \quad \#
\]

As a consequence of Theorem 2 we know that \(\xi'(t)t^{1/2}\) is nondecreasing and
\[
\xi'_{\varepsilon} \to \xi' \quad (3.9)
\]
almost everywhere in \(\mathbb{R}^+\). We shall conclude this section by giving a more
precise statement of (3.9). Note that it follows from the monotonicity of \(\zeta'(t)^{1/2} \), that \(\zeta'(t) \) has at most jumping discontinuities with positive jumps.

Theorem 3. — For all \(t > 0 \) and every sequence \(\varepsilon_m \downarrow 0 \) such that \(\zeta'_m(t) \) converges we have

\[
\lim \zeta'_m(t) \in [\zeta'(t-), \zeta'(t+)].
\tag{3.10}
\]

In particular \(\zeta' \rightarrow \zeta' \) at every point where \(\zeta' \) exists.

Proof. — Fix \(t_0 \in \mathbb{R}^+ \) and let \(P = \zeta'(t_0+) \). We claim first that

\[
\limsup_{\varepsilon \downarrow 0} \zeta'_\varepsilon(t_0) \leq P.
\tag{3.11}
\]

Suppose for contradiction that

\[
\limsup_{\varepsilon \downarrow 0} \zeta'_\varepsilon(t_0) = P + 2\lambda
\]

for some \(\lambda > 0 \). It follows from (3.3) that

\[
\zeta'_\varepsilon(t) \geq \zeta'_\varepsilon(t_0) \left(\frac{t_0}{t} \right)^{\frac{\lambda+1}{\lambda+2}}.
\]

Let \(\{ \varepsilon_m \} \) be a sequence such that \(\zeta'_m(t_0) \rightarrow P + 2\lambda \). Then for all sufficiently large \(m \) and \(t > t_0 \)

\[
\zeta'_m(t) \geq (P + \lambda) \left(\frac{t_0}{t} \right)^{1/2}.
\]

On the other hand, by the definition of \(P \), there is a \(\delta > 0 \) such that

\[
\zeta'(t) \leq \left(P + \frac{\lambda}{4} \right)
\]

for all \(t \) such that \(0 < t - t_0 < \delta \). Therefore we have

\[
\zeta'_m(t) \geq \zeta'_m(t_0) + 2(P + \lambda)t_0^{1/2}(t^{1/2} - t_0^{1/2}) \rightarrow \zeta(t_0) + 2(P + \lambda)t_0^{1/2}(t^{1/2} - t_0^{1/2})
\]

\[
> \zeta(t_0) + \left(P + \frac{\lambda}{2} \right)(t - t_0) \geq \zeta(t) + \frac{\lambda}{4}(t - t_0)
\]

for all \(t > t_0 \) such that \(2(P + \lambda)t_0^{1/2} > \left(P + \frac{\lambda}{4} \right)(t^{1/2} + t_0^{1/2}) \). Since this contradicts the uniform convergence of \(\zeta'_m \rightarrow \zeta \) we conclude that (3.11) holds. A similar argument with \(t < t_0 \) shows that

\[
\liminf_{\varepsilon \downarrow 0} \zeta'_\varepsilon(t_0) \geq \zeta'(t_0-).
\]

4. **CONCAVE SOLUTIONS**

If the initial data \(v_{\varepsilon_0} \) are concave in their support then the limit function \(v_0 \) also has this property. Moreover, by the results of [GJ] and [BV] the cor-

Annales de l'Institut Henri Poincaré - Analyse non linéaire
responding solutions v_ε of (P_ε) an v of (P_0) are concave in their supports as functions of x for each fixed $t > 0$. In particular we have

$$0 \geq v_{xx}(\cdot, t) \geq -\frac{1}{(2 + \varepsilon)t},$$

and

$$0 \geq v_{xx}(\cdot, t) \geq -\frac{1}{2t}$$

for $t > 0$. The presence of upper estimates allows us to obtain the following convergence result:

Theorem 4. — A) Let v_{ε_0}, v_0, v_ε, v be as in Theorem 1 and assume in addition that v_{ε_0} is concave on its support for each $\varepsilon > 0$. Then v_ε, v_{xx}, v_{lt} converge uniformly to v, v_x, v_t resp. on compact subsets of the closure of

$$\Omega = \{ (x, t) \in Q : v(x, t) > 0 \}.$$

B) The interfaces $\zeta_\varepsilon(t)$ and $\zeta(t)$ corresponding to v_ε and v respectively are C^1 concave functions of t for $0 \leq t < \infty$ and $\zeta_\varepsilon(t) \to \zeta(t)$ uniformly in (τ, T) for every τ, $T > 0$ with $\tau < T$.

Proof. — A) To fix the ideas let us assume that each v_{ε_0} vanishes outside a finite interval $I_\varepsilon = (a_\varepsilon, b_\varepsilon)$. Then the subset Ω_ε of Q where v_ε is positive has the form

$$\Omega_\varepsilon = \{ (x, t) : \zeta_\varepsilon^-(t) < x < \zeta_\varepsilon(t) \},$$

where $x = \zeta_\varepsilon^-(t)$ is the left-hand interface for v_ε.

By Theorem 2 we know that $\zeta_\varepsilon(t) \to \zeta(t)$ uniformly in $[0, T]$ for any $T > 0$. In the same way $\zeta_\varepsilon^-(t)$ converges to the left-interface $\zeta^-(t)$ of the limit function v. It is clear that v is positive in the set

$$\Omega = \{ (x, t) \in Q : \zeta^-(t) < x < \zeta(t) \}.$$

In view of Lemma 1.3, $\{ v_\varepsilon \}$ is bounded uniformly in Q_ε for $\tau > 0$. It follows from (4.1 a) that the family $\{ v_{xx} \}$ is Lipschitz continuous with respect to the x-variable locally in Ω and uniformly in ε. Since $w_\varepsilon = v_{xx}$ satisfies the equation

$$w_t = \varepsilon v_x w_{xx} + (\varepsilon + 2)w_{xx}w_x$$

in Ω_ε, it follows from [G] that the family $\{ w_\varepsilon \}$ is Hölder continuous in t with exponent 1/2 and the Hölder constant is locally bounded in Ω independent of ε. Therefore we conclude that

$$v_{xx} \to v_x$$

uniformly on compact sets of Ω. Finally the convergence of v_{lt} follows from $v_{lt} - (v_{xx})^2 = \varepsilon v_x v_{xxx}$ since

$$0 \geq \varepsilon v_x v_{xxx} \geq \frac{\varepsilon N}{(\varepsilon + 2)t}.$$
B) The uniform convergence of ζ'_{ε} to ζ' follows from the estimate ([BV])

$$0 \geq \zeta''_{\varepsilon}(t) \geq \frac{1}{(\varepsilon + 2)t} \zeta'(t). \quad #$$

A second result that can be obtained with concave initial data concerns monotone convergence.

Theorem 5. — Let $v_{\varepsilon 0}$ and v_0 be as in Theorem 4 and assume, in addition, that $v_{\varepsilon 0}(x) \uparrow v_0(x)$ for every $x \in \mathbb{R}$ as $\varepsilon \downarrow 0$. Then $v_{\varepsilon} \uparrow v$.

Proof. — We want to prove that, given $\varepsilon' > \varepsilon > 0$, we have $v_{\varepsilon'} \leq v_{\varepsilon}$ everywhere in Q. The idea of the argument is the following. Consider the equation

$$L_{\varepsilon}(w) = w_t - \varepsilon w w_{xx} - (w_x)^2.$$

v_{ε} is a smooth solution of $L_{\varepsilon}w = 0$ in Q_{ε}, whereas $v_{\varepsilon'}$ is a subsolution in $Q_{\varepsilon'}$ because $L_{\varepsilon}(v_{\varepsilon'}) = (\varepsilon' - \varepsilon)v_{\varepsilon'}v_{\varepsilon' xx} < 0$. Since $v_{\varepsilon 0} \geq v_{\varepsilon' 0}$ we can use the maximum principle to conclude that $v_{\varepsilon 0} \geq v_{\varepsilon'}$.

Since the domains Q_{ε} and $Q_{\varepsilon'}$ of v_{ε}, $v_{\varepsilon'}$ are not necessarily the same there is a difficulty in applying the classical maximum principle which can be overcome as follows. Assume that the support of $v_{\varepsilon 0}$ is bounded and that we replace v_{ε} by the solution $\overline{v}_{\varepsilon}$ of $L_{\varepsilon}w = 0$ with initial data $w(x, 0) = v_{\varepsilon 0} + \delta$ for some $\delta > 0$. Now since v_{ε} is positive and C^∞ everywhere in Q and $v_{\varepsilon'}(x, t) = 0$ for large $|x|$, we easily conclude that $v_{\varepsilon'} \leq v_{\varepsilon}$ in Q. The stated result follows by approximation since solutions of the porous medium equation depend continuously on the initial data. #

As an example consider the Barenblatt solution

$$V_{\varepsilon}(x, t) = \frac{(r_{\varepsilon}(t) - x^2)^+}{2(\varepsilon + 2)(t + 1)} \quad (4.5)$$

where $r_{\varepsilon}(t) = K(1 + t)^{(\varepsilon+2)/2}$ and K a positive constant. As $\varepsilon \to 0$ we have

$$V_{\varepsilon}(x, t) \uparrow V(x, t) = 1/4 \left(K^2 - \frac{x^2}{t + 1} \right)_+, \quad (4.6)$$

while for the interfaces we get

$$r_{\varepsilon}(t) \uparrow r(t) = K(1 + t)^{1/2}.$$

5. THE CASE $m < 1$

We can also consider a limit process for the solutions of porous medium equation as $m \to 1$ with $m < 1$. As noted in the Introduction, if we look at the density (i.e., if the initial data $u_{\varepsilon 0}$ converge as $m \uparrow 1$) the solutions of $u_t = (u^m)_{xx}$ converge to a solution of the heat equation.
If we look at the variable v defined as before by

$$v = \frac{m}{m-1} u^{m-1} = -\frac{m}{1-m} u^{1-m}$$ \hspace{1cm} (5.1)

we see first that $u \geq 0$ implies $v \leq 0$ and also that $u \to 0$ implies $v \to -\infty$ while $u \to \infty$ implies $v \to 0$. Moreover if we put

$$\varepsilon = 1 - m$$

then v formally satisfies the equation

$$v_t = \varepsilon |v| v_{xx} + (v_x)^2.$$ \hspace{1cm} (5.2)

Now if the initial datum $v(x, 0)$ is kept fixed as $\varepsilon \to 0$ we want to prove that the solutions of (5.2) converge again to a solution of equation (0.4). Following the outline of the proof of Theorem 1 we obtain a solution v_{ε} of (P_{ε}), obtain estimates for v_{ε} and $v_{\varepsilon x}$ and finally pass to the limit $\varepsilon \to 0$.

To begin with, it is proved in [AB] that for every $0 < m < 1$ and non-negative $u_0 \in L^1(\mathbb{R})$ there exists a unique function $u \in C(0, \infty; L^1(\mathbb{R})) \cap C^\omega(\mathbb{R})$ such that

$$u_t, \Delta u^m \in L^{1}_{\text{loc}}(Q),$$

$$u_t = \Delta u^m \quad \text{in} \quad Q,$$

$$u(\cdot, 0) = u_0.$$ \hspace{1cm} (5.3)

Moreover u is positive everywhere in Q (so that there is no interface) and the following estimates hold ([AB], [BC])

$$\frac{(1-m)v}{(m+1)t} \leq v_t \leq -\frac{v}{t},$$ \hspace{1cm} (5.4)

and

$$v_{xx} \geq -\frac{1}{(m+1)t},$$ \hspace{1cm} (5.5)

where v is given by (5.1). Of course v satisfies equation (5.2) in Q. Using (5.4) and (5.5) we obtain directly from (5.2) the following interesting pointwise bound for $|v_x|$:

$$|v_x|^2 \leq \frac{2|v|}{(m+1)t}.$$ \hspace{1cm} (5.6)

It is worth noting that, as compared with (1.2 a) and (1.6), the estimate for v_t is bilateral and the bound for $v_x(x, t)$ depends only on the value of v at (x, t).

Solutions with general initial data $u_0 \in L^1_{\text{loc}}(\mathbb{R})$ are constructed by [HP]. Moreover they prove that uniqueness in the appropriate class holds and that when $u_0 \geq 0$ the estimates noted above are valid for all the solutions.
Using these estimates and arguing as in Section 2 we can prove the following result. Consider a family of initial functions \(v_{e0} \in C(R) \) that satisfy

\[0 > v_{e0}(x) \geq -N \]

(5.7)

for some \(N > 0 \) and every \(x \in R \), and let \(v_e \) denote the solution of the problem

\[
\begin{align*}
 v_t &= -\varepsilon v_{xx} + (v_x)^2 \quad \text{in} \quad Q, \\
 v(x, 0) &= v_{e0}(x) \quad \text{in} \quad R.
\end{align*}
\]

(\(P_e \))

We have

THEOREM 6. — Assume that as \(\varepsilon \to 0 \), \(\{ v_{e0} \} \) converges uniformly on compact subsets of \(R \) to a function \(v_0 \). Then \(v_e \) converges uniformly on compact subsets of \(Q \) to the solution \(v \) of the problem

\[
\begin{align*}
 v_t &= (v_x)^2 \quad \text{in} \quad Q, \\
 v(x, 0) &= v_0(x) \quad \text{in} \quad R,
\end{align*}
\]

(\(P_0 \))

satisfying the condition \(v_{xx} \geq -1/(2t) \) in \(\mathcal{D}'(Q) \). Moreover \(v_{ex} \to v_x \) in \(L^p_{\text{loc}}(Q) \) for every \(p \in [1, \infty) \).

Note also that (5.4) implies in the limit the following estimate for negative solutions of (\(P_0 \))

\[0 \leq v_t \leq \frac{|v|}{t}. \]

(5.8)

Together with (5.7) this implies that solutions of \(v_t = (v_x)^2 \) approach the maximum value (here \(v = 0 \)) as \(t \to \infty \) and \(x \) is fixed with a rate at most \(0(1/t) \). This is exactly the rate for the self-similar solutions (0.20).

Let us finally remark that the estimates (5.4)-(5.6) are true with suitable constants for the solutions of the corresponding \(d \)-dimensional problem

\[
\begin{align*}
 u_t &= \Delta u^m \quad \text{in} \quad Q = R^d \times (0, \infty), \\
 u(., 0) &= u_0 \in L^1_{\text{loc}}(R^d),
\end{align*}
\]

if \(u_0 \geq 0 \) and \(d(1 - m) < 2 \). In particular the crucial estimate (5.6) becomes

\[|\nabla v|^2 \leq \frac{2}{2 - d(1 - m)} \cdot \frac{|v|}{t} \]

(5.6')

and the proof of Theorem 6 applies essentially unchanged in several dimensions.

Regarding the connection between (0.1) and (0.4), the transformation (0.17) is still valid if \(0 < m < 1 \) and transforms positive solutions of (0.1) into negative supersolutions of (0.4). In particular the Barenblatt solution

\[\bar{u}(x, t) = t^{-\frac{1}{m+1}} \left(C + \frac{1 - m}{2m(m + 1)} \frac{x^2}{t^{2/(m+1)}} \right)^{-\frac{1}{1-m}} \]

(5.7)

Annales de l'Institut Henri Poincaré - Analyse non linéaire
transforms into the solution

\[V(x, t) = -\left(K + \frac{x^2}{4t}\right)_+ \]

(5.8)

with \(K = Cm/(1 - m) > 0 \). The case \(K = 0 \) in (5.8) corresponds to the special solution of (0.1) given by

\[v(x, t) = \frac{x^2}{2(m + 1)t} \cdot \]

(5.9)

As in the case \(m > 1 \), these particular solutions represent the asymptotic behaviour of a large class of solutions, cf. [V2].

For \(m = 1 \) the transformations (0.5), (0.17) should be replaced by

\[v(x, t) = \log(u(x, t)), \quad \tau = t, \quad \text{and} \quad V(x, \tau) = \log(u(x, t)t^{1/2}). \]

(5.10)

ACKNOWLEDGEMENTS

The authors are grateful to M. C. Crandall, P. L. Lions and P. E. Souganidis for their interest in this work and helpful suggestions. The second author wishes to thank the Institute for Mathematics and its Applications and the University of Minnesota for their hospitality while this paper was written.

REFERENCES

[H] E. H"{o}pf, The partial differential equation \(u_t + uu_x = \mu u_{xx} \). *Comm. Pure Applied Math.*, t. 3, 1950, p. 201-230.

(Manuscrit reçu le 30 juillet 1985)