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Abstract. We consider the nearest-neighbor simple random walk on Zd , d ≥ 2, driven by a field of bounded random conductances
ωxy ∈ [0,1]. The conductance law is i.i.d. subject to the condition that the probability of ωxy > 0 exceeds the threshold for bond
percolation on Zd . For environments in which the origin is connected to infinity by bonds with positive conductances, we study the
decay of the 2n-step return probability P2n

ω (0,0). We prove that P2n
ω (0,0) is bounded by a random constant times n−d/2 in d = 2,3,

while it is o(n−2) in d ≥ 5 and O(n−2 logn) in d = 4. By producing examples with anomalous heat-kernel decay approaching 1/n2,
we prove that the o(n−2) bound in d ≥ 5 is the best possible. We also construct natural n-dependent environments that exhibit the
extra logn factor in d = 4.

Résumé. On considère la marche aléatoire aux plus proches voisins dans Zd , d ≥ 2, dont les transitions sont données par un
champ de conductances aléatoires bornées ωxy ∈ [0,1]. La loi de conductance est iid sur les arêtes, et telle que la probabilité
que ωxy > 0 soit supérieure au seuil de percolation (par arêtes) sur Zd . Pour les environnements dont l’origine est connectée à
l’infini à l’aide d’arêtes à conductances positives, on étudie l’asymptotique de la probabilité de retour à l’instant 2n : P2n

ω (0,0). On
prouve que P2n

ω (0,0) est borné par Cn−d/2 pour d = 2,3 (où C est une constante aléatoire) alors que c’est en o(n−2) pour d ≥ 5
et O(n−2 logn) pour d = 4. En construisant des exemples dont les noyaux de la chaleur décroissent anormalement en avoisinant
1/n2, on peut prouver que la borne o(n−2) est optimale pour d ≥ 5. On parvient également à construire des environnements
naturels dépendants de n qui présentent le facteur logn supplémentaire en dimension d = 4.
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1. Introduction

Random walk in reversible random environments is one of the best studied subfields of random motion in random
media. In continuous time, such walks are usually defined by their generators Lω which are of the form

(Lωf )(x)=
∑
y∈Zd

ωxy

[
f (y)− f (x)

]
, (1.1)
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where (ωxy) is a family of random (nonnegative) conductances subject to the symmetry condition ωxy = ωyx . The
sum πω(x) = ∑

y ωxy defines an invariant, reversible measure for the corresponding continuous-time Markov chain.
The discrete-time walk shares the same reversible measure and is driven by the transition matrix

Pω(x, y)= ωxy

πω(x)
. (1.2)

In most situations, ωxy are nonzero only for nearest neighbors on Zd and are sampled from a shift-invariant, ergodic
or even i.i.d. measure P (with expectation henceforth denoted by E).

Two general classes of results are available for such random walks under the additional assumptions of uniform
ellipticity,

∃α > 0: P

(
α < ωb <

1

α

)
= 1, (1.3)

and the boundedness of the jump distribution,

∃R <∞: |x| ≥R �⇒ Pω(0, x)= 0, P-a.s. (1.4)

First, as proved by Delmotte [7], one has the standard, local-CLT like decay of the heat kernel (c1, c2 are absolute
constants):

Pn
ω(x, y)≤ c1

nd/2
exp

{
−c2

|x − y|2
n

}
. (1.5)

Second, an annealed invariance principle holds in the sense that the law of the paths under the measure integrated over
the environment scales to a nondegenerate Brownian motion [16]. A quenched invariance principle can also be proved
by invoking techniques of homogenization theory [23].

Once the assumption of uniform ellipticity is relaxed, matters get more complicated. The most-intensely studied
example is the simple random walk on the infinite cluster of supercritical bond percolation on Zd , d ≥ 2. This cor-
responds to ωxy ∈ {0,1} i.i.d. with P(ωb = 1) > pc(d) where pc(d) is the percolation threshold. Here an annealed
invariance principle has been obtained by De Masi, Ferrari, Goldstein and Wick [8,9] in the late 1980s. More recently,
Mathieu and Remy [20] proved the on-diagonal (i.e., x = y) version of the heat-kernel upper bound (1.5) – a slightly
weaker version of which was also obtained by Heicklen and Hoffman [15] – and, soon afterwards, Barlow [2] proved
the full upper and lower bounds on Pn

ω(x, y) of the form (1.5). (Both of these results hold for n exceeding some ran-
dom time defined relative to the environment in the vicinity of x and y.) Heat-kernel upper bounds were then used in
the proofs of quenched invariance principles by Sidoravicius and Sznitman [23] for d ≥ 4, and for all d ≥ 2 by Berger
and Biskup [4] and Mathieu and Piatnitski [19].

Notwithstanding our precise definition (1.3), the case of supercritical percolation may still be regarded as uniformly
elliptic because the conductances on the percolation cluster are still uniformly bounded away from zero and infinity.
It is thus not clear what phenomena we might encounter if we relax the uniform ellipticity assumption in an essential
way. A number of quantities are expected (or can be proved) to vary continuously with the conductance distribution,
e.g., the diffusive constant of the limiting Brownian motion. However, this may not apply to asymptotic statements
like the heat-kernel bound (1.5).

In a recent paper, Fontes and Mathieu [10] studied continuous-time random walk on Zd with conductances given
by

ωxy = ω(x)∧ω(y) (1.6)

for some i.i.d. random variables ω(x) > 0. For these cases, it was found that the annealed heat kernel, E[Pω,0(Xt = 0)],
where Pω,0 is the law of the walk started at the origin and E is the expectation with respect to the environment, exhibits
an anomalous decay for environments with too heavy lower tails at zero. Explicitly, from [10], Theorem 4.3, we have

E
[
Pω,0(Xt = 0)

]= t−(γ∧d/2)+o(1), t →∞, (1.7)
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where γ > 0 characterizes the lower tail of the ω-variables,

P
(
ω(x)≤ s

)∼ sγ , s ↓ 0. (1.8)

As for the quenched problem, for γ < d
2 , [10], Theorem 5.1, provides a lower bound on the diagonal heat-kernel decay

exponent (a.k.a. spectral dimension):

P
[
Pω,0(Xt = 0)≤ t−α

] −→
t→∞1 (1.9)

for every α < α0 where

α0 = d

2

1 + γ

1 + d/2
. (1.10)

But, since α0 < d
2 , this does not rule out the usual diffusive scaling. Nevertheless, as α0 > γ for γ < d

2 , the annealed
and quenched heat-kernel decay at different rates.

The reason why the annealed heat kernel may decay slower than usual can be seen rather directly from the following
argument: The quenched probability that the walk does not even leave the origin up to time t is e−tπω(0). By πω(0)≤
2dω(0), we have

E
[
Pω,0(Xt = 0)

]≥ Ee−2dω(0)t . (1.11)

For ω(0) with the tail (1.8), this yields a lower bound of t−γ . (A deeper analysis shows that this is actually a domi-
nating strategy [10].) A similar phenomenon can clearly be induced for ωxy that are i.i.d. with a sufficiently heavy tail
at zero, even though then the correspondence of the exponents in (1.7) and (1.8) will take a slightly different form.

The fact that the dominating strategy is so simple makes one wonder how much of this phenomenon is simply an
artifact of taking the annealed average. Of not much help in this matter is the main result (Theorem 3.3) of Fontes
and Mathieu [10] which shows that the mixing time for the random walk on the largest connected component of a
torus will exhibit anomalous (quenched) decay once γ < d

2 . Indeed, the mixing time is by definition dominated by the
worst-case local configurations that one can find anywhere on the torus and thus the reasoning we used to explain the
anomalous decay of the annealed heat kernel applies here as well.

The main goal of this paper is to provide universal upper bounds on the quenched heat kernel and support them by
examples exhibiting the corresponding lower bounds. Somewhat surprisingly, and unlike for the annealed heat kernel,
the existence of anomalous quenched heat-kernel decay turns out to be dimension dependent.

2. Main results

We will work with a collection of bounded, nearest-neighbor conductances (ωb) ∈ Ω = [0,1]B where b ranges over
the set B of unordered pairs of nearest neighbors in Zd . The law P of the ω’s will be i.i.d. subject to the condition that
the bonds with positive conductances percolate. Given ω, we use C∞ = C∞(ω) to denote the set of sites that have a
path to infinity along bonds with positive conductances. It is well known that C∞ is connected with probability one.

The main result of this paper is as follows:

Theorem 2.1. Let d ≥ 2 and consider a collection ω = (ωb) of i.i.d. conductances in [0,1] with P(ωb > 0) > pc(d)

where pc(d) is the threshold for bond percolation on Zd . For almost every ω ∈ {0 ∈ C∞}, there is C = C(ω) < ∞,

such that

Pn
ω(0,0)≤ C(ω)

⎧⎨⎩n−d/2, d = 2,3,
n−2 logn, d = 4,
n−2, d ≥ 5,

(2.1)

for all n≥ 1. In fact, for d ≥ 5, almost surely

lim
n→∞n2Pn

ω(0,0)= 0. (2.2)
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Note that these estimates imply that the random walk is almost surely transient in all dimensions d ≥ 3. This is, of
course, a consequence of the fact – to be exploited in more depth later – that under p > pc(d) one has an infinite cluster
of bonds with conductances bounded strictly from below. Then a.s. transience in d ≥ 3 follows by monotonicity in
conductances and the result of Grimmett, Kesten and Zhang [14]. (Recurrence in d = 1,2 is inferred directly from the
monotonicity of this notion in the conductances.)

To show that our general upper bound in d ≥ 5 represents a real phenomenon, we state the existence of appropriate
examples:

Theorem 2.2. (1) Let d ≥ 5 and κ > 1
d

. There exists an i.i.d. law P on bounded, nearest-neighbor conductances with
P(ωb > 0) > pc(d) and a random variable C = C(ω) such that for almost every ω ∈ {0 ∈ C∞},

P2n
ω (0,0)≥ C(ω)

e−(logn)κ

n2
, n≥ 1. (2.3)

(2) Let d ≥ 5. For every increasing sequence {λn}∞n=1, λn →∞, there exists an i.i.d. law P on bounded, nearest-
neighbor conductances with P(ωb > 0) > pc(d) and an a.s. positive random variable C = C(ω), such that for almost
every ω ∈ {0 ∈ C∞},

Pn
ω(0,0)≥ C(ω)

λnn2
(2.4)

along a subsequence that does not depend on ω.

The upper bounds in Theorem 2.1 can be extended to more general shift-invariant, ergodic environments under
suitable assumptions on their percolation properties. In particular, it follows that for the Fontes–Mathieu example (1.7)
and (1.8) no anomaly occurs for the quenched heat kernel in dimensions d = 2,3. On the other hand, Theorem 2.2
can be specialized to the case (1.6) with i.i.d. ω(x)’s and, in d ≥ 5, we can produce anomalous decay as soon as the
tails of ω at zero are sufficiently heavy. (The constructions in the proof of Theorem 2.2 actually work for all d ≥ 2,

but the result is, of course, interesting only for d ≥ 5.)
The distributions that we use in part (1) of Theorem 2.2 have a tail near zero of the general form

P(ωxy < s)≈ ∣∣log(s)
∣∣−θ (2.5)

with θ > 0. Presumably, one can come up with examples of distributions that exhibit “anomalous” behavior and have
the power law tail,

P(ωxy < s)≈ sγ , (2.6)

for some γ > 0. However, the construction seems to require subtle control of heat-kernel lower bounds which go
beyond the estimates that can be easily pulled out from the literature.

As we will see in the proofs, the underlying idea of all examples in Theorem 2.2 is the same: The walk finds a trap
which, by our specific choice, is a “strong” edge that can be reached only by crossing an edge of strength of order 1

n
.

Such traps allow the walk to get stuck for time of order n and thus improve its chances to make it back to the origin at
the required time. To enter and exit the trap, the walk has to make two steps over the O( 1

n
)-edge; these are responsible

for the overall n−2-decay. Of course, in d = 2,3 this cannot compete with the “usual” decay of the heat kernel, and so
we have to go to d ≥ 4 to make this strategy dominant.

The upper bound in (2.2) and the lower bound in (2.4) show that the 1/n2 decay in d ≥ 5 is never achieved, but can
be approached arbitrary closely. We believe the same holds also for d = 4 for the decay rate n−2 logn. We demonstrate
the reason for our optimism by proving a lower bound for environments where the aforementioned traps occur with a
positive density:
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Theorem 2.3. Let d ≥ 4 and let p > pc(d). Sample a percolation configuration ω̃ with parameter p. For each n≥ 1
consider the i.i.d. environment ω(n) defined from ω̃ by putting ω

(n)
b = 1 on occupied bonds and ω

(n)
b = 1

n
on vacant

bonds. For a.e. ω̃ in which 0 has an occupied path to infinity, there is C(ω̃) > 0 such that for all n≥ 1,

P2n
ω(n) (0,0)≥ C(ω̃)

{
n−2, d ≥ 5,
n−2 logn, d = 4.

(2.7)

We conclude with a remark concerning the path properties of the above random walk. As mentioned previously,
heat-kernel estimates of the form (1.5) have been crucial for the proof of the quenched invariance principle for simple
random walk on supercritical percolation clusters in d ≥ 3. (The d = 2 argument of Berger and Biskup [4] actually
avoids these bounds by appealing to the nearest-neighbor structure of the walk and to an underlying maximum prin-
ciple.) The absence of “usual” decay might suggest difficulty in following the same strategy. Notwithstanding, using
truncation to a “strong component,” a version of which is invoked also in the present paper, this problem can be
circumvented and the corresponding quenched invariance principle proved [5,18].

Thus there are i.i.d. environments for which one has a functional CLT without a local CLT. This should not be
too surprising as a CLT describes the typical behavior whereas the heat-kernel decay, and a local-CLT, describe rare
events. Naturally, a CLT is much more robust than its local counterpart.

Theorem 2.1 is proved in Section 3 while Theorems 2.2 and 2.3 are proved in Section 4. The Appendix contains a
self-contained proof of the isoperimetric inequality on the supercritical percolation cluster that we need in the proof
of Theorem 2.1.

3. Heat-kernel upper bounds

Here we will prove the heat-kernel bounds from Theorem 2.1. The general strategy of our proof is as follows: For
every α > 0, we use C∞,α = C∞,α(ω) to denote the set of all sites in Zd that have a path to infinity along edges
with conductances at least α. Clearly, C∞,α is a subgraph of C∞; we will sometimes refer to C∞,α as the strong
component. We first prove the “standard” heat-kernel decay for the Markov chain obtained by recording the position
of the random walk when it is on the strong component C∞,α for an appropriately chosen α. Then we control the
difference between the time scales for the two walks using rather straightforward estimates.

3.1. Coarse-grained walk

The i.i.d. nature of the measure P ensures there is an a.s.-unique infinite connected component C∞ of bonds with
positive conductances. Given z ∈ C∞, we define the random walk X = (Xn) as a Markov chain on C∞ with transition
probabilities

Pω,z(Xn+1 = y|Xn = x)= Pω(x, y)= ωxy

πω(x)
(3.1)

and initial condition

Pω,z(X0 = z)= 1. (3.2)

We use Eω,z to denote expectation with respect to Pω,z. (Note the typographical distinction between the path distrib-
ution Pω,z, the heat kernel Pω , and the law of the environment P.)

Next we will disregard bonds whose conductance is less than some small positive number α which is chosen so
that the remaining bonds still form an infinite component – to be denoted by C∞,α . We quote Proposition 2.2 from [5]:

Lemma 3.1. Let d ≥ 2 and p = P(ωb > 0) > pc(d). Then there exists c(p, d) > 0 such that if α satisfies

P(ωb ≥ α) > pc(d) (3.3)

and

P(0 < ωb < α) < c(p,d) (3.4)
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then C∞,α is nonempty and C∞ \C∞,α has only finite components a.s. In fact, if Fx is the set of sites (possibly empty)
in the finite component of C∞ \C∞,α containing x, then

P(x ∈ C∞ and diam Fx ≥ n)≤ Ce−ηn, n≥ 1, (3.5)

for some C <∞ and η > 0. Here “diam” is the diameter in the �∞-distance on Zd .

Given z ∈ C∞,α we consider the coarse grained random walk X̂ = (X̂�) – started at z – which records the succes-
sive visits of X = (Xn) to C∞,α . Explicitly, let T1, T2, . . . denote the times X takes between the successive steps of
X̂, i.e., T�+1 = inf{n > 0: XT�+n ∈ C∞,α} with T0 = 0. Note that, as all components of C∞ \C∞,α are finite, T� <∞
a.s. for all �. Then

X̂� =XT1+···+T�
, �≥ 1. (3.6)

Let P̂ω(x, y) denote the transition probability of the random walk X̂,

P̂ω(x, y)= Pω,x(XT1 = y), x, y ∈ C∞,α. (3.7)

As is easy to check, the restriction of the measure πω to C∞,α is invariant and reversible for the Markov chain on
C∞,α induced by P̂ω .

Consider the quantities

ω̂xy = πω(x)P̂ω(x, y), x, y ∈ C∞,α. (3.8)

We may think of X̂ as the walk on C∞,α with the weak components “rewired” by putting a bond with conductance
ω̂xy between any pair of sites (x, y) on their (strong) boundary. By Lemma 3.1, all weak components are finite and
everything is well defined.

Our first item of business is to show that X̂ obeys the standard heat-kernel bound:

Lemma 3.2. For almost every ω ∈ {0 ∈ C∞,α} and every x ∈ C∞,α(ω) there exists random variable C(ω,x) < ∞,

such that

P̂n
ω(x, y)≤ C(ω,x)

nd/2
, n≥ 1. (3.9)

We remark that the reversibility of the random walk, and the fact that πω ≥ α on C∞,α , imply that P̂n
ω(x, y) may

also be bounded in terms of C(ω,y). Note that, unlike for P, the powers for which P̂n(x, y) is nonzero are not
necessarily tied to the parity of y − x.

Lemma 3.2 will be implied by the fact that the Markov chain X̂ obeys the “usual” d-dimensional isoperimetric
inequality. The connection between isoperimetric inequalities and heat-kernel decay can be traced back to the work
on elliptic PDEs done by Nash, Moser and others. In its geometric form, it was first proved using Sobolev inequalities
[24]. Alternative approaches use Nash inequalities [6], Faber–Krahn inequalities [11,12] and evolving sets [17]. The
paper [17] will serve us as a convenient reference.

Consider a Markov chain on a countable state-space V with transition probability denoted by P(x, y) and invariant
measure denoted by π . Define Q(x, y)= π(x)P(x, y) and for each S1, S2 ⊂ V , let

Q(S1, S2)=
∑
x∈S1

∑
y∈S2

Q(x, y). (3.10)

For each S ⊂ V with π(S) ∈ (0,∞) we define

ΦS = Q(S,Sc)

π(S)
(3.11)
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and use it to define the isoperimetric profile

Φ(r)= inf
{
ΦS : π(S)≤ r

}
. (3.12)

(Here π(S) is the measure of S.) It is easy to check that we may restrict the infimum to sets S that are connected in
the graph structure induced on V by P.

The following summarizes Theorem 2 of [17]: Suppose that P(x, x) ≥ γ for some γ ∈ (0, 1
2 ] and all x ∈ V . Let

ε > 0 and x, y ∈ V . Then

Pn(x, y)≤ επ(y) (3.13)

for all n such that

n≥ 1 + (1 − γ )2

γ 2

∫ 4/ε

4[π(x)∧π(y)]
4

uΦ(u)2
du. (3.14)

Note that, to prove the “usual” decay Pn(x, y)≤ cn−d/2, it suffices to show that the bound Φ(r)≤ cr−1/d holds for r

sufficiently large.
We will adapt this machinery to the following setting

V = C∞,α(ω), P = P̂2
ω and π = πω, (3.15)

with the objects in (3.10)–(3.12) denoted by Q̂ω, Φ̂
(ω)
S and Φ̂ω(r). However, to estimate Φ̂ω(r) we will replace P̂ω by

the Markov chain with transition probabilities

P̃ω(x, y)= ωxy1{ωxy≥α}
π̃ω(x)

, |x − y| = 1, (3.16)

i.e., the random walk on V = C∞,α that can only use edges physically present in the infinite cluster. The quantity

π̃ω(x)=
∑
y

ωxy1{ωxy≥α} (3.17)

denotes the corresponding stationary measure. We will use Q̃ω, Φ̃
(ω)
S and Φ̃ω(r) to denote the objects in (3.10)–(3.12)

for this Markov chain.

Lemma 3.3. There exists a constant c > 0 depending only on d and α such that for any finite set Λ⊂ C∞,α ,

Φ̂
(ω)
Λ ≥ cΦ̃

(ω)
Λ . (3.18)

Proof. The stationary measures πω and π̃ω compare via

πω(x)≥ π̃ω(x)≥ α

2d
πω(x). (3.19)

Restricting P̂2
ω(x, y) to transitions with T2 = 2 shows

P̂2
ω(x, y)≥

∑
z

ωxz1{ωxz≥α}
πω(x)

ωzy1{ωzy≥α}
πω(z)

≥
(

α

2d

)2

P̃2
ω(x, y). (3.20)

It follows that (3.18) holds with c = ( α
2d

)3. �

Our next step involves extraction of appropriate bounds on surface and volume terms. As the infimum in (3.12) can
always be restricted to connected subsets of the Markov graph, and since the Markov graph underlying the quantity
Φ̃ω(r) is just the infinite cluster C∞,α , we can restrict our attention to subsets of C∞,α that are connected in the usual
sense.
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Lemma 3.4. Let θ > 0, d ≥ 2 and let α be as above. Then there exists a constant c > 0 and random variable R1 =
R1(ω) with P(R1 < ∞) = 1 such that for a.e. ω ∈ {0 ∈ C∞,α} and all R ≥ R1(ω) the following holds: For any
connected Λ⊂ C∞,α ∩ [−R,R]d with

π̃ω(Λ)≥Rθ (3.21)

we have

Q̃ω(Λ,C∞,α \Λ)≥ cπω(Λ)(d−1)/d . (3.22)

Proof. Since C∞,α has the law of the infinite bond-percolation cluster, we will infer this from isoperimetry for the
percolation cluster; cf. Theorem A.1. Let ∂ω,αΛ denote the set of edges in C∞,α with one endpoint in Λ and the other
in C∞,α \Λ. We claim that

Q̃ω(Λ,C∞,α \Λ)≥ α2

2d

∣∣∂ω,αΛ
∣∣ (3.23)

and

π̃ω(Λ)≤ 2d|Λ|. (3.24)

Since Λ obeys the conditions of Theorem A.1, once R � 1, we have |∂ω,αΛ| ≥ c2|Λ|(d−1)/d , cf. eq. (A.2) in Sec-
tion 4.2. Then (3.22) will follow from (3.23) and (3.24).

It remains to prove (3.23) and (3.24). The bound (3.24) is implied by π̃ω(x) ≤ 2d . For (3.23), since P̃2
ω represents

two steps of a random walk, we get a lower bound on Q̃ω(Λ,C∞,α \Λ) by picking a site x ∈Λ which has a neighbor
y ∈Λ that has a neighbor z on the outer boundary of Λ. The relevant contribution is bounded as

π̃ω(x)P̃2
ω(x, z)≥ π̃ω(x)

ωxy

π̃ω(x)

ωyz

π̃ω(y)
≥ α2

2d
. (3.25)

Once Λ has at least two elements, we can do this for (y, z) ranging over all bonds in ∂ω,αΛ, so summing over
(y, z) ∈ ∂ω,αΛ, we get (3.23). �

Now we are finally ready to estimate the decay of P̂n
ω(x, y):

Proof of Lemma 3.2. It clearly suffices to prove this for x = 0. Pick θ ∈ (0, 1
2 ) and let R be the largest �∞-distance

the walk X can go on C∞ by time T1 + · · · + T2n, i.e., by the time X̂ makes 2n steps. Lemma 3.1 tells us that the
largest jump X̂ can make in a box of side length n2 is O(logn), and so R = O(n logn). As the walk will not leave the
box [−R,R]d by time n, we may restrict the infimum defining Φ̂ω(r) to sets Λ entirely contained in [−R,R]d . (This
can be formally achieved also by modifying the Markov chain “outside” [−R,R]d .) Moreover, invoking (3.18), we
can instead estimate Φ̃ω(r) which allows us to restrict to Λ⊂ C∞,α ∩ [−R,R]d that are connected in the usual graph
structure on C∞,α .

We will now derive a bound on Φ̃
(ω)
Λ for connected Λ ⊂ C∞,α(ω) ∩ [−R,R]d . Henceforth, c denotes a generic

constant. If πω(Λ)≥Rθ , then (3.19) and (3.22) imply

Φ̃
(ω)
Λ ≥ cπω(Λ)−1/d . (3.26)

On the other hand, for πω(Λ) < Rθ the bound (3.23) yields

Φ̃
(ω)
Λ ≥ cπω(Λ)−1 ≥ cR−θ . (3.27)

From Lemma 3.3 we conclude that

Φ̂ω(r)≥ cΦ̃ω(r)≥ c
(
r−1/d ∧R−θ

)
(3.28)
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once R ≥ R1(ω). The crossover between the two regimes occurs when r = Rdθ which (due to θ < 1
2 ) is much less

than 4/ε once ε ≈ n−d/2. The relevant integral is thus bounded by∫ 4/ε

4[π(x)∧π(y)]
4

uΦ̂ω(u)2
du≤ c1R

2θ logR + c2ε
−2/d ≤ c3ε

−2/d (3.29)

for some constants c1, c2, c3 > 0. Setting ε proportional to n−d/2 and noting γ ≥ ( α
2d

)2, the right-hand side is
less than n and Pn(0, x) ≤ cn−d/2 for each x ∈ C∞ ∩ [−R,R]d . As Pn(0, x) = 0 for x /∈ [−R,R]d , the bound holds
in general. This proves the claim for even n; for odd n we just concatenate this with a single step of the random walk.

�

3.2. Integral bound

We now want to link the estimates on P̂ to a heat-kernel type bound for the walk X. Specifically, we will prove the
following estimate:

Proposition 3.5. For almost every ω ∈ {0 ∈ C∞,α}, there exists a constant C = C(ω) < ∞ such that for every � ≥ 1
and every n≥ 1,

Pω,0(X̂� = 0, T1 + · · · + T� ≥ n)≤ C(ω)
�1−d/2

n
. (3.30)

and, in fact,

lim
n→∞ nPω,0(X̂� = 0, T1 + · · · + T� ≥ n)= 0 a.s. (3.31)

In order to prove this claim, we will need to occasionally refer to the Markov chain on environments “from the
point of view of the particle.” Let τx be the shift by x on Ω and let Ωα = {0 ∈ C∞,α}. We define a random shift
τ
X̂1

:Ωα → ω by sampling X̂1 for the given ω and applying τx with x = X̂1. This random map induces a Markov

chain on ΩZ
α via the iterated action of τ

X̂1
. Define the measure

Qα(dω)= Zπω(0)P(dω|0 ∈ C∞,α) (3.32)

where Z−1 = E(πω(0)|0 ∈ C∞,α). Let EQα
denote expectation with respect to Qα . We recall the following standard

facts whose proof can be found in, e.g., [4], Section 3:

Lemma 3.6 (Ergodicity of Markov chain on environments). The measure Qα is stationary and ergodic with respect
to the Markov shift τ

X̂1
on environments. In particular, if f ∈ L1(Ω,P) then for Qα-a.e. ω and for Pω,0-a.e. trajectory

X̂ = (X̂1, X̂2, . . .),

lim
�→∞

1

�

�−1∑
j=0

f (τ
X̂j

ω)=EQα
(f ). (3.33)

The convergence occurs also in L1 (i.e., under expectation E0,ω and, if desired, also EQα
).

Recall our notation Fy for the finite component of C∞ \C∞,α containing y. For x ∈ C∞,α , let

G′
x =

⋃
y: ωxy>0

Fy (3.34)

and let Gx denote the union of G′
x with all of its neighbors on C∞,α . We will refer to this set as the weak component

incident to x. Note that Gx is the set of vertices that can be visited by the walk X started at x by the time X steps again
onto the strong component.
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Lemma 3.7. Recall that EQα
denotes expectation with respect to Qα and let |Gx | be the number of sites in Gx . Under

the conditions of Lemma 3.1, we have EQα
|G0|<∞.

Proof. This is an immediate consequence of (3.5). �

Next we will estimate the expected time the random walk hides in such a component:

Lemma 3.8 (Hiding time estimate). Let d ≥ 2 and set c = 4dα−1. Then for all x ∈ Zd and all ω such that x ∈ C∞,α

and Gx is finite, we have

Eω,x(T1)≤ c|Gx |. (3.35)

Proof. Fix x ∈ C∞,α and let Gx be its incident weak component which we regard as a finite graph. Add a site Δ to this
graph and connect it by an edge to every site of Gx that has a strong bond to C∞,α \ Gx . (Here Δ represents the rest of
C∞,α ; note that multiple edges between Δ and sites of Gx are possible.) Equip each such edge with the corresponding
conductance and call the resulting finite graph Hx . Clearly, the random walk on Hx started at x and the corresponding
random walk on C∞,α have the same law until they first hit Δ (i.e., leave Gx ). In particular, T1 for the walk on C∞,α

is stochastically dominated by Sx , the first time the walk on Hx returns back to its starting point.
Notice that x �→ πω(x) is an invariant measure of the walk on Hx provided we set

πω(Δ)=
∑
x∈Gx

∑
y∈C∞,α\Gx

ωxy. (3.36)

Standard Markov chain theory tells us that z �→ (ẼzSz)
−1, where Ẽz is the expectation with respect to the walk on Hx

started at z, is an invariant distribution and

ẼxSx = πω(Hx)

πω(x)
. (3.37)

But x ∈ C∞,α implies that πω(x)≥ α while the bound ωyz ≤ 1 yields

πω(Δ)≤ πω(Gx)≤ 2d|Gx | (3.38)

and

πω(Hx)≤ 4d|Gx |. (3.39)

It follows that Eω,xT1 ≤ ẼxSx ≤ ( 4d
α

)|Gx |. �

Proof of Proposition 3.5. For simplicity of the notation, let us assume that � is even; otherwise, replace all occur-
rences of �

2 by � �
2�. By reversibility of X̂, if k < �,

Pω,0

(
X̂� = 0, T1 + · · · + Tk ≥ n

2

)
= Pω,0

(
X̂� = 0, T� + · · · + T�−k+1 ≥ n

2

)
. (3.40)

This means that the probability of interest is bounded by twice the quantity on the left with k = �
2 . Chebyshev’s

inequality then yields

Pω,0(X̂� = 0, T1 + · · · + T� ≥ n) ≤ 2Pω,0

(
X̂� = 0, T1 + · · · + T�/2 ≥ n

2

)
≤ 4

n
Eω,0

(
1{X̂�=0}(T1 + · · · + T�/2)

)
. (3.41)
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Conditioning on the position of X̂ at the times before and after Tj we then get

Pω,0(X̂� = 0, T1 + · · · + T� ≥ n)≤
�/2∑
j=1

∑
x,y

4

n
Pω,0(X̂j−1 = x)Eω,x(T1 1{X̂1=y})Pω,y(X̂�−j = 0). (3.42)

The calculation now proceeds by inserting uniform bounds for the last two terms on the right-hand side, and resum-
ming the result using a stationarity argument.

Since �− j ≥ �/2, reversibility and Lemma 3.2 tell us

Pω,y(X̂�−j = 0)= πω(0)

πω(y)
Pω,0(X̂�−j = y)≤ c

�d/2
(3.43)

uniformly in y ∈ C∞,α for some absolute constant c. Furthermore, Lemma 3.8 gives∑
y

Eω,x(T1 1{X̂1=y})=Eω,x(T1)≤ c|Gx |, (3.44)

where Gx is the weak component incident to x. Rewriting the sum over j as an ergodic average, Lemma 3.6 with
f (ω)= |G0| and Lemma 3.7 now show that, for all k ≥ 1,

k∑
j=1

∑
x

Pω,0(X̂j−1 = x) |Gx | =Eω,0

(
k−1∑
j=0

|G
X̂j
|
)
≤ C(ω)k (3.45)

for a random constant C(ω). Using (3.43)–(3.45) in (3.42), the desired bound (3.30) follows.
In order to prove the convergence to zero in (3.31), we note that

∞∑
n=1

Pω,0(X̂� = 0, T1 + · · · + T� ≥ n)=Eω,0
(
1{X̂�=0}(T1 + · · · + T�)

)
. (3.46)

The argument (3.42)–(3.45) shows that the expectation on the right is finite a.s. Since n �→ Pω,0(X̂� = 0, T1 + · · · +
T� ≥ n) is nonincreasing, the claim follows by noting that for any nonincreasing nonnegative sequence (an) with
lim supn→∞ nan > 0, the sum

∑
n≥1 an diverges. �

3.3. Proof of the upper bound

To turn (3.30) into the proof of Theorem 2.1, we will also need the following standard fact from Markov chain theory:

Lemma 3.9. The sequence n �→ P2n
ω (0,0) is decreasing.

Proof. Let 〈f,g〉ω =∑
x∈Zd πω(x)f (x)g(x) denote a scalar product in L2(Zd ,πω). Then

P2n
ω (0,0)= 〈

δ0,P2n
ω δ0

〉
ω
. (3.47)

Since Pω is self-adjoint and ‖Pω‖2 ≤ 1, the sequence of operators P2n
ω is decreasing. �

Now we put everything together and prove the desired heat-kernel upper bounds:

Proof of Theorem 2.1(1). Introduce the random variable

Rn = sup{�≥ 0: T1 + · · · + T� ≤ n}. (3.48)
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The fact that 0 ∈ C∞,α(ω) yields∑
m≥n

Pω,0(Xm = 0,Rm = �)= Pω,0(X̂� = 0, T1 + · · · + T� ≥ n). (3.49)

Proposition 3.5 now implies∑
n≤m<2n

Pω,0(Xm = 0, Rm = �)≤ C(ω)
�1−d/2

n
. (3.50)

By summing over �= 1, . . . ,2n and using that Rm ≤ 2n once m≤ 2n we derive

∑
n≤m<2n

Pm
ω (0,0)≤ C̃(ω)

⎧⎨⎩n1−d/2, d = 2,3,
n−1 logn, d = 4,
n−1, d ≥ 5,

(3.51)

where C̃ is proportional to C. By Lemma 3.9, P2m
ω (0,0) is decreasing in m and so the sum on the left is bounded

below by 1
2nP2n

ω (0,0). From here the claim follows. �

Proof of Theorem 2.1(2). By (3.31), for each fixed �≥ 1 the sum in (3.50) multiplied by n tends to zero as n→∞.
As �1−d/2 is summable in d ≥ 5, the uniform bound (3.50) shows the same holds even under the sum over �≥ 1. �

4. Examples with slow decay

Here we provide proofs of Theorems 2.2 and 2.3. The underlying ideas are very similar, but the proof of Theorem 2.2
is technically easier.

4.1. Anomalous decay in d ≥ 5

The proof of Theorem 2.2 will be based on the following strategy: Suppose that in a box of side length �n there exists
a configuration where a strong bond is separated from other sites by bonds of strength 1

n
, and (at least) one of these

“weak” bonds is connected to the origin by a “strong” path not leaving the box. Then the probability that the walk is
back to the origin at time n is bounded below by the probability that the walk goes directly towards the above pattern
(this costs eO(�n) of probability) then crosses the weak bond (which costs 1

n
), spends time n− 2�n on the strong bond

(which costs only O(1) of probability), then crosses a weak bond again (another factor of 1
n

) and then heads toward
the origin to get there on time (another eO(�n) term). The cost of this strategy is O(1)eO(�n)n−2 so if �n = o(logn) then
we get leading order n−2.

Proof of Theorem 2.2(1). Our task is to construct environments for which (2.3) holds. For κ > 1
d

let ε > 0 be such
that (1 + 4dε)/d < κ . Let B denote the set of edges in Zd and let P be an i.i.d. conductance law on {2−N : N ≥ 0}B
such that:

P(ωb = 1) > pc(d) (4.1)

and

P
(
ωb = 2−N

)= cN−(1+ε), N ≥ 1, (4.2)

where c = c(ε) is adjusted so that the distribution is normalized. Let ê1 denote the unit vector in the first coordinate
direction. Define the scale

�N =N(1+4dε)/d (4.3)

and, given x ∈ Zd , let AN(x) be the event that the configuration near x, y = x + ê1 and z = x + 2ê1 is as follows (see
the comments before this proof):
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(1) ωyz = 1 and ωxy = 2−N , while every other bond emanating out of y or z has ωb ≤ 2−N .
(2) x is connected to the boundary of the box of side length (log�N)2 centered at x by bonds with conductance one.

Since bonds with ωb = 1 percolate and since P(ωb ≤ 2−N)∼N−ε , we have

P
(
AN(x)

)≥ cN−[1+(4d−2)ε]. (4.4)

Now consider a grid GN of sites in [−�N, �N ]d ∩Zd that are spaced by distance 2(log�N)2. The events {AN(x): x ∈
GN } are independent, so

P

( ⋂
x∈GN

AN(x)c
)
≤ exp

{
−c

(
�N

(log�N)2

)d

N−[1+(4d−2)ε]
}
≤ e−cNε

(4.5)

and the intersection occurs only for finitely many N .
By the stretched-exponential decay of truncated connectivities [13], Theorem 8.65, every connected component

of side length (log�N)2 in [−�N, �N ]d ∩ Zd will eventually be connected to the largest connected component in
[−2�N,2�N ]d ∩ Zd . We conclude that there exists N0 = N0(ω) with P(N0 < ∞) = 1, such that once N ≥ N0, the
event AN(x) occurs for some even-parity site x = xN(ω) ∈ [−�N, �N ]d ∩Zd that is connected to 0 by a path, PathN ,
in [−2�N,2�N ]d , on which only the last N0 edges – namely, those close to the origin – may have conductance smaller
than one.

We are now ready to employ the above strategy. Suppose N ≥ N0 and let n be such that 2N ≤ 2n < 2N+1. Let
xN be the site in [−�N, �N ]d ∩ Zd for which AN(x) occurs and let rN be the length of PathN . Let α = α(ω) be the
minimum of ωb for b within N0 steps of the origin. The passage from 0 to xN in time rN has probability at least
αN0(2d)−rN , while staying on the bond (y, z) for time 2n− 2rN − 2 costs an amount which is bounded independently
of ω. The transitions across (x, y) cost order 2−N each. Hence, we have

P2n
ω (0,0)≥ cα2N0(2d)−2rN 2−2N. (4.6)

By the comparison of the graph-theoretic distance and the Euclidean distance [1], we have rN ≤ c�N once N is
sufficiently large. Since n is of order 2N we are done. �

The argument for the second part follows very much the same strategy:

Proof of Theorem 2.2(2). Let (λn) be a sequence in the statement and suppose, without loss of generality, that
λ1 � 1. Let

qn =
(

1

2

logλn

log(2d)

)1/4

(4.7)

and let {nk} be even numbers chosen as follows:

1 − q−1
n1

> pc and qnk+1 > 2qnk
. (4.8)

Define an i.i.d. law P on ({1} ∪ {nk: k ≥ 1})B as follows:

P(ωb = 1)= 1 − q−1
n1

and P

(
ωb = 1

nk

)
= q−1

nk
− q−1

nk+1
. (4.9)

Let C∞ denote the (a.s. unique) infinite connected component of edges with conductance one.
By following the argument in the proof of Theorem 2.2(1), for almost every ω and every k large enough, we can

find x ∈ C∞ such that:

(1) For y = x+ ê1 and z = x+2ê1, we have ωy,z = 1, and all other bonds emanating from y and z are of conductance
1/nk .
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(2) The chemical distance between x and the closest point in C∞ to the origin is less than q4
nk

.

Explicitly, set �N = θq4
nk

for some constant θ and let An(x) be the event that (1) holds and x is connected to the

boundary of the box x + [−(log�N)2, (log�N)2]d by edges with strength one. Then P(AN(x)) ≥ cq−4d+2
nk

= c�−d+δ
N

for δ = (2d)−1. Plugging this in (4.5) results in a sequence that is summable on k (note that qk increase exponentially).
Percolation arguments and the choice of θ , then ensure that (most of) the x’s where AN(x) occurs have a strong
connection near the origin of length at most q4

nk
.

The argument leading to (4.6) – with rN replaced by q4
nk

– now gives

Pnk
ω (0,0)≥ cα2N0

(2d)
−2q4

nk

n2
k

. (4.10)

By the choice of qn, we are done. �

4.2. Time-dependent environments

Here we will prove Theorem 2.3. Let P be the Bernoulli measure on B with parameter p > pc(d). Let C∞ denote the
infinite component of occupied bonds. We define ωb = 1 on occupied bonds and ωb = 1

n
on vacant bonds. The proof

proceeds via three lemmas:

Lemma 4.1. Let Y = (Y1, . . . , Yn) be the first n steps of the random walk on environment ω conditioned to avoid
bonds with ωb = 1

n
. Let X̃ = (X̃1, . . . , X̃n) be the simple random walk on the percolation cluster of ωb = 1. Then

the the corresponding path measures are absolutely continuous with respect to each other and the Radon–Nikodym
derivatives are (essentially) bounded away from zero and infinity, uniformly in n and ω ∈ {0 ∈ C∞}.

Proof. Fix a sequence of sites x1, . . . , xn ∈ C∞ such that ωxi,xi+1 = 1 for all i = 1, . . . , n − 1. Then the probability
that X̃ executes this sequence is

∏n
i=0 d(xi)

−1, where d(x) is the degree of the percolation cluster at x. For Y we get
Cn

∏n−1
i=0 πω(xi)

−1, where C−1
n is the probability that the unconditioned random walk X has not used a weak bond in

its first nth steps. Since

πω(x)− d(x)= O

(
1

n

)
, (4.11)

the ratio of the products is bounded away from zero and infinity uniformly in n and the points x1, . . . , xn. But both
path distributions are normalized and so Cn is bounded as well. �

Next we provide a lower bound on the probability that the walk X visits a given site in n steps. Let Sx be the first
visit of X to x,

Sx = inf{n≥ 0: Xn = x}. (4.12)

Then we have:

Lemma 4.2. For a.e. ω ∈ {0 ∈ C∞} there is C = C(ω) > 0 and a constant n0 < ∞ such that for all n ≥ n0 and all
x ∈ C∞ satisfying |x| ≤ √

n, we have

Pω,0(Sx ≤ n)≥ C(ω)|x|−(d−2). (4.13)

Proof. The choice of the conductance values ensures that the probability that X stays on C∞ for the first n steps
is uniformly positive. Conditioning on this event, and applying Lemma 4.1, it thus suffices to prove (4.13) for the
walk X̃. The proof makes use of Barlow’s heat-kernel bounds for the random walk on percolation cluster; cf. [2],
Theorem 1.
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Consider the continuous time version X̃′ of the walk X̃, i.e., X̃′ executes the same steps but at times that are
i.i.d. exponential. By integrating the heat-kernel bounds, we get that the expected amount of time X̃′ spends at x

up to time n/2 is at least C(ω)|x|−(d−2). A similar calculation shows that the expected time the walk X̃′ spends at
x conditioned on it hitting x is uniformly bounded. Therefore, the probability of X̃′ hitting x before time n/2 is at
least C(ω)|x|−(d−2). To get back to X̃, we need to subtract the probability that by continuous time n/2 the walk X̃′
did more than n discrete steps, which is less than e−cn. As |x| ≤ √

n, this cannot compete with |x|−(d−2) once n is
sufficiently large. �

We now define the notion of a trap which is similar to that underlying the event AN(x) in the proof of Theorem 2.2.
Explicitly, a trap is the triple of sites x, y, z with y = x + ê1 and z = x + 2ê1 such that x ∈ C∞ and such that all bonds
emanating out of y and z are weak except the bond between them. Let T (x) be the event that a trap occurs at x.

Lemma 4.3. For a.e. ω ∈ {0 ∈ C∞} there is c <∞ and n1(ω) <∞ such that∑
x: |x|≤√n

T (x) occurs

|x|−(2d−4) ≥
{

c, d ≥ 5,
c logn, d = 4,

(4.14)

for all n≥ n1.

Proof. This is a consequence of the Spatial Ergodic Theorem. Indeed, let ΛL = [−L,L]d ∩ Zd and note that the
fraction of ΛL occupied by {x ∈ΛL: T (x) occurs} converges a.s. to ρ = P(T (0)) > 0. But then also the corresponding
fraction in the annuli Λ2k+1 \Λ2k converges a.s. to ρ. In particular, there is k0 = k0(ω) such that this fraction exceeds
ρ/2 for all k ≥ k0. Now take n and find k so that 2k ≤√

n≤ 2k+1. Bounding |x| ≤ 2k+1 on the kth annulus, we get

∑
x: |x|≤√n

T (x) occurs

|x|−(2d−4) ≥
k∑

�=k0

ρ

2

|Λ2�+1 \Λ2� |
(2�+1)2d−4

. (4.15)

As |Λ2�+1 \Λ2� | ≥ (2�)d , the result follows. �

We are now ready to prove the heat-kernel lower bounds (2.7):

Proof of Theorem 2.3. Pick ω ∈ {0 ∈ C∞} and let x be a trap (i.e., event T (x) occurs and y and z are the endpoints
of the “trapped” strong edge) with |x| < 1

4

√
n. Let U(x, k, �) be the event that the random walk starts at the origin,

hits x for the first time at time k, crosses the edge (y, z), spends time 2n− k − �− 2 on this edge and then exits, and
then arrives back to the origin in � units of time. Clearly,

Pω,0
(
U(x, k, �)

)≥ Pω,0(Sx = k)
c

n

(
1 − c̃

n

)n−k−�−2
c

n
Pω,x(S0 = �), (4.16)

where c and c̃ are constants depending only on dimension. Reversibility tells us

Pω,x(S0 = �)= Pω,0(Sx = �)
πω(0)

πω(x)
≥ cPω,0(Sx = �) (4.17)

and so

Pω,0
(
U(x, k, �)

)≥ cn−2Pω,0(Sx = k)Pω,0(Sx = �). (4.18)

Denote

U(x)=
⋃

1≤k≤n/5
1≤�≤n/5

U(x, k, �). (4.19)
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Using the disjointness of U(x, k, �) for different k and � and invoking Lemma 4.2,

Pω,0
(
U(x)

)≥ C(ω)n−2|x|−(2d−4). (4.20)

But, for n large enough, the events {U(x): x is a trap} are disjoint because the restriction k, � < n
5 makes the walk

spend more than half of its time at the strong bond constituting the trap. (This bond determines the trap entrance/exit
point x.) Hence,

P2n
ω (0,0)≥ Pω,0

( ⋃
x: |x|<(1/2)

√
n

U(x)

)
≥ C(ω)n−2

∑
x: |x|≤(1/2)

√
n

T (x) occurs

|x|−(2d−4). (4.21)

Applying Lemma 4.3, the desired claim is proved. �

Appendix: Isoperimetry on percolation cluster

In this section, we give a proof of isoperimetry of the percolation cluster which were needed in the proof of Lemma 3.4.
Consider bond percolation with parameter p and let C∞ denote the a.s. unique infinite cluster. For Λ ⊂ Zd let ∂Λ

denote the set of edges between Λ and Zd \ Λ and let ∂ωΛ denote those edges in ∂Λ that are occupied. We call Λ

ω-connected if every two sites in Λ can be connected by a finite path that uses only the sites in Λ and whose every
bond is occupied in ω. Then we have:

Theorem A.1. For all d ≥ 2 and p > pc(d), there are positive and finite constants c1 = c1(d,p) and c2 = c2(d,p)

and an a.s. finite random variable R0 =R0(ω) such that for each R ≥R0 and each ω-connected Λ satisfying

Λ⊂ C∞ ∩ [−R,R]d and |Λ| ≥ (c1 logR)d/(d−1) (A.1)

we have∣∣∂ωΛ
∣∣≥ c2|Λ|(d−1)/d . (A.2)

This claim was the basic technical point of Benjamini and Mossel [3] as well as of many subsequent studies of
random walk on percolation cluster. Unfortunately, the proof of [3] for the case d ≥ 3 and p close to pc(d) contains
a gap. A different proof was recently given in [22], Proposition 1.4, but the argument is quite long and it builds
(ideologically) upon a weaker version of (A.2) proved by Mathieu and Remy [20], whose proof is also rather long.
Closely related estimates were derived in Barlow [2], but additional arguments are needed to extract (A.2).

For the convenience of the reader, and future reference, we provide a self-contained (and reasonably short) proof
of Theorem A.1. Our arguments are close to those of Benjamini and Mossel [3] and they indicate that the seriousness
of the gaps in [3] has been somewhat exaggerated. An independent argument, based on exponential cluster repulsion,
has simultaneously been found by Pete [21].

Theorem A.1 will be a consequence of the following, slightly more general estimate:

Proposition A.2. For d ≥ 2 and p > pc(d), there are c2, c3, ζ ∈ (0,∞) such that for all t > 0,

P
(∃Λ � 0,ω-connected, |Λ| ≥ td/(d−1),

∣∣∂ωΛ
∣∣ < c2|Λ|(d−1)/d

)≤ c3e−ζ t . (A.3)

Proof of Theorem A.1 from Proposition A.2. Using translation invariance, the probability that there exists a set
Λ ⊂ Zd ∩ [−R,R]d with the properties listed in (A.3) is bounded by a constant times Rde−ζ t . This applies, in
particular, to sets Λ⊂ C∞∩ [−R,R]d . Setting t = c1 logR for c1 such that c1ζ > d + 1, this probability is summable
on R. By the Borel–Cantelli lemma, the corresponding event occurs only for finitely many R. �

The advantage of the formulation (A.3) is that it links the tail bound on R0 to the cut-off on the size of |Λ|. For
instance, if we only care for |Λ| ≥Rθ for some θ ∈ (0, d), then P(R0 ≥R) decays exponentially with Rθ(1−1/d).
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As noted by Benjamini and Mossel [3] the proof is quite straightforward in d = 2 and in any d once p is close
to one. However, to have a proof that works in d ≥ 3 all the way down to pc, we will have to invoke the “static”
block-renormalization technique ([13], Section 7.4). For each integer N ≥ 1, consider the cubes

BN(x)= x +Zd ∩ [0,N]d (A.4)

and

B̃3N(x)= x +Zd ∩ [−N,2N ]d . (A.5)

Let GN(x) be the event such that:

(1) For each neighbor y of x, the side of the block BN(Ny) adjacent to BN(Nx) is connected to the opposite side of
BN(Ny) by an occupied path.

(2) Any two occupied paths connecting BN(Nx) to the boundary of B̃3N(Nx) are connected by an occupied path
using only edges with both endpoints in B̃3N(Nx).

From Theorem 8.97 and Lemma 7.89 in [13] we know that, for each p > pc(d),

P
(
GN(0)

) −→
N→∞1. (A.6)

By [13], Theorem 7.65, for each p ∈ [0,1] there exists ηN(p) ∈ [0,1] with ηN(p) ↑ 1 as p ↑ 1 such that the 0–1-va-
lued process {1GN(x): x ∈ Zd} is dominated from below by independent Bernoulli’s with parameter ηN(p).

Given a finite set Λ ⊂ Zd , let Λ(N) = {x ∈ Zd : Λ ∩ BN(Nx) �= ∅} and define ΛN to be the complement of the
unique infinite component of Zd \Λ(N). We will also need a notation ∂∗Δ for the inner site-boundary of a set Δ,

∂∗Δ= {
x ∈Δ: ∃y ∈ Zd \Δ with |x − y| = 1

}
, (A.7)

and diamΛ for the diameter of Λ in �∞-distance on Zd . The crucial observation – which is where the setting of [3]
runs into a problem – is now as follows:

Lemma A.3. For ω ∈Ω , let Λ⊂ Zd be ω-connected with ΛN =Δ and diamΛ≥ 3N . If∣∣∂ωΛ
∣∣ <

1

2 · 3d

∣∣∂∗Δ∣∣ (A.8)

then ∣∣{x ∈ ∂∗Δ: GN(x)c occurs
}∣∣ >

1

2

∣∣∂∗Δ∣∣. (A.9)

Proof. Let Δ=ΛN and note that x ∈ ∂∗Δ implies x ∈ΛN , i.e., Λ∩BN(Nx) �= ∅. We claim that, for each x ∈ ∂∗Δ,

GN(x)⊂ {
B̃3N(Nx) contains an edge in ∂ωΛ

}
. (A.10)

Indeed, if GN(x) occurs then, by diamΛ≥ 3N , the box BN(Nx) is connected to a site on the boundary of B̃3N(Nx)

by an occupied path in Λ. As x ∈ ∂∗Δ there exists a neighbor y ∈Δc. Part (1) of the definition of GN(x) ensures that
there is another such path “crossing” BN(Ny); as Λ ∩ BN(Ny) = ∅, this path contains no sites in Λ. By part (2) of
the definition of GN(x), the two paths must be joined by an occupied path in B̃3N(Nx) which then must contain an
edge in ∂ωΛ.

Since each edge in ∂ωΛ belongs to at most 3d distinct cubes B̃3N(Nx) with x ∈ ∂∗Δ, the number of boundary
sites x ∈ ∂∗Δ where GN(x) occurs is bounded by 3d |∂ωΛ|, i.e.,∣∣∂∗Δ∣∣− ∣∣{x ∈ ∂∗Δ: GN(x)c occurs

}∣∣≤ 3d
∣∣∂ωΛ

∣∣. (A.11)

Under the assumption (A.8), this implies (A.9). �
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Proof of Proposition A.2. Abbreviate c4 = (2 · 3d)−1 and fix Δ⊂ Zd finite, connected with connected complement.
Suppose Λ is ω-connected with ΛN =Δ. Then |Δ| ≥N−d |Λ| and, invoking the standard isoperimetry on Zd ,∣∣∂∗Δ∣∣≥ c5|Δ|(d−1)/d ≥ c5N

1−d |Λ|(d−1)/d , (A.12)

where c5 = c5(d) > 0. Setting c2 = c4c5N
1−d we then have{∣∣∂ωΛ

∣∣ < c2|Λ|(d−1)/d
}⊂ {∣∣∂ωΛ

∣∣ < c4
∣∣∂∗Δ∣∣} (A.13)

and also∣∣∂∗Δ∣∣≥ c5N
1−d t (A.14)

whenever |Λ| ≥ td/(d−1). We will suppose td/(d−1) ≥ (3N)d to enable Lemma A.3.
Equation (A.13), Lemma A.3 and the fact that {1GN(x): x ∈ Zd} stochastically dominates site percolation with

parameter ηN(p)= 1 − εN then yield

P
(∃Λ � 0,ω-connected, |Λ| ≥ t (d−1)/d ,ΛN =Δ,

∣∣∂ωΛ
∣∣ < c2|Λ|(d−1)/d

)
≤ P

( ∑
x∈∂∗Δ

1GN(x) ≤ 1

2

∣∣∂∗Δ∣∣)≤ 2|∂∗Δ|(εN)(1/2)|∂∗Δ|. (A.15)

Here 2|∂∗Δ| bounds the number of possible subsets {x ∈ ∂∗Δ: GN(x)c occurs} of ∂∗Δ. To finish the proof, we need
to sum over all eligible Δ’s.

Let c6 = c6(d) be a number such that cn
6 bounds the total number of connected sets Δ ⊂ Zd with connected

complement, containing the origin and having |∂∗Δ| = n. (The fact that this grows exponentially in n follows from
the fact that ∂∗Δ is connected in an appropriate notion of adjacency on Zd .) As εN → 0 by (A.6), we can find N so
that 2c6

√
εN ≤ 1

2 . Summing (A.15) over all connected Δ with connected complement that obey (A.14) now gives

P
(∃Λ � 0,ω-connected, |Λ| ≥ td/(d−1),

∣∣∂ωΛ
∣∣ < c2|Λ|(d−1)/d

)
≤

∑
n≥c5N

1−d t

2n(εN)(1/2)ncn
6 ≤

∑
n≥c5N

1−d t

2−n ≤ 21−!c5N
1−d t", (A.16)

where we also assumed that 2ε
1/2
N ≤ 1 to get the first inequality. Choosing the constants appropriately, this yields the

desired claim. �
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