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Abstract. The Brownian web (BW), which developed from the work of Arratia and then Tóth and Werner, is a random collection
of paths (with specified starting points) in one plus one dimensional space–time that arises as the scaling limit of the discrete web
(DW) of coalescing simple random walks. Two recently introduced extensions of the BW, the Brownian net (BN) constructed
by Sun and Swart, and the dynamical Brownian web (DyBW) proposed by Howitt and Warren, are (or should be) scaling limits
of corresponding discrete extensions of the DW – the discrete net (DN) and the dynamical discrete web (DyDW). These discrete
extensions have a natural geometric structure in which the underlying Bernoulli left or right “arrow” structure of the DW is extended
by means of branching (i.e., allowing left and right simultaneously) to construct the DN or by means of switching (i.e., from left
to right and vice-versa) to construct the DyDW. In this paper we show that there is a similar structure in the continuum where
arrow direction is replaced by the left or right parity of the (1,2) space–time points of the BW (points with one incoming path
from the past and two outgoing paths to the future, only one of which is a continuation of the incoming path). We then provide a
complete construction of the DyBW and an alternate construction of the BN to that of Sun and Swart by proving that the switching
or branching can be implemented by a Poissonian marking of the (1,2) points.

Résumé. Le réseau Brownien (BW) construit à partir des travaux de Arratia, de Tòth et de Werner est une collection aléatoire de
chemins (avec des points de depart determinés) dans un espace deux-dimensionnel (une dimension en temps et une autre en espace),
qui est la limite d’échelle d’un réseau discret (DW) de marches aléatoires coalescentes. Récemment, deux extensions du BW ont
été introduites: le filet Brownien (BN), construit par Sun et Swart, et le réseau Brownien dynamique (DyBW), proposé par Howitt
et Warren. Ces deux objets sont (ou devraient être) la limite d’échelle de deux extensions naturelles du réseau discret – le filet
discret (DN) et le réseau dynamique discret (DyDW). Le DN et le DyDW sont obtenus par une modification de la configuration des
“flèches” droites ou gauches qui composent le réseau discret. Pour le DN, un mécanisme de ramification est introduit (en permettant
des flèches droites et gauches simultanément) alors que pour le DyDW, la direction des flèches est modifiée (de droite à gauche et
vice-versa). Dans cet article, nous montrons qu’il existe une structure géométrique analogue dans le cas continu. Plus précisément,
la direction des flèches dans le cas discret est remplacée par la direction des points (1,2) du réseau Brownien (en un point (1,2) se
trouvent un chemin entrant et deux chemins sortants, l’un d’eux étant la continuation du chemin entrant). Nous montrons que les
ramifications et changements de direction peuvent être introduits dans le cas continu par un marquage de type Poisson des points
(1,2). Par l’intermédiaire de ce marquage, nous donnons une construction complète du DyBW et une construction alternative à
celle de Sun et Swart du BN.
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1. Introduction

In [9], the present authors and L. R. Fontes obtained some results about exceptional times for a dynamical model
of coalescing one-dimensional random walks (the “dynamical discrete web” (DyDW)). Underlying those results was
the idea that there should be a natural continuum limit of the DyDW, the “dynamical Brownian web” (DyBW) for
which corresponding results would be valid, provided such a continuum system actually exists. The DyBW was also
proposed in a paper of Howitt and Warren [14], where the DyDW was first discussed, and some of its properties were
analyzed, assuming its existence.

The main purpose of the present paper is to develop a Poissonian marking of certain nongeneric points (called
(1,2) points, as we will explain) in the (static) Brownian web (BW) which we then use to give the first complete
construction of the DyBW. In a revised version [10] of [9], this construction will be used to argue that exceptional
time results derived earlier for the DyDW should extend to the DyBW. As we shall see, this marking technology
is natural and has other applications besides the DyBW. One of those, which we explore in detail in this paper, is
an alternative construction of the “Brownian net” (BN) of Sun and Swart [23]. A future application [16], which we
discuss briefly in Section 1.2 below, is to scaling limits of one-dimensional voter models in which there is “nucleation
along boundaries.” That will extend, in a nontrivial way, earlier work [8] on scaling limits in which nucleation “in the
bulk” was treated by using marking of nongeneric (0,2) points of the BW, which are simpler to deal with than (1,2)
points. Another model closely related to the marking of the Brownian web is a class of stochastic flows of kernels
introduced by Howitt and Warren [14]. This is the subject of ongoing work [21].

In addition to direct applications of Poissonian markings of BW (1,2) points, we believe that these constructions
are of interest as special examples of an approach that is relevant beyond the Brownian web setting. Indeed, the
idea of using Poissonian marking of nongeneric double points in the context of the Schramm–Loewner Evolution
SLE(6), was proposed in [4,5] as an approach to the continuum scaling limits of both “near-critical” and dynamical
two-dimensional percolation models. In that setting, the critical scaling limit is analogous to the BW, dynamical
percolation to the DyDW and near-critical percolation to a discrete web with small nonzero drift. Progress in applying
that approach has been reported by Garban, Pete and Schramm [11,12]; for other results on scaling limits of near-
critical percolation, see [6,17,18].

1.1. Arrows, switching and branching

The discrete web
The discrete web is a collection of coalescing one-dimensional simple random walks starting from every point in the
discrete space–time domain Z2

even = {(x, t) ∈ Z2 :x+ t is even}. The Bernoulli percolation-like structure is highlighted
by defining ξx,t for (x, t) ∈ Z2

even to be the increment of the random walk at location x at time t . These Bernoulli
variables are symmetric and independent and the paths of all the coalescing random walks can be reconstructed by
assigning to each point (x, t) an arrow from (x, t) to {x + ξx,t , t + 1} and considering all the paths starting from
arbitrary points in Z2

even that follow the arrow configuration ℵ. We note that there is also a set of dual (or backward)
paths defined by the same ξx,t ’s but with arrows from (x, t + 1) to (x − ξx,t , t). The collection of all dual paths is a
system of backward (in time) coalescing random walks that do not cross any of the forward paths (see Fig. 1).

There are two natural variants of the discrete web; one is the dynamical discrete web (DyDW) which involves
switching of arrows and the other is the discrete net (DN) which involves branching (or equivalently, adding) of
arrows. Each of these is constructed by a straightforward modification of the arrow structure in the standard discrete
web. The essence of this paper is a construction of analogous modifications in the continuum space–time setting.

The dynamical discrete web
In the DyDW, there is, in addition to the random walk discrete time parameter, an additional (continuous) dynamical
time parameter τ . The system starts at τ = 0 as an ordinary DW and then evolves in τ by randomly switching the
direction of each arrow at a fixed rate (say λ), independently of all other arrows. This naturally defines a dynamical
arrow configuration τ � ℵ(τ ). If one follows the arrows starting from the (space–time) origin at (0,0), this begins at
τ = 0 as a simple symmetric random walk and then evolves dynamically in τ in a different way than the “dynamical
random walks” studied in [2]. As noted in [9], the nature of exceptional dynamical times is quite different in this
situation than in that of [2]. For example, the dynamical random walk constructed from ℵ(τ ) violates the law of the
iterated logarithm on a set of τ ’s of Hausdorff dimension one.
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Fig. 1. Forward coalescing random walks (full lines) and their dual backward walks (dashed lines).

The discrete net
In the DN, space–time points have at any point arrows of both directions with probability p ∈ [0,1], independently
of other points – i.e., individual points have either both directions (with probability p), corresponding to points where
there is branching of paths, or only a left arrow (with probability (1 − p)/2) or only a right arrow (with probability
(1 − p)/2). The DyDW and DN models may be coupled together by taking the DyDW, declaring that there are both
arrows at a point if at least one switch occurred up to dynamical time τ and otherwise declaring that there is only one
arrow whose direction is that of the DyDW at dynamical time 0. This yields the DN with p = 1 − e−λτ .

Under diffusive scaling, individual random walk paths converge to Brownian motions and the entire collection
of discrete paths in the DW converges in an appropriate sense (see [7]) to the continuum Brownian web (BW). We
review in Section 2 some of the basic features of the BW, which developed from the work of Arratia [1] and of Tóth
and Werner [24], but meanwhile we briefly comment on its structure. The BW is a random collection of paths (with
specified starting points) in continuum space–time with one or more paths starting from every point. Furthermore,
although generic (e.g., deterministic) space–time points have only mout = 1 outgoing (to later times) paths from that
point and min = 0 incoming paths passing through that point (from earlier times), there are non-generic points with
other values of (min,mout). In this paper, a dominant role is played by the (1,2) points as we shall explain.

It is natural that there should also exist scaling limits of the DyDW (including of the random walk from the origin
evolving in τ ) and of the DN (with appropriate scaling of τ and p along with space–time). Indeed, this has been
studied by Sun and Swart [23] for the case of the net and by Howitt and Warren [14] for the case of the dynamical
web. The focus of this paper is on how to construct these continuum objects directly from the BW in a way that
parallels the discrete construction. A priori, this appears difficult since the discrete construction is entirely based on
modifying the discrete arrow structure of the DW, while in the BW it is unclear whether there even is any arrow
structure to modify.

The main themes of this paper are thus: “Where is the arrow structure of the BW?” and “How is it modified to
yield the BN and the DyBW (including a dynamically evolving Brownian motion from the origin)?.” As we will see,
the answer to the first question is that the arrow structure of the BW comes from the (1,2) points, each of which is
equipped with a left or right parity according to which of the two outgoing paths is the continuation of the single
incoming path – see Fig. 2. The answer to the second question is based on a Poissonian marking of the (1,2) points,
which can then be used either to create branching or to switch parity at marked points.

1.2. Nucleation on boundaries

The discrete-time one-dimensional voter model starts at time zero with colors assigned to each odd integer site and
then evolves in time by assigning a color to the space–time point (i, j + 1) with i + j + 1 odd as that of (i − 1, j)

or (i + 1, j) with probability 1/2 each, independently of other space–time points. The genealogy of colors (looked
at backwards in time) is described by coalescing random walks (on these odd space–time points) regardless of the
initial state of the system. One often considers the case where there are q possible colors (q = 2,3, . . .); then the
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Fig. 2. A schematic diagram of a left (min,mout) = (1,2) point with necessarily also (m̂in, m̂out) = (1,2). In this example the incoming forward
path connects to the leftmost outgoing path (with a corresponding dual connectivity for the backward paths), the right outgoing path is a newly
born path.

boundaries between sites of different colors evolve forward in time (on the even space–time points) — in the case
q = 2 as annihilating random walks, as mixed annihilating-coalescing walks for 3 ≤ q < ∞ and in the limit q →∞
(with each site having its own unique color at time zero) as coalescing random walks. Since the finite q case can
essentially be recovered from the q =∞ model by projection, one can restrict attention to the case of both forward
and backward coalescing random walks.

Naturally, the continuum scaling limit of voter models is described by the BW. Indeed, in the voter model as just
described, it suffices to consider (as did Arratia [1]) the collection of all outgoing BW paths from time zero. However,
if one modifies the voter model to allow for small noise, i.e., at each space–time point there is a probability p that
rather than take on the color of a neighboring spatial point one time step earlier, a random color (out of q possibilities,
or a wholly new color for q =∞) is chosen (or nucleated), then much more of the BW structure comes into play
in the scaling limit (in which also p is properly scaled). As analyzed in [8], this model in the scaling limit is one
in which new colors are nucleated on (0,2) points of the BW and it can be constructed by means of a Poissonian
marking of those points. The reason (0,2) points are relevant is because a newly nucleated color in the voter model
inside a cluster of some other color creates two new boundaries which need to persist for a macroscopic amount of
time before coalescing in order to be seen in the scaling limit.

There are natural settings, namely the so-called q-state stochastic Potts models of Statistical Physics, such that for
q ≥ 3 (we recall that q = 2 corresponds to the Ising model) one needs to consider a more complex noise structure in
which the probability of nucleation of new colors may depend on the color of the site in question and its neighbors.
For example, one may require for nucleation that a site have a different color than its left (respectively, right) neighbor.
For that type of noise, it turns out that the construction of the scaling limit naturally involves the Poissonian marking
of left (respectively, right) (1,2) points. The reason (1,2) points are relevant here is that the newly nucleated color in
the voter model is just to the right (or left) of a previously existing boundary and creates a new boundary that needs
to persist in the scaling limit. This type of application of our marking of (1,2) points will be carried out in a future
paper [16].

1.3. Outline of the paper

The remainder of the paper is organized as follows. In Section 2, we give a review of the basic structure of the
Brownian web and its dual (or backward) web, with special emphasis on the (1,2) points. In Section 3, we explain
precisely how to mark (1,2) points, which are points where backward and forward BW paths touch, by first defining
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for finitely many backward and forward paths a local time measure for touching to serve as a Poisson intensity
measure. The overall marking process is then the limit as the number of forward and backward paths tends to infinity.
In Section 3.3, we give a preliminary explanation of how the marking process will be used to construct the BN and
the DyBW.

In Section 4, we consider the special marking process (and resulting modified Brownian web path) constructed
from a single forward BW path and all backward paths that touch it from the right. In particular, we show that the
resulting modified forward path is related to the original BW path by sticky reflection. Brownian motions with a
sticky interaction will also play an important role in later sections as they do in [23] and [14]. In Section 5, we review
the construction from [23] of the BN and then prove that our alternate construction using marked (1,2) points is
equivalent. In Section 6, we construct the DyBW and prove some elementary properties of this object. Section 7
contains the proofs of many of the results stated in previous sections along with some propositions and lemmas that
are needed for those proofs. We note in particular that Section 7.3 contains a number of key results about the structure
of excursions in the Brownian web from a single web path.

2. The Brownian web

2.1. The forward Brownian web

The (forward) Brownian web is the scaling limit of the discrete web under diffusive space–time scaling; it is a random
collection of paths with specified starting points in space–time. The (continuous) paths take values in a metric space
(R̄2, ρ) which is a compactification of R2. (Π,d) denotes the space whose elements are paths with specific starting
points. The metric d is defined as the maximum of the sup norm of the distance between two paths and the distance
between their respective starting points. The Brownian web takes values in a metric space (H, dH), whose elements are
compact collection of paths in (Π,d) with dH the induced Hausdorff metric. Thus the Brownian web is an (H, F H)-
valued random variable, where F H is the Borel σ -field associated to the metric dH. The next theorem, taken from [7],
gives some of the key properties of the BW.

Theorem 2.1. There is an (H, FH)-valued random variable W whose distribution is uniquely determined by the
following three properties:

(o) From any deterministic point (x, t) in R2, there is almost surely a unique path B(x,t) starting from (x, t).
(i) For any deterministic, dense countable subset D of R2, almost surely, W is the closure in (H, dH) of

{B(x,t) : (x, t) ∈ D}.
(ii) For any deterministic n and (x1, t1), . . . , (xn, tn), the joint distribution of B(x1,t1), . . . ,B(xn,tn) is that of coalescing

Brownian motions (with unit diffusion constant).

Note that (i) provides a practical construction of the Brownian web. For D as defined above, construct coalescing
Brownian motion paths starting from D. This defines a skeleton for the Brownian web. W is simply defined as the
closure of this precompact set of paths.

2.2. The backward (dual) Brownian web

We have considered in Section 1.1 the backward discrete web as the set of all coalescing random walks starting from
Z2

odd running backward in time without crossing the forward discrete web paths. The backward (dual) BW Ŵ may be
defined analogously as a functional of the (forward) BW W . More precisely for a countable dense deterministic set of
space–time points, the backward BW path from each of these is the (almost surely) unique continuous curve (going
backwards in time) from that point that does not cross (but may touch) any of the (forward) BW paths; Ŵ is then
the closure of that collection of paths. The first part of the next proposition states that the “double BW,” i.e., the pair
(W , Ŵ), is the diffusive scaling limit of the corresponding discrete pair (Wδ, Ŵ δ) (as the scale parameter δ → 0).
Convergence in the sense of weak convergence of probability measures on (H, FH) × (Ĥ, F̂H) was proved in [7];
convergence of finite dimensional distributions and the second part of the proposition were already contained in [24].
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Proposition 2.2.

1. Invariance principle: (Wδ, Ŵ δ)→ (W , Ŵ) as δ → 0.
2. For any (deterministic) pair of points (x, t) and (x̂, t̂ ) there is almost surely a unique forward path B starting from

(x, t) and a unique backward path B̂ starting from (x̂, t̂ ).

The next proposition, from [22], which gives the joint distribution of a single forward and single backward BW
path, has an extension to the joint distribution of finitely many forward and backward paths. We remark that that
extension can be used to give a characterization (or construction) of the double Brownian web (W , Ŵ) analogous to
the one for the (forward) BW from Theorem 2.1 – see [8,22] for more details.

Proposition 2.3.

1. Distribution of (B, B̂): Let (Bind, B̂ind) be a pair of independent forward and backward Brownian motions starting
at (x, t) and (x̂, t̂ ) and let (R

B̂ind
(Bind), B̂ind) be the pair obtained after reflecting (in the Skorohod sense) Bind on

B̂ind, i.e., R
B̂ind

(Bind) is the following function of u ∈ [t, t̂]:

R
B̂ind

(Bind)=
{

Bind(u)− 0 ∧ mint≤v≤u

(
Bind(v)− B̂ind(v)

)
on

{
Bind(t)≥ B̂ind(t)

}
,

Bind(u)− 0 ∨ maxt≤v≤u

(
Bind(v)− B̂ind(v)

)
on

{
Bind(t) < B̂ind(t)

}
.

(2.1)

Then(
R

B̂ind
(Bind), B̂ind

) = (B, B̂) in law, (2.2)

where B is the path in W starting at (x, t) and B̂ is the path in Ŵ starting at (x̂, t̂ ).
2. Similarly,(

Bind,RBind(B̂ind)
) = (B, B̂) in law. (2.3)

2.3. (1,2) points of the Brownian web

While there is only a single path from any deterministic point in R2 in both the forward and backward webs, there
exist random points z ∈ R2 with more than one path passing through or starting from z.

We now describe the “types” of points (x, t) ∈ R2, whether deterministic or not. We say that two paths B,B ′ ∈ W
are equivalent paths entering z = (x, t), denoted by B =z

in B ′, iff B = B ′ on [t − ε, t] for some ε > 0. The relation
=z

in is a.s. an equivalence relation on the set of paths in W entering the point z and we define min(z) as the number
of those equivalence classes. (min(z)= 0 if there are no paths entering z.) mout(z) is defined as the number of distinct
paths starting from z. For Ŵ , m̂in(z) and m̂out(z) are defined similarly.

Definition 2.1. The type of z is the pair (min(z),mout(z)).

The following results from [24] (see also [8]) specify what types of points are possible in the Brownian web.

Theorem 2.4. For the Brownian web, almost surely, every (x, t) has one of the following types, all of which occur:
(0,1), (0,2), (0,3), (1,1), (1,2), (2,1).

Proposition 2.5. For the Brownian web, almost surely for every z in R2, m̂in(z) = mout(z) − 1 and m̂out(z) =
min(z)+ 1. See Fig. 2.

It is important to realize that points of type (1,2) can be characterized in two ways, both of which will play a
crucial role in our construction of the DyBW and BN. (1) z ∈ R2 is of type (1,2) precisely if both a forward and a
backward path pass through z. (2) A single incident path continues along exactly one of the two outward paths – with
the choice determined intrinsically. It is either left-handed or right-handed according to whether the continuing path
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is to the left or the right of the incoming (from later time) backward path. For a left (1,2) point z, the right (resp.,
left) outgoing path will be referred to as the newly born path starting from z. See Fig. 2 for a schematic diagram of
the “left-handed” case. Both varieties occur and it is known [8] that each of the two varieties, as a subset of R2, has
Hausdorff dimension 1. As noted in Section 1, the two varieties of (1,2) points play the same role in the continuum
that left and right arrows play in the discrete setting. In particular, one can change the direction of the “continuum”
arrow at a given (1,2) point z by simply connecting the incoming path to the newly born path starting from z. In the
discrete picture, this amounts to changing the direction of an arrow whose switching induces a “macroscopic” effect
in the web.

3. Marked (1,2) points on the Brownian web

3.1. The local time measure

Recall that the φ-Hausdorff outer measure of an arbitrary subset E of R for φ : (0,∞)→ (0,∞) is defined as

mφ(E)= lim
δ↓0

inf

{∑
φ

(|bi − ai |
)∣∣∣E ⊂

⋃
i

[ai, bi], |bi − ai |< δ

}
. (3.1)

In the following, we set φ(t) = √
2t log(| log(t)|) and we denote the Lebesgue measure of E by |E|. Restricted to

Borel subsets E of R, mφ is a measure.

Proposition 3.1.

1. Let (B, B̂) be defined as in Proposition 2.3. For almost every realization of W , for every t ≤ u≤ t̂

lim
ε↓0

1

2ε

∣∣∣∣
{
v: t ≤ v ≤ u,

|B(v)− B̂(v)|√
2

≤ ε

}∣∣∣∣ (3.2)

exists and will be denoted by L
B,B̂

(u).
2. For a Borel set A⊂ R∫

u∈A

dL
B,B̂

(u)=mφ

({
u ∈A | B(u)= B̂(u)

})
. (3.3)

3. Distribution of L
B,B̂

: L
B,B̂

is a stochastic process on [t, t̂] which is identical in law to L̄
B,B̂

defined as follows:

L̄
B,B̂

(u)=
{
−0 ∧ mint≤v≤u

(
Bind(v)− B̂ind(v)

)
/
√

2 on
{
Bind(t)≥ B̂ind(t)

}
,

0 ∨ maxt≤v≤u

(
Bind(v)− B̂ind(v)

)
/
√

2 on
{
Bind(t) < B̂ind(t)

}
,

(3.4)

where (Bind, B̂ind) are defined as in Proposition 2.3.

Note that the third statement is analogous to the famous property discovered by Lévy that the local time (at the
origin) of a one-dimensional Brownian motion is identical in law with its record time process (see, e.g., [15]). State-
ment 2 is analogous to the fact that the measure induced by the local time at 0 of a standard Brownian motion coincides
with the φ-Hausdorff measure of its zero-set (see Theorem 1 in [19]).

Let us consider a family of n forward paths {Bi}n−1
i=0 and a family of m backward paths {B̂j }m−1

j=0 . We will generally

choose theses paths so that Bi and B̂i have the same starting point zi with D = {zi}∞i=0 some dense deterministic set
of points in R2 as defined in Section 2.1; also for consistency with other notation, we will generally assume that z0

is the origin in R2. In non-ambiguous contexts, {Bi}n−1
i=0 and {B̂j }m−1

j=0 will also refer to the union of their respective

traces in R2.
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The expression for L
B,B̂

given in (3.3) can be easily generalized to the family {Bi}n−1
i=0 and {B̂j }m−1

j=0 . E.g., for a
Borel A⊂ R, we simply define Ln,m(A) by∫

u∈A

dLn,m(u) = mφ

({
t ∈A | ∃x ∈ R s.t. (x, t) ∈ {Bi}n−1

i=0 ∩ {B̂j }m−1
j=0

})
= mφ

(
A∩ P

({Bi}n−1
i=0 ∩ {B̂j }m−1

j=0

))
,

where P denotes the projection onto the t -axis.
Finally, we can extend Ln,m to be a measure acting on R2 in the following way, which implicitly uses the a.s.

property of W that if a forward and a backward family meet at some t , they do so only at a single value of x.

Definition 3.1 (Local time measure). For the forward family {Bi}n−1
i=0 and the backward family {B̂j }m−1

j=0 , we define

the local time (outer) measure Ln,m on R2 as follows. For a general space–time domain O ,

Ln,m(O)=mφ

(
P

({Bi}n−1
i=0 ∩ {B̂j }m−1

j=0 ∩O
))

. (3.5)

In particular, Ln,m is supported on the space–time points where the forward family touches the backward family.
Finally, we define an outer measure

L(O)=mφ

(
P

({Bi}∞i=0 ∩ {B̂j }∞j=0 ∩O
))

. (3.6)

L(O) will be referred to as the local time outer measure of O .

Both Ln,m and L are measures when restricted to Borel sets but may take the value ∞. We note that for any open
set O ⊂ R2, L(O) =∞. However, we will later encounter (see e.g., Section 7.7) some very natural subsets O ⊂ R2

with finite L-measure. See Section 4i of [25] for a similar discussion.

3.2. The marking process

Let us consider the Poisson point process on R2 ×R+ with intensity measure

In,m

(
O × [0, τ ]) =√

2Ln,m(O) · τ,
where O is any open subset of R2. We define the partial marking process τ → Mn,m(τ ) as

Mn,m(τ )= {
z ∈ R2: (z, u) is a Poisson point for some u≤ τ

}
. (3.7)

Heuristically, Mn,m(τ ) consists of the locations of the switching (in the DyBW) between dynamical times 0 and τ

if one restricts the dynamics to the “arrows” at the intersection of the forward family {Bi}n−1
i=0 and the backward family

{B̂j }m−1
j=1 , while other arrows remain frozen. In order to introduce a “full dynamics” we will couple the sequences

{Mn,m(τ )}n,m in such way that for n′ ≥ n and m′ ≥ m, Mn,m(τ ) ⊆ Mn′,m′(τ ). To achieve this, we define the point
process M as follows:

Definition 3.2. M is the four-dimensional Poisson point process on R2×R+×N×N with (locally finite and random)
intensity measure I defined by

I
(
O × [0, τ ] × {0, . . . , n− 1} × {0, . . . ,m− 1}) =√

2Ln,m(O) · τ, (3.8)

where O is any open subset of R2.

We can then define M(τ ) as

M(τ )= {
z:

(
z, s, n′,m′) is in M for some n′,m′ and some s ≤ τ

}
(3.9)
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and Mn,m(τ ) is simply obtained by adding the restriction to (3.9) that n′ ≤ n− 1 and m′ ≤m− 1.
Informally, {M(τ )}τ≥0 can be seen as a Poisson Point Process on R2 ×R with intensity measure

√
2L(dz)× dτ .

In particular, for a Borel O ⊂ R2 with L(O) < ∞, M(τ ) ∩ O is a Poisson point Process on R2 × R with intensity
measure

√
21z∈O L(dz)× dτ .

3.3. Modifying the web using marking

3.3.1. Constructing the Brownian net
Let τ > 0. We define a partial Brownian net Nn,m(τ ) by having branching at the points of the partial marking
Mn,m(τ ). (Later we will write Nn(τ ) for Nn,n(τ ).) For example, if the (1,2) point in Fig. 2 is marked, then the
Brownian net will include not only paths that connect to the left outgoing path (as in the original web) but also ones
that connect to the right outgoing path. More formally, the set of paths in Nn,m(τ ) starting from z ∈ R2 is the set of
paths interpolating the set S of points Mn,m(τ ) ∪ {z} ∪ {+∞} with paths in W – i.e., between any consecutive pair
of points in π ∩ S , π coincides with a path in W .

Finally, we define Nmark(τ ) as the closure of
⋃∞

n,m=1 Nn,m(τ ). In other words, Nmark(τ ) is defined by allowing
branching at every marked (1,2) point in the Brownian web W . Analogously, we can define a backward partial
Brownian net N̂n,m(τ ) by allowing branching at the points Mn,m(τ ) in the dual web Ŵ and define N̂mark(τ ) as the
closure of

⋃∞
n,m=1 N̂n,m(τ ). In Section 5, we prove the equivalence of Nmark(τ ) to the Brownian net construction of

Sun and Swart [23], which by their results (see Theorem 1.1 in [23]) then implies convergence of the properly rescaled
discrete net to Nmark(τ ) in an appropriate topology.

3.3.2. Constructing the dynamical Brownian web
We can construct a partial dynamical Brownian web Wn,m(τ ), at dynamical time τ , to replace the original W by
switching the direction of all the marked (1,2) points in Mn,m(τ ). Formally, π is in Wn,m(τ ) iff π is in the the partial
net Nn,m(τ ) and at each time t = t̄i that π hits a point (x̄i , t̄i ) ∈ Mn,m(τ ), it then follows Bi

new, the newly born path
of W starting from (x̄i , t̄i ), on [t̄i , t̄i + a] for some a > 0. A nontrivial question is the existence of a limit for Wn,m(τ )

as n,m →∞. It will be shown in Section 6 that for almost all realizations of the web and its marking, a limit W (τ )

exists for every τ (see Proposition 6.1).

4. Sticky Brownian motion by marking a single path

From here through Section 6, τ will denote a fixed deterministic number and the marking will refer to M(τ ).
We first recall the definition of a one-dimensional sticky (at the origin) Brownian motion.

Definition 4.1. Bstick,x is a (1/τ̄ )-sticky Brownian motion starting at x iff there exists a one-dimensional standard
Brownian motion B s.t.

∀t ≥ 0 dBstick,x(t)= 1Bstick,x (t) �=0 dB(t)+ τ̄1Bstick,x (t)=0 dt (4.1)

and B is constrained to stay positive as soon it first hits zero.

It is known that (4.1) has a unique (weak) solution. Furthermore, for x = 0 this solution can be constructed from a
time-changed reflected Brownian motion. More precisely, consider

t � |B̄|(C(t)
)

with C−1(t)= t + 1

τ̄
L0(t),

where |B̄| is a reflected Brownian motion and L0 is its local time at the origin. Then there exists a Brownian motion B

such that (|B̄|(C(·)),B) is a solution of (4.1) (see, e.g., [26]). In words, the sticky Brownian motion is obtained from
the reflected one by “transforming” local time into real time. In particular, it spends a positive Lebesgue measure of
time at the origin and the larger the “degree of stickiness” 1/τ̄ is, the more the path sticks to the origin.

In this section we consider the path [1]rz starting at z ∈ D and constructed by switching only the direction of the left
(1,2) points in M(τ ) on B0, the path of W starting from the origin. As we shall see, unlike in the complete DyBW, it
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is not difficult to construct [1]rz and the law of the pair ([1]rz,B0) can be characterized explicitly. In particular, if we set

[1]r0 ≡ [1]rz for z = (0,0) then it readily follows from Proposition 4.1 below that ([1]r0 −B0)/
√

2 is a (
√

2/τ)-sticky
Brownian motion. This will be very useful in the rest of the paper (see Sections 5 and 6) where the analysis of paths
that result from switching left and right (1,2) points is a direct extension of the analysis here. Our construction of a
sticky Brownian motion using the marked excursions defined next is similar to Warren’s construction in [27] using
the excursions of a single Brownian motion.

Definition 4.2 (Excursions). Let Bnew be the newly born path emerging from a (1,2) point z = (x, t) on any path
B ∈ W . The segment of Bnew before coalescence with B is called an excursion from B .

D(e) is the time duration of the excursion e, |e| ≡ sup{|B − e|(s): t ≤ s ≤ t +D(e)} is its diameter, T (e) ≡ t its
starting time, (T (e), T (e)+D(e)) its lifespan.

If an excursion e starts from a marked point, e is called a marked excursion.
A right marked excursion e is called nested iff there exists another right marked excursion e′ s.t. T (e) belongs to

the lifespan of e′. An analogous definition holds for left marked excursions.
If a marked excursion e is not nested, e is said to be a maximal excursion.

[1]r0 may be defined as the path obtained after joining together all the right maximal excursions from B0. Stated
differently, [1]r0 is the path whose excursions (in the standard sense) from B0 coincide with the right maximal excur-
sions from B0 in the marked Brownian web. We note that every time [1]r0 hits a left (1,2) point on B0 it then follows
the newly born path starting from it. (Among all the marked left (1,2) points [1]r0 only hits the starting points of
maximal excursions since nested excursions are “straddled” by some maximal excursions). Thus [1]r0 is consistent
with the informal definition in terms of switching given earlier in this section.

Next, we recall that for any deterministic point z ∈ R2, Bz ∈ W is the path starting from z. We define [1]rz as the
path starting from z obtained by switching all the left marked (1,2) points on B0 ∩Bz. (This informal definition may
be made precise as was done for [1]r0 by using the right maximal excursions from Bz′ , where z′ is the coalescing
point between B0 and Bz.) Note that [1]rz is a continuous path. To prove that, it is clearly enough to show that for
fixed T , ε ∈ (0,∞) the process [1]rz only performs finitely many excursions of diameter ≥ ε away from B0 on the
interval [0, T ]. If that were not the case, there would exist a sequence of marked excursions {ek} from B0 such that ek

would make an excursion away from B0 with diameter ε and duration tk , with tk → 0. But that would violate the
compactness of W .

We now set up some notation. For a path π in (Π,d) starting from z, we denote by tπ , the starting time of π . For
two paths π1,π2, Tπ1,π2 ≡ inf{t > tπ1 ∨ tπ2 : π1(t) = π2(t)} denotes the first meeting time of π1 and π2, which may
be +∞. In Section 7.4 we show the following proposition.

Proposition 4.1. For any deterministic z ∈ R2, almost surely, there exists B
(1)
z , a standard Brownian motion starting

at z so that [1]rz satisfies the following SDE.

d[1]rz(t)= dB(1)
z (t)+ 1[1]rz(t)=B0(t)τ dt,

dB0(t)dB(1)
z (t)= 1[1]rz(t)=B0(t) dt,

∀t ≥ T[1]rz,B0 , [1]rz(t)≥ B0(t). (4.2)

Here dB0(t)dB
(1)
z (t) denotes d〈B0,B

(1)
z 〉(t), where 〈B0,B

(1)
z 〉(t) is the cross-variation process of B0 and B

(1)
z at

time t . The second part of Eq. (4.2) amounts to saying that away from the diagonal {t : [1]rz(t) = B(t)}, B0 and
[1]rz evolve independently while on the diagonal they are perfectly correlated. In particular, without the drift on the
diagonal to “unstick” [1]rz from B0, [1]rz and B0 would coalesce rather than stick when they meet.

Adopting the usual terminology, we will say that [1]rz is distributed as a Brownian motion stickily reflected off B0

with a degree of stickiness 1/τ . In particular, for z = (x,0) the process {([1]rz−B0)/
√

2} is a (
√

2/τ)-sticky Brownian
motion (see Definition 4.1).

In [23], Sun and Swart studied a similar equation but with the difference that [1]r0 (resp., B0) is replaced by a right
(resp., left) drifting Brownian motion (see Eq. (5.1)). For that equation, they established existence and uniqueness
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of a weak solution (see Proposition 2.1 in [23]). Since (4.2) and (5.1) only differ by their drift terms, existence and
uniqueness for (4.2) follows from their result and the Girsanov theorem. In particular, a (weak) solution ([1]r0,B0) of
(4.2) is a strong Markov process.

5. The Brownian net by marking

In Section 5.1, we outline the construction of the Brownian net given by Sun and Swart [23] and state some re-
lated results. The presentation we give of that construction is taken from [20]. As will be seen, this construction of
the Brownian net is different in spirit to the one using marking given in Section 3.3.1. However, we will show in
Theorem 5.5 that the two constructions lead to the same object.

5.1. The Brownian net as introduced by Sun and Swart

We now recall the left–right Brownian web (Wl , Wr ), which is the key intermediate object in the construction of the
Brownian net in [23]. Following [23], we call (l1, . . . , lm; r1, . . . , rn) a collection of left–right coalescing Brownian
motions, if (l1, . . . , lm) is distributed as coalescing Brownian motions each with drift −τ , (r1, . . . , rn) is distributed
as coalescing Brownian motions each with drift +τ , paths in (l1, . . . , lm; r1, . . . , rn) evolve independently when they
are apart, and the interaction between li and rj when they meet is a form of sticky reflection. More precisely, for any
L ∈ {l1, . . . , lm} and R ∈ {r1, . . . , rn}, the joint law of (L,R) at times t > tL ∨ tR is characterized as the unique weak
solution of

dL(t)= dBl − τ dt,

dR(t)= dBr + τ dt,

d〈Bl,Br 〉(t)= 1L(t)=R(t) dt,

∀t ≥ TR,L, R(t)≥ L(t), (5.1)

where Bl,Br are two standard Brownian motions. We then have the following characterization of the left–right
Brownian web from [23].

Characterization of the left–right Brownian web. There exists an (H2, F H2)-valued random variable (Wl , Wr ),
called the standard left–right Brownian web (with parameter τ > 0), whose distribution is uniquely determined by the
following two properties:

(a) Wl , resp. Wr , is distributed as the standard Brownian web, except tilted with drift −τ , resp. +τ .
(b) For any finite deterministic set z1, . . . , zm, z′1, . . . , z′n ∈ R2, the subset of paths in Wl starting from z1, . . . , zm, and

the subset of paths in Wr starting from z′1, . . . , z′n, are jointly distributed as a collection of left–right coalescing
Brownian motions.

Similar to the Brownian web, the left–right Brownian web (Wl , Wr ) admits a natural dual (Ŵl , Ŵr ) which is
equidistributed with (Wl , Wr ) modulo a rotation by 180◦ of R2. In particular, (Wl , Ŵl ) and (Wr , Ŵr ) are pairs of
tilted double Brownian webs.

Based on the left–right Brownian web, [23] gave three equivalent characterizations of the Brownian net, which are
called respectively the hopping, wedge, and mesh characterizations. We first recall what is meant by hopping, wedges
and meshes.

Hopping. Given two paths π1,π2 ∈Π , let t1 and t2 be the starting times of those paths. For t > t1 ∨ t2 (note the strict
inequality), t is called an intersection time of π1 and π2 if π1(t) = π2(t). By hopping from π1 to π2, we mean the
construction of a new path by concatenating together the piece of π1 before and the piece of π2 after an intersection
time. Given the left–right Brownian web (Wl , Wr ), let H(Wl ∪ Wr ) denote the set of paths constructed by hopping a
finite number of times between paths in Wl ∪ Wr .
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Wedges. Let (Ŵl , Ŵr ) be the dual left–right Brownian web almost surely determined by (Wl , Wr ). For a path π̂ ∈ Π̂ ,
let tπ̂ denote its (backward) starting time. Any pair l̂ ∈ Ŵl , r̂ ∈ Ŵr with r̂(t

l̂
∧ tr̂ ) < l̂(t

l̂
∧ tr̂ ) defines an open set

W(r̂, l̂)= {
(x,u) ∈ R2: T < u < t

l̂
∧ tr̂ , r̂(u) < x < l̂(u)

}
, (5.2)

where T = sup{t < t
l̂
∧ tr̂ : r̂(t) = l̂(t)} is the first (backward) hitting time of r̂ and l̂, which might be −∞. Such an

open set is called a wedge of (Ŵl , Ŵr ).

Meshes. By definition, a mesh of (Wl , Wr ) is an open set of the form

M =M(r, l)= {
(x, t) ∈ R2: tl < t < Tl,r , r(t) < x < l(t)

}
, (5.3)

where l ∈ Wl , r ∈ Wr are paths such that tl = tr , l(tl) = r(tr ) and r(s) < l(s) on (tl, tl + ε) for some ε > 0. We call
(l(tl), tl) the bottom point, tl the bottom time, (l(Tl,r ), Tl,r ) the top point, Tl,r the top time, r the left boundary, and l

the right boundary of M .

Given an open set A ⊂ R2 and a path π ∈ Π , we say π enters A if there exist tπ < s < t such that π(s) /∈ A and
π(t) ∈A. We say π enters A from outside if there exists tπ < s < t such that π(s) /∈ Ā, the closure of A, and π(t) ∈A.
We now recall the following characterization of the Brownian net from [23].

Theorem 5.1 (Characterization of the Brownian net). There exists an (H, FH)-valued random variable N , the
standard Brownian net (with parameter τ ), whose distribution is uniquely determined by property (a) and any of the
three equivalent properties (b1)–(b3) below:

(a) There exist Wl , Wr ⊂ N such that (Wl , Wr ) is distributed as the left–right Brownian web.
(b1) Almost surely, N is the closure of H(Wl ∪ Wr ) in (Π,d).
(b2) Almost surely, N is the set of paths in Π which do not enter any wedge of (Ŵl , Ŵr ) from outside.
(b3) Almost surely, N is the set of paths in Π which do not enter any mesh of (Wl , Wr ).

As pointed out in [20], the construction of the Brownian net from the left–right Brownian web can be regarded
as an outside-in approach because Wl and W r are the “outermost” paths among all paths in N . On the other hand,
the marking construction of the Brownian net can be regarded as an inside-out approach. We start from a standard
Brownian web, which consist of the “innermost” paths in the Brownian net, and construct the rest of the Brownian net
paths by allowing branching at a Poisson set of marked points in the Brownian web.

5.2. Equivalence of the constructions

The main ingredient in the construction we just described is the pair (Wr , Wl). In order to prove the equivalence
between the two constructions we first prove that the sets of leftmost and rightmost paths of Nmark (as defined in
Section 3.3.1) are distributed as such a pair (see Proposition 5.4).

In Section 4, [1]rz was constructed from Bz by switching all the marked left (1,2) points on B0, the path of
W starting from the origin. Analogously, we can define [n]rz after switching all the marked left (1,2) points on
B0,B1, . . . ,Bn−1, where Bk is the path starting from zk . As can easily be seen, the interaction between [n]rz and the
family {Bi}n−1

i=0 is local. Hence, Proposition 4.1 implies that [1]rz evolves like an independent Brownian motion away
from {Bi}n−1

i=0 and the interaction between [n]rz and Bi when they meet is a sticky reflection. More precisely, we have
the following immediate generalization of Proposition 4.1.

Proposition 5.2. For any deterministic z, there exists B
(n)
z , a standard Brownian motion starting at z, so that

[n]rz, {Bk}n−1
k=0 satisfy the following SDE.

d[n]rz = dB(n)
z (t)+ 1⋃n−1

k=0{[n]rz(t)=Bk(t)}τ dt,

dBk(t)dB(n)
z (t)= 1[n]rz(t)=Bk(t) dt,

∀t ≥ T[n]rz,Bk
, [n]rz(t)≥ Bk(t). (5.4)
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We now motivate the next proposition. As n →∞, {Bk}n−1
k=0 “fills” more and more space of R2 and because [n]rz

sticks to the family {Bk}n−1
k=0 it is intuitively clear that 1⋃n−1

k=0{[n]rz=Bk} ≈ 1 (see Lemma 7.8 for a precise version of this

statement). Hence for large n, the first part of (5.4) becomes

d[n]rz(t) = dB(n)
z (t)+ 1⋃n−1

k=0{[n]rz=Bk}τ dt (5.5)

≈ dB(n)
z (t)+ τ dt. (5.6)

Hence, for any k ∈ N, we expect ([n]rz,Bk) to converge as n →∞ in distribution to a pair (rz,Bk) satisfying the
following SDE.

drz = dBr
z + τ dt,

dBk(t)dBr
z (t)= 1rz(t)=Bk(t) dt,

∀t ≥ Trz,Bk
, rz ≥ Bk, (5.7)

where Br
z is a Brownian motion starting from z.

We recall that {zi}∞i=0 is a dense deterministic subset of R2. Let i ∈ N. In the following, we write [n]ri for [n]rzi
.

Since {[n]ri}n is clearly increasing in n, the sequence {[n]ri}n actually converges pathwise and the limit is a drifting
Brownian motion. (Although it is not even clear a priori that the sequence of paths is bounded, this will follow from
the fact, as motivated by (5.5)–(5.7), that there is convergence in distribution.) This pathwise limit will be referred to
as ri ; it corresponds to the rightmost path of the net Nmark starting from zi . In particular, any path of any partial net
Nn(= Nn,n) starting at zi is always to the left of ri (i.e., ≤ ri ). This motivates the following proposition, whose proof
is given in Section 7.5.

Proposition 5.3. [n]ri converges pointwise to a continuous path ri starting from zi with (ri ,Bk) satisfying the three-
part SDE (5.7).

Analogously, using the set of marked right (1,2) points of W , we can define {lj }j a family of left-drifting Brownian
motions reflected in a sticky way on the paths of W . In Section 7.5 we prove the following extension of Proposition 5.3.

Proposition 5.4. {rj }j (resp. {lj }j ) is a family of coalescing right- (resp., left-) drifting Brownian motions with drift
τ (resp., −τ ). The pair (Wl , Wr ), defined as the closures of {lj }j , {rj }j respectively, is distributed as a left–right
Brownian web.

Now, let Nhop denote the net obtained from (Wr , Wl ) by the hopping construction given in Section 5.1. In Sec-
tion 7.5, we prove

Theorem 5.5.

Nhop = Nmark. (5.8)

6. The dynamical Brownian web

In order to describe the dynamical web, we will need the following notion of stickiness.

Definition 6.1 (Stickiness). Let π1,π2 be in the net N with x = π1(t)= π2(t). We say that π1 sticks to π2 at z = (x, t),
or equivalently π2 ∼z π1, iff for any ε > 0,

∫ t+ε

t

1π1(u)=π2(u) du > 0 and
∫ t

t−ε

1π1(u)=π2(u) du > 0.
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We now set up some notation. We say that a path enters a point z = (x, t) if tπ < t and π(t) = x. Let z be a (1,2)

point in Nmark. For any B ∈ W entering z, we denote by Bswitch the path obtained from B after switching the direction
of z. Since for any paths π ∈ Nmark and B̄,B ∈ W entering z, π ∼z B iff π ∼z B̄ , we will sometimes write π ∼z B

without specifying B to mean that there exists a B ∈ W such that π ∼z B . Analogously, we will write π ∼z Bswitch,
without specifying the path B from which Bswitch was constructed.

Recall the partial dynamical web {Wn,m(τ )}τ≥0 given in Section 3.3.2. In the following, Nmark(τ ) is the net con-
structed from M(τ ). The proof of the next proposition is given in Section 7.7.1. That proof makes clear that the three
parts of Proposition 6.1 correspond to three alternative constructions of the dynamical Brownian web.

Proposition 6.1.

(1) There exists {W (τ )}τ≥0 in (H, dH) s.t. almost surely

∀τ ≥ 0 lim
n,m↑∞dH

(
Wn,m(τ ), W (τ )

) = 0.

(2) W (τ )= {π ∈ Nmark(τ ): every time π enters a point z in M(τ ), π ∼z Bswitch}.
(3) Almost surely, W (τ ) satisfies the two following conditions (of Theorem 2.1) for every τ ≥ 0.

(o) From any deterministic point z in R2, there is a unique path Bτ
z ∈ W (τ ) starting from z.

(i) W (τ ) is the closure in (H, dH) of {Bτ
i } where Bτ

i is the unique path in W (τ ) starting from zi ∈ D.

To motivate item (2), note that in the partial dynamical web Wn,m(τ ), any path π entering a point z ∈ Mn,m(τ )

locally coincides with any path B ∈ W entering z and then connects to the newly born path starting from z. Hence,
π locally coincides with Bswitch and therefore obviously sticks to it. However, if z belongs to M(τ ) \ Mn,m(τ ), then
π ∼z B . In the limit n,m→∞, π ∼z Bswitch for every z in M(τ ).

We now turn to the description of some properties of the dynamical Brownian web. We start with a definition.

Definition 6.2. (B,B ′) is a (1/τ)-sticky pair of Brownian motions iff:

1. B and B ′ are both Brownian motions starting at (xB, tB) and (xB ′ , tB ′) that move independently when they do not
coincide.

2. For t ≥ 0, define Bstick(t) ≡ |B −B ′|(t + tB ∨ tB ′)/
√

2. Conditioned on x = Bstick(0), {Bstick(t)}t≥0 is a (
√

2/τ)-
sticky Brownian motion (see Definition 4.1).

We call (B1, . . . ,Bm;B ′
1, . . . ,B

′
n) a collection of (1/τ )-sticking-coalescing Brownian motions, if (B1, . . . ,Bm)

and (B ′
1, . . . ,B

′
n) are each distributed as a set of coalescing Brownian motions and for any B ∈ {B1, . . . ,Bm} and

B ′ ∈ {B ′
1, . . . ,B

′
n}, (B,B ′) is a (1/τ)-sticky pair of Brownian motions.

We will say that (W , W ′) is a 1/τ -sticky pair of Brownian webs iff (W , W ′) satisfies the following properties

(a) W , resp. W ′, is distributed as the standard Brownian web.
(b) For any finite deterministic set z1, . . . , zm, z′1, . . . , z′n ∈ R2, the subset of paths in W starting from z1, . . . , zm,

and the subset of paths in W ′ starting from z′1, . . . , z′n, are jointly distributed as a collection of (1/τ )-sticking–
coalescing Brownian motions.

Note that (W , W ′) is defined in a similar way as (Wl , Wr ) except that in (a) there is no drift and in (b) the collection of
left–right coalescing Brownian motions is replaced by the collection of (1/τ )-sticking–coalescing Brownian motions.
We are now ready to state the main result of this section whose proof is postponed to Section 7.7.

Theorem 6.2.

(a) (W , W (τ )) is a 1/(2τ)-sticky pair of Brownian webs.
(b) (A Markov property). For τ1 ≤ τ2 and given (W , {M(τ )}τ≤τ1), the distribution of the pair (W (τ1), W (τ2)) only

depends on W (τ1).
(c) (Stationarity). For τ1 ≤ τ2, (W (τ1), W (τ2)) and (W , W (τ2 − τ1)) are equidistributed.
(d) For any fixed deterministic time t0 > 0, the process τ → Bτ

0 (t0) is piecewise constant.
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We remark that existence of a consistent family of finite dimensional distributions for the process W (τ ) follows
from the results of [14] – see in particular Theorem 9 there.

7. Proofs

This section is organized as follows. In Section 7.1, we recall some useful properties of the Brownian web. In Sec-
tion 7.2, we complete the construction of the local time measure outlined in Section 3.1. In Section 7.3, we carefully
study some quantities related to the marked excursions of the web. Those results, whose proofs can be skipped at first
reading, will be the key ingredients in the proofs of Proposition 4.1 (in Section 7.4) and Theorem 6.2 (in Section 7.7).
In Section 7.5, we provide a proof of the results from Section 5 on the equivalence between the marking and the
hopping constructions of the Brownian net. In Section 7.6, we give a proof of a basic fact relating the BN to (1,2)

points of the BW — that every “point of separation” in the BN is (in our coupling of the BW and BN) also a (1,2)

point of the BW. We study some elementary properties of the separation points in the Brownian net, and apply those
results in Section 7.7 to prove Proposition 6.1 about the existence of the dynamical Brownian web. We note that the
results about separation points of the Brownian net had already been derived by one of us (E. S.) jointly with Sun and
Swart and appears in a paper [20] by those three authors.

7.1. Some results about the Brownian web

We start by defining the age of a point (x, t) as

sup{t − tB :B ∈ W and B(t)= x}. (7.1)

The γ -age truncation of the Brownian web is the set of paths obtained after shortening every path of W by removing
(if necessary) the initial segment consisting of those points of age less than γ . In [8] it was proved that:

Proposition 7.1. The γ -age truncation of W is “locally sparse” in the sense that for every bounded set U , the
intersection between U and the γ -age truncation of W only consists of finitely many path segments.

Two corollaries of that proposition can be formulated as follows:

Corollary 7.1. Given B and {Bn} in W so that Bn → B (in (Π,d)) then the coalescence time of Bn and B converges
to the starting time of B .

Proof. Let t be the starting time of B and take any t̄ > t . Let us consider the points zn (resp., z) where Bn (resp., B)
intersect the line R × {t̄}. The toplogy of (Π,d) (see [7]) implies that the starting time of Bn converges to t . Hence,
for n ≥ n0 with n0 large enough, zn has an age larger than (t̄ − t)/2 > 0. Moreover, since zn → z, the sequence {zn}
belongs to a bounded segment of the line. By Proposition 1, we get that {zn}n≥n0 consist of only finitely many points.
Therefore, zn is fixed after a certain n and Bn coincides with B at t̄ . Since this is valid for any t̄ > t , the claim of
Corollary 7.1 follows. �

Corollary 7.2. Let B be a path in W starting at t0. For any D as in Theorem 2.1 and t > t0, on [t,∞) the path B

coincides with a path of the skeleton (determined by D).

Proof. By definition, there exists Bn in the skeleton converging to B . The conclusion immediately follows from the
previous corollary. �

7.2. Existence of the local time measure

In this section, we prove Proposition 3.1 on which is based the construction of the local time measure. For simplicity
of notation, we assume (x, t)= (0,0).
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Let (B̄1, B̄2) be two independent standard Brownian motion paths starting at (0,0). We define (Bind, B̂ind) as

Bind(u) = B̄1(u),

B̂ind(u) = x̂ + B̄2(u)− B̄2(t̂ ) for u ∈ [0, t̂ ]. (7.2)

Clearly, (Bind, B̂ind) is a pair of independent forward and backward Brownian motions and we construct the system of
refelected paths (B, B̂) as in Proposition 2.3, i.e. (B, B̂)= (R

B̂ind
(Bind), B̂ind).

In the following, we will assume that B̂(0)(= B̂ind(0) = x̂ − B̄2(t̂)) < 0. The case B̂(0) > 0 can be treated anal-
ogously, and B̂(0) = 0 has zero probability. Let R0(B̄1 − B̄2) (resp., R0(Bind − B̂ind)) be the Skorohod reflection of
B̄1 − B̄2 (resp., Bind − B̂ind) at zero, i.e.,

R0(B̄1 − B̄2)(u)= (B̄1 − B̄2)(u)− min[0,u](B̄1 − B̄2), (7.3)

R0(Bind − B̂ind)(u)= (Bind − B̂ind)(u)− 0 ∧ min[0,u](Bind − B̂ind) (7.4)

= (B − B̂)(u). (7.5)

Let T0 be the first time (Bind − B̂ind) hits 0. Since (Bind − B̂ind) is a translation of B̄1 − B̄2 by −B̂ind(0) > 0, Eq. (7.3)
immediately implies that

R0
(
Bind(u)− B̂ind

)
(u)=R0(B̄1 − B̄2)(u) ∀u≥ T0, (7.6)

R0
(
Bind(u)− B̂ind

)
(u) �= 0 ∀u < T0. (7.7)

(B̄1 − B̄2)/
√

2 is a standard Brownian motion and it is a well known result (see, e.g., [15]) that R0(B̄1 − B̄2)/
√

2
is distributed as the absolute value of a Brownian motion and its local time at 0, defined as

L(u)= lim
ε↓0

1

2ε

∣∣∣∣
{
v ≤ u:

R0(B̄1 − B̄2)(v)√
2

< ε

}∣∣∣∣ (7.8)

is equal to −min[0,u](B̄1 − B̄2)/
√

2. This implies that the quantity

L
B,B̂

(u)= lim
ε↓0

1

2ε

∣∣∣∣
{
v ≤ u:

1√
2
R0(Bind − B̂ind)(v)= 1√

2
(B − B̂)(v) < ε

}∣∣∣∣ (7.9)

is well defined and moreover

L
B,B̂

(u) = L(u∨ T0)−L(T0) (7.10)

= − min[0,u∨T0]
B̄1 − B̄2√

2
+ min[0,T0]

B̄1 − B̄2√
2

(7.11)

= −0 ∧ min[0,u](Bind − B̂ind)√
2

. (7.12)

This completes the proof of items 1 and 3 of Proposition 3.1.
Finally, item 2 follows from the fact (see Theorem 1 in [19]) that almost surely, the local time measure at zero of a

Brownian motion is the φ-Hausdorff measure of its zero-set.

7.3. Excursions

To motivate this section, let us consider the pair ([1]r0,B0) (see Section 4). On any interval of {t : B0(t) �= [1]r0(t)},
[1]r0 coincides with some path of the Brownian web other than B0. Therefore, away from B0, [1]r0 evolves as a
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Brownian motion independent of B0 (this is part of the proof in Section 7.4 below of Proposition 4.1, which describes
the distribution of ([1]r0,B0)). Hence, to determine the distribution of ([1]r0,B0), we will need to analyze how [1]r0
escapes from the diagonal {t : [1]r0(t)= B0(t)}.

Let us define t rε = inf{s: ([1]r0 − B0)(s) =
√

2ε}, the first time the pair ([1]r0,B0) escapes from the
√

2ε-
neighborhood of the diagonal. By construction, t rε is also the first time any right marked excursion is at a spatial
distance

√
2ε from B0. In Section 7.3.1, we give an explicit expression for the distribution of t rε . In Section 7.3.2, we

obtain asymptotics for E(trε ) for small ε. This will be used to prove Proposition 4.1. Finally, we present Proposition 7.4
in Section 7.3.3 – a result relating left and right excursions from B0. It will be used to prove Theorem 6.2(a) which
describes the joint distribution of the dynamical Brownian web at two different dynamical times.

7.3.1. Distribution of t rε
In this section, we will prove the following proposition.

Proposition 7.2. Let |B|ε0(t) be a Brownian motion on [0, ε], starting at 0 and reflected at 0 and ε and let lε(t) be its
local time at level ε. Then

P
(
t rε ≤ t

) = P

(
lε(t)≥ Exp

[
1√
2τ

])
, (7.13)

where Exp[1/(
√

2τ)] is an exponential random variable with mean 1/(
√

2τ), independent of |B|ε0.

By definition, t rε ≤ t iff a marked excursion enters the region

Uε,t =
{
(x,u): 0 ≤ u≤ t,B0(u)+√

2ε ≤ x
}
. (7.14)

Equivalently, this condition can be re-expressed using the dual Brownian web.

Lemma 7.1. t rε ≤ t iff there exists a backward path B̂ starting from Uε,t and hitting B0 at a marked point.

Proof. To show the only if part of the lemma, assume there exists a right marked excursion er from B0 and 0 ≤ s ≤ t

such that (er (s), s) ∈Uε,t . One can then construct a sequence {B̂n} in Ŵ such that B̂n starts at (x̂n, t̂n) with B0(t̂n) <

x̂n < er(t̂n) and (x̂n, t̂n) → (er (s), s). Since paths of the web and its dual do not cross, B̂n is squeezed between er

and B0 and thus enters the marked starting point z of er . By compactness of Ŵ , B̂n converges (along a subsequence)
to some path B̂ ∈ Ŵ starting at (er (s), s) ∈ Uε,t and entering the point z. The converse argument to prove the if part
of the lemma is similar. �

We denote by Lε,t ([t1, t2]) the local time measure of all the points in R× [t1, t2] where B0 meets a backward path
starting from Uε,t . This naturally defines a measure Lε,t on R and we set Lε,t ([0, t]) ≡ l̃ε(t). By definition, the set
of marked points at the intersection between B0 and the set of backward paths starting from Uε,t is a Poisson point
process with intensity

√
2τ l̃ε(t). Hence,

P
(
t rε ≤ t

) = P

(
l̃ε(t)≥ Exp

[
1√
2τ

])
, (7.15)

where Exp[1/(
√

2τ)] is independent of W .
To study the measure Lε,t , we introduce the (backward) process I t

ε (see Fig. 3) defined as

∀s ∈ [0, t] I t
ε (s)= inf

{
B̂(s): B̂ ∈ Ŵ, z(B̂) ∈Uε,t

}
, (7.16)

where z(B̂) denotes the starting point of B̂ .
Not surprisingly, the set of times when I t

ε and B0 coincide is the support of Lε,t . This claim can be verified as
follows. Because of the compactness of Ŵ , the time it takes for a path in Ŵ starting from Uε,t to reach the curve B0
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Fig. 3. The process I t
ε is the left envelope of all the backward paths starting from the region Ut

ε .

is uniformly bounded away from 0. This means that the (backward) age of those paths (see (7.1)) is strictly positive
and the claim follows directly from Proposition 7.1. Proposition 7.2 directly follows from (7.15) and the following
lemma.

Lemma 7.2. The process |B|ε0 defined on [0, t] by

|B|ε0(s)≡− 1√
2

(
I t
ε (t − s)−B0(t − s)−√

2ε
)

is a Brownian motion on [0, ε] starting at 0 and reflected at 0 and ε.

Proof. Let {B̂k,n}n∈N,k∈{0,...,2n} be the family of backward paths starting from points of the form zk,n = (B0(kt/2n)+√
2ε, kt/2n). We define

{πk,n} =
{−1√

2

(
B̂k,n(t − s)−B0(t − s)−√

2ε
)
: t − kt/2n ≤ s ≤ t

}
. (7.17)

Clearly, {πk,n} starts from {(0, t − kt/2n)} and is identical in law with a family of forward coalescing Brownian
motions Skorohod reflected at ε.

As can easily be seen, the process

n|B|ε0(u)≡ sup
{
πk,n(u): k ∈ {

0, . . . ,2n
}}

(7.18)

converges pointwise to |B|ε0 as n goes to ∞.
Now, let us decompose the process |B|ε0 into its up and downcrossings (the first upcrossing is the section of the

path on [0, t1
ε ], where t1

ε is the first time |B|ε0 hits ε; the first downcrossing is the section of the path between tε1 and
its return time to 0). We aim to prove that an upcrossing (resp., downcrossing) is a copy of an independent Brownian
motion starting at 0 (resp., ε), reflected at 0 (resp., ε) and stopped when it hits ε (resp., 0). It is straightforward to show
the equidistribution and independence of the up and downcrossings. The downcrossings have the required distribution
because |B|ε0 coincides with πk,n for some n and k during a downcrossing. It remains to determine the law of the
upcrossings. Let u1 (resp., u1,n) be the first upcrossing of the process |B|ε0 (resp., n|B|ε0). u1,n is simply made of
pieces of Brownian motions stopped if they hit ε. Let B (which depends on n) be the continuous process starting at 0
and obtained by gluing those pieces at their endpoints (see Fig. 4). By a simple induction, it is easy to see that

∀t ∈ [
k/2n, (k + 1)/2n

)
, u1,n(t)= B(t)− inf

{
B

(
j

2n

)
: j = 0,1/2n, . . . , k/2n

}
(7.19)

and by the Markov property, B is a Brownian motion stopped when u1,n hits ε. As n → ∞, the right hand side
of (7.19) converges in law to

B(t)− inf[0,t]B, (7.20)
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Fig. 4. The continuous dashed path B is constructed from the plain path n|B|ε0.

where B is a Brownian motion stopped when B(t) − inf[0,t] B hits ε. On the other hand, the left-hand side of (7.19)
converges almost surely to u1. Hence, the first upcrossing of |B|ε0(s) is identical in distribution with that of a Brownian
motion starting at 0, Skorohod reflected at 0 and stopped when it hits 1. �

7.3.2. Rate of excursions from B0
In this subsection, we prove

Proposition 7.3. limε↓0 E(trε )/ε =
√

2
τ

and E([t rε ]2)= o(ε) as ε ↓ 0.

We only prove the first claim. The second one can be proved along the same lines.
Let PW denote the probability distribution of the marked Brownian web conditioned on the web W . By Proposi-

tion 7.2, we have the following.

E(trε )/ε =
∫ ∞

0
P

(
t rε > εt

)
dt =

∫ ∞

0
E

(
PW

(
t rε > εt

))
dt

=
∫ ∞

0
E

(
PW

(
lε(εt) < Exp

[
1√
2τ

]))
dt =

∫ ∞

0
E

(
exp

[−√2τ · lε(εt)
])

dt.

To take the limit as ε → 0, we will use the following lemma.

Lemma 7.3. Let t, γ > 0. There exist c,C ∈ (0,∞) such that

P

(∣∣∣∣lε(εt)− t

2

∣∣∣∣ > γ t

)
≤C exp

(
−c

tγ

ε

)
. (7.21)

Hence, lε(εt) converges in probability to t/2 as ε → 0.

Proof. We need to show that

P

(
lε(εt)− t

2
> tγ

)
≤ C exp

(
−c

tγ

ε

)
, (7.22)

P

(
t

2
− lε(εt) > tγ

)
≤ C exp

(
−c

tγ

ε

)
. (7.23)

We only prove the first inequality. The second one can be obtained using analogous arguments. Using the scaling
invariance of Brownian motion, the first inequality reduces to

P

(
εl1(t/ε)− t

2
> tγ

)
≤ C exp

(
−c

tγ

ε

)
, (7.24)

where l1(u) is identical in distribution to the local time accumulated on the set {x = 2j + 1}j∈Z at time u by a
standard Brownian motion B . Define t0 = inf{s: B(s)=±1} and for k ≥ 1, tk = inf{t ≥ tk−1: |B(t)−B(tk−1)| = 2}.
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Δtk = tk+1 − tk has mean 4. Furthermore, by excursion theory, the local times Δlk accumulated on {x = 2j + 1}j∈Z

during the time intervals [tk, tk+1], for k ≥ 0 are independent exponential random variables with mean 2.
Define Nε(t)= inf{k: tk ≥ t/ε}. Then, if we set γ ′ = (1 + γ ) and n= t

4ε
(1 + γ )= tγ ′

4ε
,

P

(
εl1(t/ε)− t

2
> tγ

)
≤ P

(
Nε(t) > n

)+ P

([
ε

∑
k≤n

Δlk

]
− t

2
> tγ

)

≤ P

(∑
k≤n

Δtk <
t

ε

)
+ P

(
ε

∑
k≤n

[Δlk − 2]> tγ

2

)

≤ P

(
1

n

∑
k≤n

[4 −Δtk] ≥ 4γ

γ ′ −
16ε

tγ ′

)
+ P

(
1

n

∑
k≤n

[Δlk − 2]> 2γ

γ ′

)
.

Eq. (7.24) follows by classical large deviation estimates. �

To complete the analysis of limε→0 E(trε )/ε, we use Lemma 7.3 with γ = 1/4 to see that

E
(
exp

(−√2τ · lε(εt)
)) ≤ exp

(
−τ

√
2t

4

)
+ P

(
lε(εt)≤ t

4

)
(7.25)

≤ exp

(
−τ

√
2t

4

)
+C exp

(
−c

t

4ε

)
. (7.26)

It follows that the family {P(trε ≥ ε·)}ε≤1 is uniformly integrable. Therefore, by Lemma 7.3

lim
ε↓0

∫ ∞

0
E

(
exp

(−√2τ · lε(εu)
))

du=
∫ ∞

0
lim
ε↓0

E
(
exp

(−√2τ · lε(εu)
))

du=
∫ ∞

0
e−

√
2τ ·u/2 du=

√
2

τ
.

This completes the proof of Proposition 7.3.

7.3.3. Marked right and left excursions
Let el be a left marked excursion from B0. We say that T (el) (the starting time of el) is straddled by the right
excursion er iff T (er) < T (el) < T (er )+D(er). In this subsection, we prove the following proposition.

Proposition 7.4. Let el,ε be the first left marked excursion from B0 with diameter (see Definition 4.2) greater or equal
to
√

2ε. Then

P
(
T (el,ε) is straddled by some right marked excursion er

) → 0 as ε ↓ 0. (7.27)

Define Aε ≡{T (el,ε) is straddled by some right marked excursion er} and t lε as the left analog of t rε (so that t lε is
the first time t that B0(t)− el,ε(t)=

√
2ε and therefore t lε ≥ T (el,ε)).

For any H > 0,

lim sup
ε↓0

P(Aε) ≤ lim sup
ε↓0

P
(
Aε, t

l
ε ≤ εH

)+ lim sup
ε↓0

P
(
t lε > εH

)

≤ lim sup
ε↓0

P
(
Aε, t

l
ε ≤ εH

)+ lim sup
ε↓0

E(t lε)

εH

= lim sup
ε↓0

P
(
Aε, t

l
ε ≤ εH

)+
√

2

τH
,
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where the equality follows from Proposition 7.3 and the the identity E(trε ) = E(t lε). Since H can be made arbitrarily
large, in order to prove Proposition 7.4 it suffices to show that for any H > 0,

lim sup
ε↓0

P
(
Aε, t

l
ε ≤ εH

) = 0. (7.28)

Let εn = (εH)/2n for n ≥ 0 and let ε−1 = +∞. Breaking up Aε accordingly to the duration of the excursion er

straddling T (el,ε), we have

P
(
Aε, t

l
ε ≤ εH

) = P
(∃ a right marked excursion er with (7.29)

T (er)≤ T (el,ε)≤ T (er)+D(er), t
l
ε ≤ εH

)
=

∑
n≥−1

P
(
C′

n

) ≤ ∑
n≥−1

P(Cn), (7.30)

where

C′
n =

{∃ a right marked excursion er with D(er) ∈ [εn+1, εn) s.t.

T (er)≤ T (el,ε)≤ T (er)+ εn, t
l
ε ≤ εH

}
, (7.31)

Cn =
{∃ a right marked excursion er with D(er)≥ εn+1 s.t.

T (er)≤ T (el,ε)≤ T (er)+ εn, T (el,ε)≤ εH
}
. (7.32)

Let PL,W be the probability distribution of the marked Brownian web conditioned on W and the marking of the left
(1,2) points. Since given the Brownian web, the markings of the left and the right (1,2) points are independent, we
get

PL,W (Cn) =
√

2τ LD(er )≥εn+1

(
R× [

T (el,ε)− εn, T (el,ε)
])

(7.33)

=√
2τLD(er )≥εn+1

([
T (el,ε)− εn, T (el,ε)

])
, (7.34)

where LD(er )≥εn+1 is the local time measure on the possible starting points in R2 of a right excursion from B0 with
D(er) ≥ εn+1, and LD(er )≥εn+1 is the projection of that measure along the t -axis. Let n ≥ 0. Since T (el,ε) ∈ [0, εH ],
there exists k ∈ {−1,0, . . . ,2n − 2} such that[

T (el,ε)− εn, T (el,ε)
] ⊂ Tk,n with Tk,n =

[
kεn, (k + 2)εn

]
. (7.35)

Hence,

PL,W (Cn) ≤
√

2τ max
−1≤k≤2n−2

LD(er )≥εn+1(Tk,n) (7.36)

≤√
2τ max

0≤k≤2n
LD(er )≥εn+1(Tk,n), (7.37)

where we used the equality L(R × Tk,n) = L(R × [kεn ∨ 0, (k + 2)εn ∨ 0]) to deduce the second inequality. Note
that with the convention that T0,−1 = [0, εH ], the formula above also remains valid for n =−1. Averaging over the
realizations of W and the marking of left (1,2) points, we obtain that for any p ≥ 1,

P(Cn) ≤
√

2τE
(

max
0≤k≤2n

LD(er )≥εn+1(Tk,n)
)

(7.38)

≤ Cp

∣∣∣ max
0≤k≤2n

LD(er )≥εn+1(Tk,n)

∣∣∣
p
, (7.39)

where Cp is a finite positive constant and |X|p denotes the Lp norm of X w.r.t. P.
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Lemma 7.4. For any p ≥ 1 there exists K <∞ s.t. for n≥−1,∣∣∣ max
0≤k≤2n

L{D(er )≥εn+1}(Tk,n)

∣∣∣
p
≤K2n(1/p−1/2)

√
εH. (7.40)

Proof. We prove the lemma for n ≥ 0. The case n = −1 (where T0,−1 = [0, εH ]) can be treated analogously. By
translation invariance of the marked Brownian web,

P
[
L{D(er )≥εn+1}

([
kεn, (k + 2)εn

])
> x

] = P
[
L{D(er )≥εn+1}

([0,2εn]
)
> x

]
. (7.41)

Therefore,

P
(

max
0≤k≤2n

L{D(er )≥εn+1}(Tk,n) > x
)
≤ 2n+1P

(
L{D(er )≥εn+1}

([0,2εn]
)
> x

)
.

The scaling invariance of the Brownian web under the mapping on paths, B � λ−1/2B(λt), yields (for a0, b0 ≥ 0) the
equidistribution of L{D(er )≥a0λ}([0, b0λ]) and

√
λL{D(er )≥a0}([0, b0]). Hence

L{D(er )≥εn+1}
([0,2εn]

) =d

√
εH

2n
L{D(er )≥1/2}

([0,2]),
which, using the standard identity that (|X|p)p equals

∫ ∞
0 pxp−1P(|X|> x)dx, implies that∣∣∣ max

0≤k≤2n
L{D(er )∈Tn}(Tk,n)

∣∣∣
p

≤ 21/p2n/p

(
p

∫ ∞

0
xp−1P

[
L{D(er )>1/2}

([0,2]) > x

√
2n

εH

]
dx

)1/p

= 21/p2n(1/p−1/2)
√

εH
∣∣L{D(er )>1/2}

([0,2])∣∣
p
.

To complete the proof, we need to show that for any p ≥ 1, |L{D(er )>1/2}([0,2])|p <∞.
We use the fact (see, e.g., [7]) that for any s > 0, there are two distinct dual Brownian paths starting from (B0(s), s),

those two paths being separated by the path B0. In order for s ∈ [0,2] to be in the support of L{D(er )>1/2}, B0 must
be hit by a (dual) path of Ŵ starting in the region {(x, t): x ≥ B0(t), t ≥ s + 1/2}. At any such time s, there must
be an integer k in {1, . . . ,10} such that B0 is hit by B̂k/4, the dual path starting at (B0(k/4), k/4) and located to the
right of B0. This implies that L{D(er )>1/2} is bounded above by the local time measure induced by the finite family of
backward paths {B̂k/4}k≤10. From [22] (see Proposition 2.3 above), the process

s → B̂k/4(k/4 − s)−B0(k/4 − s) (7.42)

defined on [0, k/4] is a Brownian motion reflected at 0 and the local time measure L
B0,B̂k/4

is just the usual local
time measure at the origin of that reflecting Brownian motion. It is a standard fact that local time at the origin has all
moments and Lemma 7.4 follows. �

Combining (7.29)–(7.30), (7.38), (7.39) and Lemma 7.4 for any p > 2, there exists C′
p <∞ s.t.

P
(
Aε, t

l
ε ≤ εH

) ≤C′
p

√
εH, (7.43)

so that (7.28) and hence Proposition 7.4 follow.

7.4. Distribution of (B0, [1]rz) (proof of Proposition 4.1)

First, we prove the following lemma.
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Lemma 7.5. The family {(B0, [1]rz)}z∈R×{0} of random pairs of continuous paths is a family of strong Markov
processes with stationary transition probabilities.

More precisely, for any stopping time T , conditioned on the past of the paths up to T , i.e., conditioned on {FT }
(where Ft is the σ -field generated by {(B0(s), [1]r0(s))}s≤t and {FT } is defined accordingly),(

B0(t + T )−B0(T ), [1]rz(t + T )−B0(T )
)
t≥0

is distributed like (B0, [1]rz(T )) with z(T )= [1]rz(T )−B0(T ).

Proof. We take z = (0,0), first prove the weak Markov property and then the strong Markov property. The proof can
trivially be extended to any deterministic z.

Weak Markov property: Recall that L1,n is the natural local time measure on the set En defined as

En = B0 ∩
(

n−1⋃
i=0

B̂i

)
.

For the time being, T > 0 is deterministic. In the following, E−
n will denote the subset of En ∩ {t ≤ T } consisting of

all the points on B0 hit by a path B̂i starting from zi = (xi, ti) with i ≤ n−1 and ti ≤ T . E+
n will refer to En∩{t ≥ T }.

Finally, we define (1,n)r̄0 as the path constructed from B0 by switching the direction of the marked left (1,2) points in
E+

n ∪E−
n .

Let L+
(1,n) (resp., L−

(1,n)) be the measure L(1,n) restricted to E+
n (resp., E−

n ). First, conditioned on the Brownian
web, the markings of E+

n and E−
n are two independent Poisson point processes with respective intensity measures

L+
(1,n) and L−

(1,n). Second, (L+
(1,n), {(1,n)r̄0(t)}t≥T ) (resp., L−

(1,n)) is measurable w.r.t.

(
W[T ,∞],B0(T ), (1,n)r̄0(T )

)
(resp., W[−∞,T ]),

where W[t1,t2] is the set of paths in W starting in the window [t1, t2] and stopped at t2. By independence of W[T ,∞)

and W[−∞,T ], the future evolution of (B0,(1,n) r̄0) is independent of its past given (B0(T ), (1,n)r̄0(T )). Assuming
momentarily that (1,n)r̄0 converges pointwise to [1]r0, it is straightforward to show that [1]r0 also continues afresh at T

provided that the distribution of (B0,[1] rz̄), with z̄ = (x̄,0), is continuous with respect to x̄. This we will do next. The
stationarity of transition probabilities in Lemma 7.5 then simply follows from the translation invariance of the marked
Brownian web.

We now prove that (B0,[1] r(x̄,0)) is continuous with respect to x̄. Let z̄n = (x̄n,0) → z̄. We distinguish between
two cases:

1. z̄ = (x̄,0) with x̄ �= 0. Before meeting B0, [1]rz̄ (resp., [1]rz̄n ) follows Bz̄ (resp., Bz̄n ), the path in W starting from z̄

(resp., z̄n). For n large enough, Bz̄ and Bz̄n coalesce at some time μn before either of those paths meets B0. Hence,
[1]rz̄ and [1]rz̄n coalesce at time μn with μn → 0 as n ↑∞.

2. z̄ = (0,0). For any γ > 0, we can always find a marked left (1,2) point at (B0(t), t) for some t ∈ [0, γ ]. Let
B̂ ∈ Ŵ pass through that mark and let (xM, tM) be the earliest of the marks along B̂ . Since almost surely (0,0) is
not a (1,2) point, tM is strictly positive and for n large enough 0 < xn < B̂(0). For n large enough, Bz̄n coalesces
with B0 before tM . By construction, [1]rzn and [1]r0 can only cross B̂ at a marked point on B0 ∩ B̂ . Since tM is
the earliest marked point on B̂ , [1]rz̄n and [1]r0 are squeezed between B0 and B̂ on [0, tM ] and thus they meet (and
coalesce) by tM ≤ γ .

For the weak Markov property, it remains to prove that (1,n)r̄0 converges to [1]r0. Recall that the excursions of
[1]r0 from B0 coincide with the maximal excursions from B0 (see Definition 4.2). First, let e be a maximal excursion
starting at some z. For n large enough, it is clear that z belongs to E+

n ∪ E−
n . By definition of a maximal excursion,

(1,n)r̄0 hits z and then follows e. Second, let z′ be the starting point of a marked excursion e′ which is not maximal and
hence is nested in some maximal excursion. For n large enough, (1,n)r̄0 follows that maximal excursion and therefore
misses the excursion e′. Hence, in the limit, the excursions of (1,n)r̄0 coincide with the maximal excursions from B0,
and thus (1,n)r̄0 converges pointwise to [1]r0.
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Strong Markov property: Now let T be a stopping time with respect to the right-continuous filtration {Ft } and let Tn

be the following discrete approximation of T :

if T ∈
[

k

2n
,
k + 1

2n

)
, Tn = k + 1

2n
. (7.44)

Tn is a discrete stopping time and the weak Markov property implies that Lemma 7.5 is also valid for Tn. {(B0(t +
Tn) − B0(Tn), [1]r0(t + Tn)) − B0(Tn)}t≥0 converges pathwise to {(B0(t + T ) − B0(T ), [1]r0(t + T ) − B0(T ))}t≥0
as n →∞. The result now follows from the distributional continuity of (B0,[1] r(x̄,0)) with respect to x̄ that we have
already established. �

Next, we claim that the pair (B0, [1]rz) satisfies the three following properties:

(1) B0 is a standard Brownian path starting at (0,0). [1]rz starts at z.
(2) Away from the diagonal {t : [1]rz(t)= B0(t)}, the two processes evolve as two independent Brownian motions.
(3) Defining t rε ≡ inf{t > 0: |[1]r0 −B0|(t)=

√
2ε} satisfies:

(i) P(([1]r0 −B0)(t
r
ε )=+√2ε)= 1,

(ii) limε↓0 E(trε )/ε =√
2/τ and E([t rε ]2)= o(ε) as ε ↓ 0.

In words, (1) and (2) describe the pair (B0, [1]rz) away from the diagonal. (3) describes the splitting mechanism when
(B0, [1]rz) is on the diagonal. 3(i) says that [1]rz always escapes the diagonal to the right. (Note that the definition of
t rε given in (3) is consistent with the one given in Section 7.4 as the first time [1]r0 −B0 hits +√2ε.) 3(ii) specifies the
rate at which (B0, [1]rz) escapes the diagonal. We note that this approach is very similar to the one in [13].

We now turn to the verification of (1)–(3) for (B0, [1]rz). Property (1) is obviously satisfied. Property (2) follows
directly from Lemma 7.5 and the definition of [1]rz. Property (3)(i) is obvious. Property 3(ii) is given by Proposition 7.3
above.

Next, we verify that if (B̄0, [1]r̄z) is a solution of the SDE (4.2), it also satisfies conditions (1)–(3).

Lemma 7.6. Let (B̄0, [1]r̄z) be a solution of the SDE (4.2). Then (B̄0, [1]r̄z) is a strong Markov process with stationary
transition probabilities and it satisfies conditions (1)–(3).

Proof. As discussed in Section 4, the SDE (4.2) has a unique weak solution which implies that (B̄0, [1]r̄z) is a strong
Markov process. The stationarity property is obvious and (B̄0, [1]r̄z) obviously satisfies properties (1), (2) and (3)(i).
It remains to verify 3(ii).

Since Bstick ≡ ([1]r̄0 − B̄0)/
√

2 is a (
√

2/τ)-sticky Brownian motion, it is identical in law with

t � |B|(C(t)
)
, where C−1(t)= t +

√
2

τ
L0(t),

where |B| is a reflected Brownian motion and L0 is its local time at the origin. Therefore, t rε (for ([1]r̄0 − B̄0)) is
distributed like

√
2

τ
L0(Tε)+ Tε,

where Tε is the first time |B| hits ε. By excursion theory, L0(Tε) is an exponential random variable with mean ε. Since
the distribution of Tε is that of ε2T1, we indeed get

E
(
t rε

)
/ε →

√
2

τ
and E

([
t rε

]2) = o(ε). (7.45)

�

Finally, we prove the following uniqueness result which is the last ingredient needed to prove Proposition 4.1. This
result is analog to Proposition 16 in [13].
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Lemma 7.7. Let {(B0, [1]rz)}z∈R×{0} and {(B̄0, [1]r̄z)}z∈R×{0} be two families of strong Markov processes, with
stationary transition probabilities, satisfying properties (1)–(3). For z = (x,0), Bstick,x ≡ (B0 − [1]rz)/

√
2 and

B̄stick,x ≡ (B̄0 − [1]r̄z)/
√

2 are equidistributed.

Proof. By stationarity of the transition probabilities and the Markov property, Bstick,x or B̄stick,x can be decomposed
into two independent parts. The first part is a Brownian motion stopped when it hits zero while the second one is
distributed like Bstick,0 or B̄stick,0. Hence, it is enough to show that Bstick ≡ Bstick,0 and B̄stick ≡ B̄stick,0 are equidis-
tributed. Also by the Markov property and the stationarity of the transition probabilities, it is enough to show that for
any s ≥ 0, Bstick(s) and B̄stick(s) are equidistributed. We also note that by property (3)(i), Bstick and B̄stick are ≥ 0.

In the following, X denotes either Bstick or B̄stick and f is a positive bounded continuous function vanishing on the
interval [0, ε0], with ε0 > 0. For any ε < ε0, define t0

ε = 0 and, for any k ≥ 0,

t2k+1
ε ≡ inf

{
t > t2k

ε : |X|(t)= ε
}
, t2k+2

ε ≡ inf
{
t > t2k+1

ε : X(t)= 0
}
. (7.46)

We have

E

(∫ ∞

0
e−λsf

(
X(s)

)
ds

)
=

∞∑
k=1

E

(∫ t2k
ε

t2k−1
ε

f
(
X(s)

)
e−λs ds

)
(7.47)

= E

(∫ t2
ε

t1
ε

f
(
X(s)

)
e−λs ds

) ∞∑
k=0

E
(
e−λt2k

ε
)
. (7.48)

Next,

t2k
ε =

k−1∑
i=0

([
t2i+2
ε − t2i+1

ε

]+ [
t2i+1
ε − t2i

ε

])
.

By stationarity and the Markov property, we get that

E
(
e−λt2k

ε
) = (

E
(
e−λt1

ε
))k(

E
(
e−λ[t2

ε−t1
ε ]))k

. (7.49)

This implies that

E

(∫ ∞

0
e−λsf

(
X(s)

)
ds

)
= E

(∫ t2
ε

t1
ε

f
(
X(s)

)
e−λs ds

)
1

1 −E(e−λt1
ε ) ·E(e−λ[t2

ε−t1
ε ])

. (7.50)

Moreover, since

lim
ε↓0

E(trε )

ε
=

√
2

τ
and E

([
t rε

]2) = o(ε) (7.51)

and t1
ε = t rε , it follows that

E
(
e−λt1

ε
) = 1 −

√
2λ

τ
ε + o(ε). (7.52)

During [t1
ε , t2

ε ], the process coincides with a Brownian motion starting at ε and stopped when it hits 0. By standard
computations, we get that

E
(
e−λ[t2

ε−t1
ε ]) = e−

√
2λε. (7.53)
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Combining equations (7.50), (7.52) and (7.53), we obtain

E

(∫ ∞

0
e−λsf

(
X(s)

)
ds

)
=

E(
∫ t2

ε

t1
ε

f (X(s))e−λs ds)

ε

√
2

(√
λ+ λ

τ
+ o(1)

)−1

. (7.54)

Since the left-hand side of the equality does not depend on ε,

E(
∫ t2

ε

t1
ε

f (X(s))e−λs ds)

ε
(7.55)

has a limit l(X), depending on f , as ε → 0 and

E

(∫ ∞

0
e−λsf

(
X(s)

)
ds

)
=

∫ ∞

0
e−λsE

(
f

(
X(s)

))
ds =√

2l(X)

(√
λ+ λ

τ

)−1

. (7.56)

Futhermore, using the various defining properties of Bstick and B̄stick,

l(X) = lim
ε↓0

ε−1E

(
e−λt1

ε

∫ t2
ε−t1

ε

0
f

(
X

(
u+ t1

ε

))
e−λu du

)

= lim
ε↓0

ε−1E
(
e−λt1

ε
)
E

(∫ t2
ε−t1

ε

0
f

(
X

(
u+ t1

ε

))
e−λu du

)

= lim
ε↓0

ε−1E

(∫ T

0
f

(
ε +B(v)

)
e−λv dv

)
,

where B is a standard Brownian motion and T is the first time it hits −ε. (The second equality follows from the
strong Markov property while the third one follows from limε↓0 E(e−λt1

ε ) = 1 and also from the fact that on [t1
ε , t2

ε ],
X evolves like a Brownian motion.)

Thus l(Bstick)= l(B̄stick) and therefore∫ ∞

0
e−λsE

(
f

(
Bstick(s)

))
ds =

∫ ∞

0
e−λsE

(
f

(
B̄stick(s)

))
ds.

Inverting the Laplace transform yields that for every s and every positive bounded continuous function f vanishing
on the interval [0, ε0], E(f (Bstick(s)))= E(f (B̄stick(s))). By the monotone convergence theorem, we can remove the
constraint f (x)= 0 for x ∈ [0, ε0] which implies that Bstick(s) and B̄stick(s

′) are equidistributed. �

Lemma 7.7 shows that the distribution of (B0 − [1]rz)/
√

2 is determined by the three properties stated above. By
Lemma 7.6, it follows that ([1]r0 − B0)/

√
2 is a (

√
2/τ )-sticky Brownian motion. The proof of Proposition 4.1 is a

consequence of the following observation. Let z = (x,0). A pair (B0, [1]rz) satisfying properties (1) and (2) and such
that ([1]rz −B0)/

√
2 is a (

√
2/τ)-sticky Brownian motion satisfies the SDE (4.2).

Proposition 4.1 being now established, we end this section with a possibly surprising theorem about the exit time
of a sticky Brownian motion. Combining Proposition 7.2 and Proposition 4.1, we have

Theorem 7.5. Let Bstick be a Brownian motion starting at 0 and stickily reflected at 0 with an amount of stick τ̄ . If tε
is the first ε hitting time of Bstick:

P(tε ≤ t)= P

(
lε(t)≥ Exp

[
1

2τ̄

])
,

where lε is the local time at level ε at time t of a Brownian motion on [0, ε], starting at 0, reflected at 0 and ε, and
Exp(1/(2τ̄ )) is an independent exponential random variable with mean 1/(2τ̄ ).
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7.5. The Brownian net by marking

The heuristics described in Section 5.2 are made rigorous in this subsection.

Proof of Proposition 5.3. We set i = 0 (with zi = 0) as the proof for general i is essentially the same. Recall that
[n]r0 and {Bk}k≤n−1 are coupled via the SDE (5.4). We start by proving that for such a coupling we have

Lemma 7.8. ∀t ≥ 0,P(t ∈ ⋂n−1
j=0{s: r0(s) �= Bj (s)})→ 0 as n→∞.

Proof. Let ε be a fixed positive number. We define

xε
n = sup

{
Bj (t − ε): Bj (t − ε)≤ r0(t − ε) for j ≤ n− 1

}
.

Let Bε be the path in {Bi}n−1
i=0 such that Bε(t − ε)= xε

n. For any s ≥ t − ε, we define

Δε(s)= 1√
2

(
r0 −Bε

)
(s).

By (5.7), conditioned on the past of (r0,B0, . . . ,Bn−1) up to time t − ε, Δε solves the following SDE, where B is a
standard Brownian motion.

dΔε(s)= 1Δε �=0 dB(s)+ τ√
2

ds, Δε(t − ε)= xε
n. (7.57)

Δε is a drifting Brownian motion stickily reflected at 0 and

P

(
t ∈

n−1⋂
j=0

{
s: r0(s) �= Bj (s)

})
≤ P

(
r0(t) �= Bε(t)

) = P
(
Δε(t) �= 0|Δε(t − ε)= xε

n

)
.

Since xε
n → 0 as n→∞,

lim sup
n→∞

P

(
t ∈

n−1⋂
j=0

{
s: r0(s) �= Bj (s)

})
≤ P

(
Δε(t) �= 0|Δε(t − ε)= 0

) = P
(
Δε(ε) �= 0|Δε(0)= 0

)
.

Note that the process Δ̃ε defined by dΔ̃ε = dΔε − τ√
2
1Δε �=0 dt is a (

√
2/τ)-sticky Brownian motion. For such a

process, it is known (see e.g., [3]) that P(Δ̃ε(ε) �= 0|Δ̃ε(0) = 0) → 0 as ε → 0. By a straightforward application of
the Girsanov theorem, we see that P(Δε(ε) �= 0|Δε(0)= 0)→ 0 as ε → 0 and Lemma 7.8 follows. �

Let t > 0 and Pt
[n]r0,Bk

be the probability measure induced by the pair ([n]r0,Bk) on the space of continuous

functions on [0, t] endowed with its usual Borel σ -algebra. Pt
r0,Bk

is defined analogously as the distribution of the pair
satisfying (5.7). We first prove that

Pt
[n]r0,Bk

�⇒ Pt
r0,Bk

as n→∞. (7.58)

We define nχ(t)= 1
t∈⋂n−1

j=0{s: r0(s) �=Bj (s)}. Lemma 7.8 above and Fubini’s theorem imply that

E

(∫ t

0
nχ

(
t ′

)
dt ′

)
→ 0. (7.59)

For n ≥ k, the SDEs (5.4) and (5.7) only differ by their drift term. By the Girsanov theorem, Pt
[n]r0,Bk

is absolutely

continuous with respect to Pt
r0,Bk

and

dPt
[n]r0,Bk

= dPt
r0,Bk

exp

(
−τ

∫ t

0
nχ(t ′)dr0(t

′)+ τ 2

2

∫ t

0
nχ(t ′)dt ′

)
. (7.60)
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Since r0 is a (drifting) Brownian motion, (7.59) and standard arguments imply that the term in the exponential tends
to zero in probability. It follows that

Pt
[n]r0,Bk

�⇒ Pt
r0,Bk

as n→∞. (7.61)

The pointwise convergence of [n]r0 to r0 was already explained in Section 5.2 by the fact that [n]r0 is monotonic
in n. This completes the proof of Proposition 5.3. �

Proof of Proposition 5.4. It is easy to see from Proposition 5.3 that Wr (resp., Wl) is a right-drifting (resp., left-
drifting) Brownian web (it is enough to check that two paths in Wr evolve independently when they are apart; this can
been done by simple locality arguments). It remains to prove that Wr and Wl interact in the sticky way of a left–right
Brownian web (see [23] and Section 5.1 above). This boils down to proving that (ri , lj ) satisfies the four-part SDE
(5.1). For simplicity, let us take i = j = 0. Other cases can be treated similarly. We already know that r0 and l0 satisfy

dr0 = dBr
0 + τ dt, (7.62)

dl0 = dBl
0 − τ dt, (7.63)

and that r0 ≥ l0. It remains to show that d〈Br
0,Bl

0〉(t)= 1r0=l0(t)d〈B0,B0〉(t)= 1r0=l0(t)dt. As can easily be seen, r0
and l0 evolve independently away from each other. Therefore,

d〈Br
0,Bl

0〉(t) = 1r0=l0(t)d〈Br
0,Bl

0〉(t)+ 1r0 �=l0(t)d〈Br
0,Bl

0〉(t) (7.64)

= 1r0=l0(t)d〈Br
0,Bl

0〉(t). (7.65)

B0 is squeezed between r0 and l0. Hence, r0(t)= l0(t) implies that B0(t)= r0(t)= l0(t). Since, by Proposition 5.3,

d〈B0,B
r
0〉(t)= 1r0(t)=B0(t) dt, (7.66)

d〈B0,B
l
0〉(t)= 1l0(t)=B0(t) dt, (7.67)

(7.64) implies, as desired, that

d
〈
Br

0,Bl
0

〉
(t)= 1r0=l0(t)d〈B0,B0〉(t)= 1r0=l0(t)dt. (7.68)

�

Proof of Theorem 5.5. In the proof we will also consider Nwedge, the net obtained from (Wr , Wl , Ŵr , Ŵl) by the
wedge construction of Section 5.1. Here Ŵr and Ŵl are respectively the dual (backward) webs of Wr , Wl (constructed
by marking) which can be constructed using the dual versions of Propositions 5.3 and 5.4.

Since Nhop = Nwedge (see Theorem 5.1), it suffices to show that (i) Nmark ⊃ Nhop and (ii) Nmark ⊂ Nwedge.
In order to prove (i), we need to show that a path obtained by hopping from Wr to Wl (or Wl to Wr ) is still

in Nmark. Take two paths ri and lj intersecting at time t ; we need to show that the concatenation of ri (before t )
with lj (after t ) is in Nmark and similarly for the other concatenation. First, if we consider the analogous question in a
partial net Nn the result is obviously true. Indeed, if nri and nlj are respectively the right- and left-most paths of Nn

starting from zi and zj , the path constructed by hopping from one path to the other at some meeting point is in Nn.
Let ε > 0 be fixed. Almost surely, there is some u ∈ [t, t + ε] such that ri(u) > lj (u). Taking n large enough, we get
nri(u) > nlj (u). On the other hand, nri ≤ ri and nlj ≥ lj so that nri(t) ≤ nli(t). Consequently, there exists v ∈ [t, u]
where nlj and nri intersect. Now consider the path obtained by hopping from nri to nlj at time v. This path is in Nn

and approximates the one obtained by hopping from ri to lj at time t except on [t, t + ε]. Since ε is arbitrary, the latter
path is approximated by paths in

⋃
n Nn and therefore it also belongs to Nmark.

We now prove (ii). Consider a wedge constructed from a pair (r̂i , l̂j ) starting at ((xi, t), (xj , t)) with xi < xj and let
us assume there exists π ∈ Nmark entering this wedge from outside and show that this leads to a contradiction. Again,
we can approximate (r̂i , l̂j ) by (nr̂i , nl̂j ) ∈ N̂n × N̂n and π by πn ∈ Nn. Since nr̂i ≥ r̂i and nl̂j ≤ l̂j , the pair (nr̂i , nl̂j )
forms a “partial wedge” approximating the original wedge from inside. Hence, for n large enough, πn would enter
this partial wedge from outside. By considering separately the cases where the putative entering is at a marked (1,2)

point of Mn or not, such an entry is seen to be impossible. �
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7.6. Separation points in the Brownian net

In Section 3.3 we defined the dynamical Brownian web as the limit of partial dynamical webs. In this subsection, we
give a series of results which will guarantee the existence of such a limit. These are essentially identical to results in
[20]. However, in [20] the proofs rely on the hopping construction of the Brownian net, while in this paper we show
the results by using the marking approach. As we shall see, the two points of view are rather different. We start with
a definition.

Definition 7.1 (Separation points). Two paths π1 and π2 in N starting respectively at (x1, t1) and (x2, t2) separate at
z = (x, t) iff t > t1 ∨ t2 with π1(t)= π2(t) and there exists a > 0 such that π1, π2 do not touch on (t, t + a]. A point z

is called a separation point of N iff there is some π1,π2 ∈ N that separate at z.

Note that in the partial Brownian net Nn paths separate at marked (1,2) points. That remains valid in the Brownian
net (i.e. when n→∞). Indeed, in Section 7.6.1, we prove the following result.

Proposition 7.6. The set of separation points in Nmark and the set of marked (1,2) points of the Brownian web
coincide.

Furthermore, in Section 7.6.2 we prove the following proposition, which uses the notation π ∼z B and π ∼z Bswitch
introduced in Section 6.

Proposition 7.7. Let z = (x, t) be a separation point in Nmark, B be any path of W passing through z, and N≤t−ε be
the set of paths in Nmark starting before or at time t − ε. For any ε ≥ 0, define the following (which will not depend
on the choice of B ∈ W ).

[∼z
ε Bswitch] = {π ∈ N≤t−ε: π enters z and π∼zBswitch},

[∼z
ε B] = {π ∈ N≤t−ε: π enters z and π∼zB},

∦z
ε= {π ∈ N≤t−ε: π does not enter z}.

1. Let Ez be the set of paths in Nmark entering z. ∼z is an equivalence relation on Ez, and Ez can be decomposed
into the two equivalence classes [∼z

0 Bswitch] and [∼z
0 B].

2. For ε > 0 (note the strict inequality), [∼z
ε Bswitch], [∼z

ε B] and ∦z
ε are disjoint elements of H.

3. ∃z̄ ∈ R2 and ε > 0 s.t. every path of W starting in the ball B(z̄, ε) enters z.

We note that in the partial net, each path entering a marked point z coincides either with B or Bswitch for a positive
interval of time. In the full net limit, a path coincides either with B or Bswitch for a positive Lebesgue measure of time.

7.6.1. Proof of Proposition 7.6
By construction, marked points are separation points so we only need to prove the converse.

Definition 7.2 ((T1, T2) separation points). (x, t) with T1 < t < T2 is said to be a (T1, T2) separation point iff there
are two paths π1 and π2 in the net starting from R× {T1} and separating at (x, t) which do not touch on (t, T2].

Let T1, T2 be two rational numbers. It suffices to prove that if (x, t) is a (T1, T2) separation point of Nmark, then
it is a marked (1,2) point. Let π1 and π2 be two paths as described in Definition 7.2. Since the net is closed under
hopping, we can assume without loss of generality that π1 and π2 have been chosen to coincide up to t .

By construction, there exist {πn
i }i=1,2 with πn

i in the partial net Nn(= Nn,n; see Section 3.3.1) so that {πn
i } con-

verges to πi . Let us take two numbers T1 < q1 < q2 ≤ t where q2 is arbitrarily close to t . Proposition 7.8 below (for
S = q1 and T = q2), implies that πn

1 (q2)= πn
2 (q2) for large enough n.
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Hence, for large enough n, πn
1 and πn

2 start below R× {q1} and separate at a point arbitrarily close to (x, t). Since
the set of (q1, T2) separation points is locally finite (see Proposition 7.9 below), πn

1 and πn
2 separate at (x, t) for large

enough n. By construction, πn
1 and πn

2 only separate at marked points and Proposition 7.6 follows.

Proposition 7.8 ([23]). For any S,T with S < T , the set of intersection points between the line R × T and the set
paths of N starting on or below R× {S} is (almost surely) locally finite.

Proposition 7.9 ([20]). For any S,T with S < T , the set of (S,T )-separation points is (almost surely) locally finite.

7.6.2. Proof of Proposition 7.7
In the following, for any paths π1,π2 in (Π,d) entering a point z, we will write π1 ∼z

out π2 (resp., π1 ∼z
in π2) iff for

any ε > 0,∫ t+ε

t

1π1(u)=π2(u) du > 0

(
resp.,

∫ t

t−ε

1π1(u)=π2(u) du > 0

)
.

Note that π1 ∼z π2 iff π1 ∼z
out π2 and π1 ∼z

in π2. In order to prove Proposition 7.7, we will use the following re-
sult from [20]. Since this result is part of a much larger theorem there, we provide a direct proof. For a “pictorial”
representation of the result, see Fig. 5.

Theorem 7.10 ([20]). Let z = (x, t) be a separation point in N and let ε > 0. There exist three distinct meshes
Ml(r, l), Mr(r

′, l′) and Mtop(r
′′, l′′) such that:

1. The bottom times of Ml(r, l), Mr(r
′, l′) are in (t − ε, t) and their top times are in (t,∞). Moreover, l ≤ r ′ (at

coexistence times of Mr and Ml), l(t)= r ′(t)= x and l ∼z
in r ′.

2. z is the bottom point of Mtop(r
′′, l′′). Mtop(r

′′, l′′) is squeezed between Ml(r, l) and Mr(r
′, l′) (i.e., l ≤ r ′′ and

l′′ ≤ r ′ at respective coexistence times). Moreover, r ′′ ∼z
out l, r ′ ∼z

out l′′.

Proof. In the following, we say that two paths π1 and π2 meet at time t̄ iff π1(t̄) = π2(t̄) but π1 < π2 or π1 > π2 on
(t̄ − a, t̄) for some a > 0.

Construction of Mr and Ml . Recall that we constructed the Brownian net by marking a non-drifting Brownian web.
There is an alternative marking construction of the net which can be described as follows. Start with a left-drifting
Brownian web Wl , with drift −τ . Mark the (1,2) points of Wl and construct Nl by branching at all the left (1,2)

points (of Wl) in Ml(2τ), the set of marks whose dynamical time coordinate is ≤ 2τ (the factor 2 compensates for

Fig. 5. Structure of meshes around a separation point.
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the −τ drift in Wl). On the one hand, repeating step by step what was done in Section 5 (see Theorem 5.5), one
can show that Nl is identical in law to the usual Nhop, as in Section 5.1. On the other hand, following the proof of
Proposition 7.6, separation points of the net Nl must be marked left (1,2) points of Wl . Hence, separation points of
the net Nhop are left (1,2) points of Wl and symmetrically they are also right (1,2) points of Wr .

One consequence is that z = (x, t) must be a separation point for two paths l̄ ∈ Wl and r̄ ∈ Wr starting from
deterministic points. Lemma 6.5 in [23] analyzes meshes to the left of a path l̄ ∈ Wl . Using that lemma and the fact
that points on l̄ where other paths from Wl coalesce with l̄ from the left are dense in l̄ (along with the analogous
results for r̄), it follows that there exists a mesh Ml(r, l) (resp., Mr(r

′, l′)) with bottom time in (t − ε, t) and top time
> t such that l(t)= l̄(t)= x (resp., r ′(t)= r̄(t)= x).

By Corollary 7.2, l and r ′ coalesce with some paths li and rj (in the skeleton of Wl and Wr respectively) before
entering the point z. The pair (li , rj ) satisfies the SDE (5.1) and in particular, li ≤ rj from the first time they meet. It is
clear that li and rj do not meet and separate at the same point. Hence, there exists a′ > 0 so that li ≤ rj on [t − a′,∞)

and a sequence tn ↑ t s.t. li (tn)= rj (tn). It immediately follows that there exists a′′ with a′ ≥ a′′ > 0 so that l ≤ r ′ on
[t − a′′,∞) and a sequence t ′n ↑ t s.t. l(t ′n)= r ′(t ′n). Lemma 7.9 below then immediately implies that l ∼z

in r ′.
Construction of Mtop. Up to reversal of the time coordinate, the backward Brownian net is distributed as the

Brownian net (see Section 5.1). Hence, by what has been just proved, z is a separation point for two paths (l̂, r̂) ∈
(Ŵl , Ŵr ) and there exists a > 0 such that r̂ ≤ l̂ on (−∞, t +a]. Let r ′′ (resp., l′′) be the newly born path of Wr (resp.,
Wl) starting from z. Since (x, t) is a right (1,2) point for Wr and a left (1,2) point for Wl , we get that on (t, t + a]

r ′′ ≤ r̂ ≤ l̂ ≤ l′′ and r ′′ ≤ r ′, l ≤ l′′. (7.69)

Mtop is defined as the mesh Mtop(r
′′, l′′) formed by r ′′ and l′′.

The second part of (7.69) implies that Mtop is either squeezed between Mr and Ml or it contains either l or r ′.
Since paths of N do not enter meshes from outside, we get that on (t, t + a]

l ≤ r ′′ ≤ r̂ ≤ l̂ ≤ l′′ ≤ r ′. (7.70)

Recall the construction of the net Nl (described at the beginning of this proof) based on the marking of a left-drifting
Brownian web and let (l, l̂) be a pair of paths in (Wl , Ŵl). As can be easily seen, the set{

(x, t): l(t)= l̂(t)= x and ∃a > 0 s.t. ∀s ∈ (t, t + a), l(s) < l̂(s)
}

has zero local time measure. (By Proposition 2.3 and taking the difference between l and l̂, this follows from the fact
that, for a standard Brownian motion B , the set{

t : B(t)= 0 and ∃a > 0 s.t. ∀s ∈ (t, t + a),
∣∣B(s)

∣∣ > 0
}

has zero local time measure.) Since in Nl , separation points are left marked (1,2) points, the argument just given
implies that for every marked point, there exists tn ↓ t such that l(tn) = l̂(tn). By (7.70), l ≤ r ′′ ≤ l̂, implying that
l(tn)= r ′′(tn). By Lemma 7.9 below we have that l ∼z

out r ′′ and by a similar argument, we get r ′ ∼z
out l′′. �

Lemma 7.9. Let (l, r) ∈ (Wl , Wr ) be such that for some t > tr ∨ tl , l(t)= r(t). For any ε > 0,
∫ t+ε

t−ε
1l(s)=r(s) ds > 0.

Proof. Choose any t ′ with tr ∨ tl < t ′ < t − ε. By Corollary 7.2, on [t ′,∞), the pair (l, r) coincides with a pair (L,R)

of (Wl , Wr ), starting from deterministic points and satisfying the SDE (5.1). Lemma 7.9 then follows from the fact
(see Proposition 3.1 in [23]) that the support of the measure μ, defined as μ([t1, t2]) = |{t ∈ [t1, t2]: L(t) = R(t)}|,
coincides with {t : L(t)=R(t)}. �

We now prove the first two claims of Proposition 7.7 for a separation point z = (x, t). Note that if claim 2 holds
for a given ε, it immediately holds for any ε′ > ε. Hence, w.l.o.g., we can take ε > 0 small enough such that there is
a path B ∈ W entering z and starting at t ′ ≤ t − ε. In the following, Ẽε will denote the subset of N≤t−ε consisting of
all the paths entering z.
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Recall that paths of N do not enter meshes (see Theorem 5.1(b3) in Section 5.1). Hence, for any given mesh M with
bottom time in (t − ε,∞), we can partition N≤t−ε into {R(M),L(M)}, where R(M) (resp., L(M)) is the compact
subset of N≤t−ε consisting of all the paths passing to the right (resp., left) of M . Let Mr,Ml and Mtop be as in
Theorem 7.10 and let us define

Ẽr
ε =

[
L(Mr)∩R(Ml)

]∩R(Mtop), Ẽl
ε =

[
L(Mr)∩R(Ml)

] ∩L(Mtop), (7.71)

Ẽc
ε =R(Mr)∪L(Ml). (7.72)

In particular {Ẽr
ε , Ẽ

l
ε} (resp., {Ẽr

ε , Ẽ
l
ε, Ẽ

c
ε}) defines a natural partition of Ẽε (resp., N≤t−ε) into elements of H.

By definition, paths in Ẽl
ε are squeezed between l and r ′ below z while they are squeezed between l and r ′′ above z.

Hence, Theorem 7.10 immediately implies that for any two paths π1,π2 ∈ Ẽl
ε , π1 ∼z π2. The same property holds for

Ẽr
ε . Conversely, if πl ∈ Ẽl

ε and πr ∈ Ẽr
ε , the two paths separate at z. This implies that ∼z is an equivalence relation on

Ẽε and the corresponding equivalence classes are given by Ẽr
ε and Ẽl

ε . Since B and Bswitch separate at z they do not
belong to the same equivalence class and claims 1 and 2 of Proposition 7.7 follow.

Next, we say that the ball B(z̄, ε̄) with z̄ = (x̄, t̄ ) is squeezed between between l and r ′ iff t̄ − ε̄ ≥ tl ∨ tr ′ and for
every (x′, t ′) ∈ B(z̄, ε̄), l(t ′) ≤ x′ ≤ r ′(t ′). It is clear that one can find such a ball below the point z and that any path
starting from that ball is squeezed between l and r ′ and so is forced to enter the point z. Claim 3 of Proposition of 7.7
follows.

7.7. The dynamical Brownian web

7.7.1. Proof of Proposition 6.1
In the following, we use the notation of Proposition 7.7.

By compactness of N (τ ), {W(n,m)(τ )}(n,m) is a precompact subset of H. Let W1 be any subsequential limit of
{W(n,m)(τ )}(n,m) as n,m→∞ and let

W2(τ )= {
π ∈ Nmark(τ ): every time π enters a point z in M(τ ),π ∼z Bswitch

}
be as in item (2) of Proposition 6.1. We first prove

(i) W1(τ )⊂ W2(τ ).
Let z = (x, t) ∈ M(τ ), and let π ∈ W1(τ ) start at t − 2ε with ε > 0, and pass through z. By definition, there exists

a sequence {πN }N≥0 so that πN belongs to
⋃

n,m>N Wn,m(τ ) and {πN } converges to π . Taking N large enough, we
can assume w.l.o.g. that πN belongs to N≤t−ε and (x, t) ∈ Mn,m(τ ) for n,m > N . By Proposition 7.7(2), πN enters z

for N large enough. By construction, πN ∼z Bswitch and since πN → π , Proposition 7.7(2) implies that π ∼z Bswitch.
Hence, W1(τ )⊂ W2(τ ).

Next, we prove that W2(τ ) satisfies (3)(o). We first claim that when two paths of W2(τ ) meet, they coalesce.
Let π1,π2 ∈ W2(τ ) start at t1, t2 respectively and meet at t ′ > t1 ∨ t2 and let us assume that π1 and π2 separate at
z = (x, t) with t ≥ t ′. By Proposition 7.7(1), either π1 ∼z B or π2 ∼z B . This contradicts the definition of W2(τ ) and
we conclude that W2(τ ) is a coalescing collection of paths. Let zi ∈ D. Any path in W2(τ ) starting at zi is squeezed
between ri and li , the paths in Wr and Wl respectively starting from zi = (xi, ti ). Since there exists a sequence t ′n ↓ ti
s.t. li (t

′
n) = ri(t

′
n) and since paths in W2(τ ) coalesce, there must be a unique path in W2(τ ) starting from zi . We call

this path Bτ
i and define W3(τ ) as {Bτ

i }. We continue to prove:
(ii) W2(τ )⊂ W3(τ ).
Let π ∈ W2(τ ) start at (x′, t ′) and let ε > 0. We claim that π hits a path in Wr ∪ Wl in (t ′, t ′ + ε]. To see this, let

a ∈ (t ′, t ′ + ε) and let {rn}n ⊂ Wr (resp., {ln}n ⊂ Wr ) start at zr
n (resp., zl

n) with zr
n (resp., zl

n) converging to (π(a), a)

from the left (resp., from the right) of π . If there is not any path in {rn, ln} meeting π on (a, t ′ + ε), {rn} and {ln}
converge (along a subsequence) to r ∈ Wr and l ∈ Wl respectively, both starting at (π(a), a) and s.t. r < π < l on
(a, t ′ + ε). In other words, π enters a mesh from outside, yielding a contradiction to Theorem 5.1.

M(τ ), or equivalently the set of separation points in N (τ ), is dense along any path π ′ in Wr ∪ Wl . Since once π

touches some π ′, they can only separate at a point in M(τ ), it follows that π enters some point z ∈ M(τ ) before
t + ε. By virtue of Proposition 7.7(3), there exists a ball B(z̄, ε′) such that any path in N (τ ) starting in B(z̄, ε′) enters



Marked Brownian web 569

the point z. Hence, any path Bτ
i such that zi belongs to D ∩B(z̄, ε′) hits z. It follows that π coalesces with some Bτ

i

before time t ′ + ε. As a consequence, W2(τ )⊂ W3(τ ). Finally, we prove:
(iii) W3(τ )⊂ W1(τ ).
It is clear that there is at least one path πi ∈ W1(τ ) starting from zi . Since W1(τ )⊂ W2(τ ), property 3(o) for W2(τ )

(which we have already proved) implies that πi = Bτ
i . Since W1(τ ) is compact, it follows that W3(τ ) ⊂ W1(τ ) and

from (i), (ii) above, we get that W1(τ ) = W2(τ ) = W3(τ ). This shows that all subsequence limits of {Wn,m} agree
and Proposition 6.1 follows.

7.7.2. (W , W (τ )) is a 1/(2τ)-sticky pair of Brownian webs
In the remaining subsections of the paper we prove the four parts of Theorem 6.2. In this subsection and the next, the
term marking will refer to the set M(τ ). We already showed in the proof of Proposition 6.1 that W (τ ) is a coalescing
set of paths. By a simple locality argument, it is not hard to see that for i �= j , Bτ

i and Bτ
j move independently when

they are apart. In the following, we prove that (Bi,B
τ
j ) is a 1/(2τ)-sticky pair of Brownian motions. This ensures that

each Bτ
j is a Brownian motion and since the paths of W (τ ) are coalescing, it follows that W (τ ) is a Brownian web

and furthermore that the interaction between W and W (τ ) is (1/2τ)-sticky as claimed.
We now prove that (Bi,B

τ
j ) is a 1/(2τ)-sticky pair of Brownian motions. Since the distribution of the Brownian

net is invariant under translation in the space time domain, Proposition 6.1(2) implies that W (τ ) is also translation
invariant. Hence, it suffices to prove that (B0,B

τ
j ) is a 1/(2τ)-sticky pair of Brownian motions.

Define (n,m)B
τ
j as the path obtained from Bj after switching the directions of the points in M(n,m)(τ ). By parts (1)

and (3)(o) of Proposition 6.1, we have

lim
n↑∞ lim

m↑∞d
(
(n,m)B

τ
j ,Bτ

j

) = 0. (7.73)

In the following, we will denote by [n]Bj ≡ [n]Bτ
j the limit of (n,m)B

τ
j as m → ∞. Informally, [n]Bj is the path

constructed from Bj after switching the direction of all the (left and right) (1,2) points in M(τ ) that lie on {Bi}n−1
i=0 .

In order to prove that (B0,B
τ
j ) is a 1/(2τ)-sticky pair of Brownian motions, we claim that it is enough to prove the

following lemma (which is done in Section 7.7.3 below).

Lemma 7.10. (B0, [1]Bj ) is 1/(2τ)-sticky pair of Brownian motions.

The sufficiency of Lemma 7.10 follows from the observation that the law of (B0, [n]Bj ) is identical to the one of
(B0, [1]Bj ). For example, for n = 2, one may consider a revised marked Brownian web W∗ in which all the marked
(1,2) points along the finite segment of B1 before it coalesces with B0 have been switched. In W∗ the marks along
B∗

0 (≡ B0) are the same as in the original web. The following lemma (for k = 1 and l = 0) states that this W∗ is
equidistributed with the original Brownian web. On the other hand, the pair (B∗

0 , [1]B∗
j ) for W∗ is identical to the pair

(B0, [2]Bj ) for the original marked web. Since [n]Bj almost surely converges to Bτ
j , (B0,B

τ
j ) is 1/(2τ)-sticky pair of

Brownian motions.

Lemma 7.11. Let [1]W denote the web resulting from switching all the marked (1,2) points in the original web W
along B0; then [1]W is equidistributed as the original web. Similarly, if for some fixed k, l with k �= l, W∗ denotes
the marked web resulting from switching the original web along the finite segment of Bk before it coalesces with Bl .
Then W∗ is equidistributed with W .

Proof. To prove the first part of the lemma, it suffices to show that {[1]Bj } are coalescing Brownian motions.
Lemma 7.10 implies that each individual [1]Bj is a Brownian motion and their construction shows that they are
independent before meeting. The proof that they coalesce upon meeting is basically the same as that given for the
paths of W2(τ ) in Section 7.7.1. For the second part of the lemma w.l.o.g., set k = 0. Then the paths B∗

j ∈ W∗ starting
from zj coincide with [1]Bj for times before the coalescence time of B0 and Bl and afterward coincide with paths in
W . It follows that {B∗

j } are coalescing Brownian motions and thus that W∗ is equidistributed with W . �
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7.7.3. Proof of Lemma 7.10
We prove the result for j = 0. The result can then be trivially extended to any j . Our proof follows along the lines of
the proof of Proposition 4.1 given in Section 7.4, except of course that here both right and left marked (1,2) points
along B0 are switched leading to [1]B0 rather than [1]r0. Here, it is enough to prove that (B0, [1]Bz)z∈R×{0} is a family
of strong Markov processes with stationary transition probabilities and that the pair (B0, [1]Bz) satisfies the following
three properties:

(1) B0 is a standard Brownian path starting at (0,0). [1]Bz starts at z.
(2) Away from the diagonal {t : [1]Bz(t)= B0(t)}, the two processes evolve as two independent Brownian motions.
(3) Defining tε = inf{t > 0: |[1]B0 −B0|(t)=

√
2ε}, one has:

(i) P(([1]B0 −B0)(tε)=
√

2ε)= 1
2 ,

(ii) limε↓0 E(tε)/ε =
√

2/(2τ) and E([tε]2)= o(ε).

The strong Markov property and the stationarity of the transition probabilities can be shown as in Lemma 7.5. Those
two properties and the definition of [1]Bz easily imply Properties (1) and (2). Property (3)(i) is clearly true by right–left
symmetry. It remains to prove (3)(ii). Recall the definition of [1]r0 given in Section 4. We define [1]l0 analogously, i.e.,
[1]l0 is obtained from B0 by switching all the marked right (1,2) points in M(τ )∩B0. We also define

t lε = inf
{
t : [1]l0(t)= B0(t)−

√
2ε

}
, (7.74)

t rε = inf
{
t : [1]r0(t)= B0(t)+

√
2ε

}
. (7.75)

t rε , which was carefully studied in Section 7.3, (resp., t lε) is the first time a right (resp., left) marked excursion away
from B0 hits B0 +

√
2ε (resp., B0 −

√
2ε). In order to verify the first part of (3)(ii), we will prove that limε↓0 E(tε)/ε

coincides with limε↓0 E(trε ∧ t lε)/ε and that E(trε ∧ t lε)/ε has the desired limit. The second part can be proved similarly.
We first use the following lemma.

Lemma 7.12. [1]B0 is obtained by joining together marked excursions from B0.

Proof. Let z be a point at which [1]B0 separates from B0. By Proposition 7.6, z is a marked point of the original
Brownian web W and there is a marked excursion e from B0 starting at z. By the structure of the separation points
given in Proposition 7.7 and since (1,n)B

τ
0 → [1]B0 as n →∞, we see that (1,n)B

τ
0 follows the excursion e for suffi-

ciently large n. As a consequence, [1]B0 also follows e. Since this is true for every such z, the lemma follows. �

Lemma 7.12 immediately implies that

tε ≥ t rε ∧ t lε. (7.76)

Continuing with our proof of Property (3)(ii), we define

Tε = inf
{
t ≥ t rε ∧ t lε:

∣∣[1]B0(t)−B0(t)
∣∣ = 0

}
.

Using T
(0)
ε ≡ Tε as a (first) stopping time increment, denoting the segments of {B0, [1]r0, [1]l0, [1]B0} up to time T

(0)
ε

by {B(0)
0 , [1]r0

(0), [1]l0(0), [1]B0
(0)} and then translating (B0(Tε), Tε) onto (0,0), we may inductively define

{
B

(n)
0 , [1]r0

(n), [1]l0(n), [1]B0
(n), T (n)

ε

}
,

which, as in the proof of Lemma 7.5, are i.i.d. Next, define

Kε = inf
{
k: ∃t ∈ [

0, T (k)
ε

]
,
∣∣[1]B0

(k) −B
(k)
0

∣∣(t)=√
2ε

}
(7.77)

and also,

T̃ (n)
ε = T (n)

ε ∧ inf
{
t ∈ [

0, T (n)
ε

]
:

∣∣[1]B0
(n)(t)−B

(n)
0 (t)

∣∣ =√
2ε

}
.
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Then, (letting T̃ε ≡ T̃
(0)
ε ) we have

E(tε) =
∑
n≥0

E
(
T̃ (n)

ε 1Kε≥n

) = ∑
n≥0

E(T̃ε)P(Kε ≥ n) (7.78)

= E(T̃ε)
∑
n≥0

P
(∀t ∈ [0, Tε], |[1]B0 −B0|(t) <

√
2ε

)n (7.79)

= E(T̃ε)

P(∃t ∈ [0, Tε], |[1]B0 −B0|(t)=
√

2ε)
(7.80)

≤ E(T̃ε)

P(t lε ∧ t rε = tε)
. (7.81)

Next we prove the following three lemmas.

Lemma 7.13. E(T̃ε − t rε ∧ t lε)/ε → 0 as ε ↓ 0.

Proof. The path [1]B0 evolves like a Brownian motion when it is away from B0. It follows that E(T̃ε − t rε ∧ t lε) ≤
supx∈[0,ε](E(Sx)) where Sx is the time a standard Brownian motion starting at x exits the interval [0, ε]. This yields
the claimed result. �

Lemma 7.14. E(trε ∧ t lε)/ε →
√

2/(2τ).

Proof. Conditioned on W (but not the marking M(τ )), t rε and t lε are independent. If we denote by PW the probability
distribution of the marked Brownian web conditioned on a realization of the web W , and by E expectation with respect
to the distribution P of W , we have

E(trε ∧ t lε)/ε =
∫ ∞

0
E

(
PW

(
t rε ∧ t lε ≥ εt

))
dt =

∫ ∞

0
E

(
PW

(
t rε ≥ εt

) · PW
(
t lε ≥ εt

))
dt. (7.82)

By Proposition 7.2,

PW
(
t rε ≥ εt

) = PW
(
Lε,εt

([0, εt]) ≤ Exp
(
1/

(√
2τ

))) = exp
(−√2τ lε(εt)

)
. (7.83)

By Lemma 7.3, we know that in probability lε(εt) → t/2, implying that PW (trε ≥ εt) → e−τ t/
√

2. By symmetry,

PW (t lε ≥ εt)→ e−τ t/
√

2. In Section 7.3.2, we showed that {P(trε ≥ ε·)= E(PW (trε ≥ ε·))}ε≤1 is uniformly integrable.
Since

E
(
PW

(
t rε ≥ εt

)
PW

(
t lε ≥ εt

)) ≤ E
(
PW

(
t rε ≥ εt

)) = P
(
t rε ≥ εt

)
,

we have that

lim
ε↓0

E
(
t rε ∧ t lε

)
/ε dt =

∫ ∞

0
lim
ε↓0

E
(
PW

(
t rε ≥ εt

) · PW
(
t rε ≥ εt

))
d t =

∫ ∞

0
exp

(−2tτ/
√

2
) =

√
2

2τ
. (7.84)

�

Lemma 7.15. limε↓0 P(t lε ∧ t rε �= tε)= 0.

Proof. By symmetry, it suffices to prove that

lim
ε↓0

P
(
t lε = t lε ∧ t rε , t lε �= tε

) = 0. (7.85)
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Assume that t lε = t rε ∧ t lε and tε �= t lε . Then there exists a left marked excursion el,ε from B0 starting at T (el,ε) which
is at a distance

√
2ε from B0 at time t lε . Since tε �= t lε , [1]B0 avoids this excursion implying that [1]B0 follows a right

marked excursion er during the time interval [T (er), T (er )+D(er)] such that T (er ) < T (el,ε) < T (er)+D(er). In
other words, T (el,ε) is straddled by a marked right excursion. The lemma follows from Proposition 7.4. �

By (7.78)–(7.81) and Lemmas 7.13, 7.14 and 7.15, we have lim supε↓0E(tε)/ε ≤ limε↓0 E(trε ∧ t lε)/ε =
√

2/(2τ).
By (7.76), Property (3)(ii) and hence Lemma 7.10 follow. We conclude that (W , W (τ )) has the required distribution.

7.7.4. Markov property and stationarity
We continue with the second and third properties of Theorem 6.2. W (τ2) is constructed by modifying W = W (τ = 0)

according to the marking M(τ2). In order to prove the Markov property and stationarity, it suffices to prove that this
is distributionally equivalent to the following procedure: (1) construct W (τ1) from (W , M(τ1)); then (2) construct
W (τ2) from (W (τ1), Mτ1(Δτ)) where Mτ1(Δτ) is a marking of W (τ1) with intensity Δτ ≡ τ2 − τ1 which, given
the past (W , {M(τ )}τ≤τ1), only depends on W (τ1).

Recall that given W :

(i) for any measurable subset O ⊂ R2 with L(O) <∞ (where L is the local time outer measure – see Definition 3.1),
[M(τ2) \ M(τ1)] ∩O is a Poisson Point Process on R2 with intensity measure (τ2 − τ1)L(· ∩O), and

(ii) {M(τ )}τ≤τ1 and M̃(Δτ)≡ M(τ2) \ M(τ1) are independent.

M̃(Δτ) induces a natural marking on W (τ1). Indeed, for every n ≥ 0, we can define M̃τ1
n,n(Δτ) as M̃(Δτ) ∩ En

where En = {Bτ1
i }n−1

i=0 ∩{B̂τ1
j }n−1

j=0 and Mτ1(Δτ)≡ limn↑∞ Mτ1
n,n(Δτ). We will denote by W τ1

n,n(Δτ) the web obtained

from W (τ1) by switching the direction of all the points in Mτ1
n,n(Δτ).

We have already proved that W (τ1) is a Brownian web. Hence, L(En) <∞ and, by item (i) above, conditioned on
W , Mτ1

n,n(Δτ) is a Poisson Point Process with intensity measure (τ2 − τ1)L(· ∩En).

Lemma 7.16. Let Lτ1
n,n be the local time measure on R2 induced by {Bτ1

i }n−1
i=0 ∪ {B̂τ1

j }n−1
j=0, i.e.,

Lτ1
n,n(O)=mφ

(
P

({
B

τ1
i

}n−1
i=0 ∩ {

B̂
τ1
j

}n−1
j=0 ∩O

))
(where P is the projection on the t -axis). Then L(O ∩ En) = Lτ1

n,n(O), where L is the usual local time measure
of (3.6).

Proof. For a web W ′, let W ′ ∩ Ŵ ′ denote the set of (1,2) points of W ′. By definition,

Lτ1
n,n(O)=mφ

(
P (En ∩O)

)
,

L(O ∩En)=mφ

(
P

([W ∩ Ŵ] ∩En ∩O
))

.

Hence, in order to prove our lemma it is sufficient to prove that for every Borel O

mφ

(
P

([En ∩O] \ [W ∩ Ŵ])) = 0

which will follow if we can prove that

mφ

(
P

([
W (τ1)∩ Ŵ(τ1)

] \ [W ∩ Ŵ])) = 0. (7.86)

In order to prove (7.86) we prove

mφ

(
P

([W ∩ Ŵ] \ [
W (τ1)∩ Ŵ(τ1)

])) = 0 (7.87)

instead. The lemma will follow from the equidistribution of (W , W (τ1)) and (W (τ1), W ). (Recall that in Sec-
tions 7.7.2 and 7.7.3 we already proved that (W , W (τ1)) is a sticky pair of webs whose distribution is invariant
under permutation of the two webs.)
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We now prove (7.87). For a given realization of (W , W (τ1)), let us assume that

mφ

(
P

([W ∩ Ŵ] \ [
W (τ1)∩ Ŵ (τ1)

]))
> 0

and find a contradiction. By construction of M(τ2), there would be strictly positive probability that M(τ2)\ [W (τ1)∩
Ŵ(τ1)] �= ∅.

Let z be any point in M(τ2). Then z is a separation point of N (τ2). Proposition 7.7(3) directly implies that for
some i the path B

τ1
i ∈ W (τ1), from zi , enters z. Since up to a reversal of the t -axis N (τ2) and N̂ (τ2) are equidis-

tributed, there is a path B̂
τ1
j ∈ Ŵ (τ1) meeting Bτ1 at z and hence z is in W (τ1) ∩ Ŵ(τ1). It would follow that

M(τ2)⊂ W (τ1)∩ Ŵ(τ1), yielding a contradiction. This ends the proof of the lemma. �

Lemma 7.16 implies that Mτ1
n,n(Δτ) only depends on W (τ1). Moreover, W (τ1) being a Brownian web, we also

have the distributional identities,(
W (τ1), Mτ1

n,n(Δτ)
) =d

(
W , M̃n,n(Δτ)

)
, (7.88)(

W (τ1), W τ1
n,n(τ2)

) =d

(
W , Wn,n(Δτ)

)
, (7.89)

where Wn,n(Δτ) and M̃n,n(Δτ) are defined as in Section 3. It remains to prove that W τ1
n,n(Δτ) converges (in

(H, dH)) to W (τ2).

Lemma 7.17. Mτ1(Δτ) and M̃(Δτ) coincide.

Proof. By construction, Mτ1(Δτ) ⊂ M̃(Δτ) since Mτ1(Δτ) is the marking induced by M̃(Δτ) on W (τ1). Anal-
ogously, we define M′(Δτ) as the marking induced by Mτ1(Δτ)(= limn↑∞ Mτ1

n,n(Δτ)) on W . We already proved
that (W , W (τ1)) is a (1/2τ)-sticky pair of webs. Therefore, (W , W (τ1)) is equidistributed with (W (τ1), W ) and, by
(7.88), (W , W (τ1), Mτ1(Δτ)) is equidistributed with (W (τ1), W , M̃(Δτ)). Thus,(

W , M′
n,n(Δτ)

) =d

(
W (τ1), Mτ1

n,n(Δτ)
)
.

By (7.88), we conclude that M′
n,n(Δτ) is distributed like M̃n,n(Δτ). Since by construction, M′

n,n(Δτ) ⊂
M̃n,n(Δτ), it follows that M′

n,n(Δτ) = M̃n,n(Δτ) and M′(Δτ) = M̃(Δτ). Since M′(τ ) ⊂ Mτ1(Δτ), we deduce

that M̃(Δτ)⊂ Mτ1(Δτ) and hence Mτ1(Δτ)= M̃(Δτ). �

Let W ′ be any subsequential limit of {W τ1
n,n(Δτ)}. We next prove that W ′ = W (τ2) via two inclusions, which

completes this section.
(i) W ′ ⊆ W (τ2).
Let z = (x, t) ∈ M(τ2), and let π ∈ W ′ start at t − 2ε with ε > 0, and pass through z. By Proposition 6.1,

what we need to show is that π ∼z Bswitch. By construction, there exists a sequence {πN }N≥0 so that πN belongs
to

⋃
n,m>M W τ1

n,m(Δτ) and {πN } converges to π . Taking N large enough, we can assume w.l.o.g. that πN belongs to
N≤t−ε and (x, t) ∈ Mn,m(τ2) for n,m > N . Moreover, by Proposition 7.7(2) we can also assume that πN enters the
point z. We distinguish between two cases.

1. z ∈ M(τ1). Here, z /∈ Mτ1(Δτ) and by construction, πN ∼z Bτ1 . Since Bτ1 ∼z Bswitch, Proposition 7.7(1) implies
that πN ∼z Bswitch. By Proposition 7.7(2), π ∼z Bswitch.

2. z ∈ M̃(Δτ). Since Mτ1(Δτ) = M̃(Δτ), we get that πN ∼z B
τ1
switch. We claim that B

τ1
switch ∼z Bswitch, implying

that π ∼z Bswitch as desired. The claim can be verified as follows. Let us assume that B
τ1
switch ∼z B (and show that

this leads to a contradiction). Then Bτ1 ∼z Bswitch, implying that B and Bτ1 separate at z, or equivalently that
z ∈ M(τ1). Since M(τ1) and M̃(Δτ)= M(τ2) \ M(τ1) are disjoint, the claim follows.

(ii) W ′ ⊇ W (τ2).
There is at least one path B ′ in W ′ starting from zi . By Proposition 6.1(3)(o), there is a unique path B

τ2
i ∈ W (τ2)

starting from there. Since W ′ ⊆ W (τ2) we get B ′ = B
τ2
i . Hence, W ′ ⊇ {Bτ2

i } = W (τ2) (see Proposition 6.1(3)(ii)).
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7.7.5. τ → Bτ
0 (t) is piecewise constant

For any τ ≤ τ0, the path Bτ
0 belongs to N (τ0). Given N (τ0), Bτ

0 (t) only depends on the direction of the (1,2) points
of W (τ ) which are located at the (0, t)-separation points of N (τ0). Since the set of (0, t)-separation points is locally
finite (see Proposition 7.9), τ → Bτ

0 (t) is piecewise constant.
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