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Abstract

Let μ � ν and μ � ν denote the free additive convolution and the free multiplicative convolution, respectively, of the Borel
probability measures μ and ν. We analyze the boundary behavior of the functions Gμ�ν(z) = ∫ 1

z−t d(μ � ν)(t) and ψμ�ν(z) =∫
zt

1−zt
d(μ � ν)(t). We prove that, under certain conditions, these functions extend continuously to the boundary of their natural

domains as functions with values in the extended complex plane C ∪ {∞}. As a consequence, we obtain that μ � ν (respectively
μ � ν) can never be purely singular, unless μ or ν is concentrated in one point.
Crown Copyright © 2005 Published by Elsevier SAS. All rights reserved.

Résumé

Soit μ � ν et μ � ν la convolution additive libre et, respectivement, la convolution multiplicative libre des mesures boréliennes
de probabilité μ et ν. Nous étudions le comportement à la frontière des fonctions Gμ�ν(z) = ∫ 1

z−t d(μ � ν)(t) et ψμ�ν(z) =∫
zt

1−zt
d(μ � ν)(t). Nous démontrons que, dans certaines conditions, ces fonctions peuvent être prolongées à la frontière de

leurs domaines naturels de définition, comme fonctions continues prenant des valeurs dans la compactification C ∪ {∞} du plan
complexe C. Une conséquence de ce fait est que μ � ν (et, respectivement, μ � ν) peut être purement singulière seulement si μ ou
ν est concentrée en un point.
Crown Copyright © 2005 Published by Elsevier SAS. All rights reserved.
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1. Introduction

Free convolutions appear as natural analogues of the classical convolutions in the context of free probability theory.
Denote by M the set of Borel probability measures supported on the real line R, by M+ the ones supported on the
interval [0,+∞), and by M∗ the ones supported on the unit circle in the complex plane C having nonzero first
moment.
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For μ,ν ∈ M one defines the free additive convolution μ � ν of μ and ν in the following way: μ � ν is the
probability distribution of X + Y , where X and Y are free selfadjoint random variables with distribution μ and ν.

Similarly, given μ,ν ∈ M∗, the free multiplicative convolution μ � ν of μ and ν is defined as the probability
distribution of XY , where X and Y are free unitary random variables with distribution μ and ν.

For μ,ν ∈ M+, one still can define μ � ν, but in a slightly different way: μ � ν is the distribution of X1/2YX1/2,
where X and Y are free positive random variables with distributions μ and ν. (We refer to [16] for an introduction to
the area of free probability theory.)

Let C
+ = {z ∈ C: �z > 0} denote the upper half of the complex plane, D = {z ∈ C: |z| < 1} the open unit disk,

and let T = {z ∈ C: |z| = 1} denote the unit circle in the complex plane.
For any μ ∈M, let

Gμ(z) =
∞∫

−∞

1

z − t
dμ(t), �z �= 0,

denote the Cauchy transform of μ, and let Fμ(z) = 1
Gμ(z)

. By results of [5] (see Corollary 5.8), there exists a number

M � 0, depending on μ, such that Fμ has a right inverse F−1
μ defined on {x + iy: y > M , |x| < y}; the function

φμ(z) = F−1
μ (z) − z has the remarkable property that

φμ(z) + φν(z) = φμ�ν(z) (1)

for z ∈ {x + iy: y > M , |x| < y}, with M large enough.
Similar results have been proved for free multiplicative convolutions. For μ ∈ M+ (or μ ∈ M∗), let

ψμ(z) =
∫
V

zt

1 − zt
dμ(t),

where z belongs either to the open unit disk D (if μ ∈ M∗, in which case V = T), or to C \ [0,∞) (if μ ∈ M+, in
which case V = [0,+∞)). The function ψμ determines uniquely the measure μ, and it is univalent in a neighborhood
of zero (if μ ∈M∗) or in the left half-plane iC+ = {z ∈ C: �z < 0} (if μ ∈ M+).

Let ημ(z) = ψμ(z)/(1 + ψμ(z)). The function Σμ(z) = 1
z
η−1

μ (z) satisfies the equation

Σμ�ν(z) = Σμ(z)Σν(z) (2)

for z in a neighborhood of zero (if μ,ν ∈ M∗), or in a neighborhood of the interval (−ε,0) for some ε > 0 (if
μ,ν ∈M+). For proofs we refer to [5] and [14].

Previous results related to regularity questions for free convolutions of probability measures seem to indicate that
these operations typically do not favor the existence of a large singular part (with respect to the Lebesgue measure). It
has been proved in [6] and, respectively, in [1], that after free additive, respectively multiplicative, convolution, atoms
usually disappear. More precisely, c is an atom for μ � ν if and only if there exist atoms a of μ and b of ν with the
property that a + b = c and μ({a}) + ν({b}) > 1. Moreover, (μ � ν)({c}) = μ({a}) + ν({b}) − 1. A similar result
holds for free multiplicative convolution. The singular continuous part has been shown to disappear altogether for the
free additive convolution of a measure with itself. Also, in this case, the density of the absolutely continuous part is
continuous, and analytic outside a closed set of measure zero in R (see [2], Theorem 3.4). Similar results for free
multiplicative convolutions can be found in [3]. Biane has shown in [7] that if μ = 1

2πt

√
4t − x2 dx is the semicircular

distribution, then μ � ν is absolutely continuous with respect to the Lebesgue measure, its density is a continuous
function, analytic wherever strictly positive. These facts contrast sharply with the behavior of classical convolution.

In this paper we show that, roughly speaking, the singular continuous part of the free convolution of two measures,
none of them a point mass, if existing, has its (topological) support included in the support of the absolutely continuous
part. Moreover, the Lebesgue measure of the singular continuous support is always zero. It is easy to see that these
results have no classical counterpart. Indeed, consider a probability measure ν which is purely singular continuous and
has its topological support equal to the interval [0,1]. Its classical convolution with (δ−4 + δ4)/2 will give a purely
singular measure.

An important tool in proving results related to regularity for free convolutions has been subordination of analytic
functions. The following result has been first proved in [15] under some more restrictive hypotheses, and later in [8]
in full generality (see Theorems 3.1, 3.5, and 3.6):
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Theorem 1.1.

(a) Let μ,ν ∈ M be two Borel probability measures on the real line. Then there is an analytic function ωμ,ν on C \R

such that
(a1) Fμ�ν(z) = Fμ(ωμ,ν(z)), z ∈ C \ R;
(a2) ωμ,ν(z̄) = ωμ,ν(z), �ωμ,ν(z) � �z for z ∈ C

+, and limy→+∞(ωμ,ν(iy)/iy) = 1.
The map ωμ,ν is uniquely determined by properties (a1) and (a2).

(b) Let μ,ν ∈ M∗. There exists an analytic function ωμ,ν defined on D such that
(b1) |ωμ,ν(z)| � |z|, z ∈ D;
(b2) ψμ(ωμ,ν(z)) = ψμ�ν(z), z ∈ D.
The map ωμ,ν is uniquely determined by properties (b1) and (b2).

(c) Let μ,ν ∈ M+ be different from δ0. There exists an analytic function ωμ,ν defined on C \ [0,+∞), such that
(c1) If z ∈ C

+, then ωμ,ν(z) ∈ C
+,ωμ,ν(z̄) = ωμ,ν(z) and arg(ωμ,ν(z)) � arg(z);

(c2) ψμ(ωμ,ν(z)) = ψμ�ν(z), z ∈ C \ [0,+∞).
The map ωμ,ν is uniquely determined by properties (c1) and (c2).

The results stated in the following lemma have been proved in [6] and [1], and are direct consequences of Theo-
rem 1.1, equalities (1) and (2), and of analytic continuation.

Lemma 1.2.

(a) Let μ,ν ∈ M. With the notations from Theorem 1.1, the following equality holds:

Fμ�ν(z) + z = ωμ,ν(z) + ων,μ(z), z ∈ C \ R.

(b) Let μ,ν ∈ M+ (or μ,ν ∈M∗). With the notations from Theorem 1.1, the following equality holds:

ψμ�ν(z) = ωμ,ν(z)ων,μ(z)

z − ωμ,ν(z)ων,μ(z)
,

or, equivalently,

ημ�ν(z) = 1

z
ωμ,ν(z)ων,μ(z),

for all z ∈ C \ [0,+∞) (or z ∈ D, respectively).

For a function f : D → C ∪ {∞}, and a point x ∈ T, we say that the nontangential limit of f at x exists if the
limit limz→x, z∈Γα(x) f (z) exists for all α ∈ (0,π), where Γα(x) denotes the angular domain having vertex x, angular
opening π −α, and being bisected by the radius of D that ends at x. A similar definition holds for maps defined on the
upper half-plane. If f : C+ → C ∪ {∞} and x ∈ R, then the nontangential limit of f at x exists if limz→x, z∈Γα(x) f (z)

exists for all α ∈ (0,π), where Γα(x) denotes the angular domain having vertex x, angular opening π − α, and being
bisected by the perpendicular on R at x. We say that nontangential limit at infinity exists if limz→∞, z∈Γα(0) f (z)

exists, for all α ∈ (0,π). We shall denote nontangential limits by � limz→α f (z), or

lim
z−→α�

f (z).

The following three theorems describe properties of analytic functions in the unit disc related to their nontangential
boundary behavior.

Theorem 1.3. Let f : D → C be a bounded analytic function. Then the set of points eiθ ∈ T at which the radial limit
limr→1 f (r eiθ ) of f fails to exist is of linear measure zero.

Theorem 1.4. Let f : D → C be a bounded analytic function, and let eiθ ∈ T. If there exists a path γ : [0,1) → D

such that limt→1 γ (t) = eiθ and � = limt→1 f (γ (t)) exists in C, then the nontangential limit of f at eiθ exists, and
equals �.
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Theorem 1.5. Let f : D → C be an analytic function. Assume that there exists a set A of nonzero linear measure in T

such that the nontangential limit of f exists at each point of A, and equals zero. Then f (z) = 0 for all z ∈ D.

Theorem 1.3 is due to Fatou, Theorem 1.5 to Privalov, and Theorem 1.4 to Lindelöf. For proofs, we refer to [10]
(see Theorems 2.1, 2.3, and 8.1). Observe that, by Theorems 1.3 and 1.4, the existence of radial and nontangential
limits are equivalent for bounded analytic maps defined in the unit disc.

Let us notice that, in particular, all the above theorems apply to self-maps of the unit disc. The upper half-plane
is known to be conformally equivalent to the unit disc via a rational transformation of the extended complex plane:
the map g(z) = (z − i)/(z + i) is a conformal bijection of C ∪ {∞} onto itself that carries C

+ onto D and R ∪ {∞}
onto T; a subset of R has Lebesgue measure zero if and only if its image via g is a set of linear measure zero in T.
Moreover, such rational transformations preserve angles. Thus, even if the map g does not necessarily carry an angular
domain onto an angular domain, we have however that f has nontangential limit at g(x) ∈ T if and only if f ◦ g has
nontangential limit at x ∈ R ∪ {∞}. In particular, all the above theorems apply to analytic self-maps of the upper
half-plane, or to analytic maps from C

+ into −C
+.

Main ingredients of our proofs will be two results from the theory of cluster sets of analytic functions. Given a
domain (i.e. an open connected set) D ⊆ C ∪ {∞}, the cluster set of a function f :D → C ∪ {∞} at the point P ∈ 
D
is

C(f,P ) =
{
z ∈ C ∪ {∞} | ∃{zn}n∈N ⊂ D \ P such that lim

n→∞ zn = P, lim
n→∞f (zn) = z

}
.

A useful, but obvious property of C(f,P ) is the following:

Lemma 1.6. Let D ⊂ C be a domain and f :D → C ∪ {∞} be continuous on D. If D is locally connected at P ∈ 
D,
then C(f,P ) is either one point, or a continuum.

(This result appears in [10], as Theorem 1.1.)
The first one is the following theorem of Seidel, which describes the behavior of certain analytic functions near the

boundary of their domain of definition. For proof, we refer to [10], Theorem 5.4.

Theorem 1.7. Let f : D → D be an analytic function such that the radial limit f (eiθ ) = limr→1 f (r eiθ ) has modulus 1
for almost every θ ∈ (θ1, θ2). If θ ∈ (θ1, θ2) is such that f does not extend analytically through eiθ , then C(f, eiθ ) = 
D.

The second result is the following theorem of Carathéodory (Theorem 5.5 in [10]):

Theorem 1.8. Let f (z) be analytic and bounded in |z| < 1. Assume that for almost every θ ∈ (θ1, θ2) the radial limit
f (eiθ ) belongs to a set W in the plane. Then, for every θ ∈ (θ1, θ2) the cluster set C(f, eiθ ) is contained in the closed
convex hull of W .

Theorem 1.7 can be applied to self-maps of the upper half-plane C
+, via a conformal mapping, but in that case one

must consider meromorphic, instead of analytic, extensions.
Theorems 1.7 and 1.8 allow us to prove the following

Proposition 1.9.

(a) Let f be an analytic self-map of D such that | limr→1 f (r eiθ )| = 1 for almost every θ ∈ (θ1, θ2). Suppose that
there is a point θ0 ∈ (θ1, θ2) such that the function f cannot be continued analytically through eiθ . Then for any
t1 < t2 there is a set E ⊂ (θ1, θ2) of nonzero Lebesgue measure such that limr→1 f (r eiθ ) exists for all θ ∈ E, and
the set {limr→1 f (r eiθ ): θ ∈ E} is dense in the arc A = {eit : t1 < t < t2}.

(b) Let f be an analytic self-map of C
+ such that limy→0 f (x + iy) exists and belongs to R for almost every

x ∈ (a, b). Suppose that x0 ∈ (a, b) is such that f cannot be continued meromorphically through x0. Then for
any c < d there is a set E ⊂ (a, b) of nonzero Lebesgue measure such that limy→0 f (x + iy) exists for all x ∈ E,
and the set {limy→0 f (x + iy): x ∈ E} is dense in the interval (c, d).
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Proof. Let f and θ0 be as in the hypothesis of (a). Using Theorems 1.7 and 1.8, we conclude that, on the
one hand, C(f, eiθ0) = 
D, and on the other, that C(f, eiθ0) equals the closure of the convex hull of the set
{limr→1 f (r eiθ ): θ ∈ G} for any set G ⊂ (θ1, θ2) with the property that limr→1 f (r eiθ ) exists for all θ ∈ G, and
(θ1, θ2) \ G has zero linear measure. This implies that the set{

lim
r→1

f
(
r eiθ ): θ1 < θ < θ2, lim

r→1
f

(
r eiθ ) exists and belongs to A

}

is dense in A. It remains to prove that the set E of those θ ∈ (θ1, θ2) such that limr→1 f (r eiθ ) exists and belongs to A

has nonzero linear measure. If this were not true, then, according to Theorem 1.8, we could take G \ E instead of G

in the previous argument, and obtain a contradiction. This proves (a).
Part (b) follows directly from (a), by using the conformal mapping z �→ (z − i)/(z + i) and its inverse. �
Consider now a Borel probability measure μ on R. It is a well-known fact that one can draw informations about a

measure from the behavior of its Poisson integral near the support of that measure. For example, the value at x ∈ R of
the density function of the absolutely continuous part with respect to the Lebesgue measure of a finite measure can be
obtained as nontangential limit at x of the Poisson integral of the measure for almost all x ∈ R (for more details we
refer to [13]). A simple computation shows that the imaginary part of the Cauchy transform of μ is (up to a multiple
of −π ) equal to the Poisson integral of μ:

�Gμ(x + iy) = −
∫
R

y

(x − t)2 + y2
dμ(t), x ∈ R, y > 0.

On the other hand, the reciprocal of the Cauchy transform of μ, Fμ, maps C
+ into itself. Thus, it will be natural

to investigate the boundary behavior of the analytic map Fμ (and, implicitly, of Gμ) in order to draw conclusions
about μ.

The following result is well known. Since we do not know any reference, we give here a full proof. We do not
claim any paternity of this proof.

Lemma 1.10. Let μ be a Borel probability measure on R, and denote by μsc its singular continuous part. Then, for
μsc-almost all x ∈ R, the nontangential limit of the imaginary part of the Cauchy transform Gμ of μ at x is infinite.

Proof. According to Theorem 1.4, it is enough to show that, for μsc-almost all x ∈ R, the imaginary part of Gμ(x+ iy)

tends to infinity as y approaches zero. As we have seen before, for any y > 0 and x ∈ R,

−�Gμ(x + iy) =
∫
R

y

(x − t)2 + y2
dμ(t).

Let us observe that y2/((x − t)2 + y2) � 1/2 for all t ∈ R such that |x − t | � y. Thus,for any given y > 0, the
following holds:

−�Gμ(x + iy) =
∫
R

y

(x − t)2 + y2
dμ(t) = 1

y

∫
R

y2

(x − t)2 + y2
dμ(t)

� 1

y

x+y∫
x−y

y2

(x − t)2 + y2
dμ(t) � μsc((x − y, x + y])

2y
.

Now we can apply de La Vallée Poussin’s theorem (Theorem 9.6 in [12]) to conclude that limy→0 μsc((x − y, x + y])/
(2y) = ∞ for μsc-almost all x ∈ R (see also Theorem 31.6 in [9]). �

To study properties of the free multiplicative convolutions of probability measures, one finds more convenient to
use the functions ψμ and ημ defined at the beginning of the introduction.

Remark 1.11. The formula Gμ(1/z) = z(ψμ(z) + 1) together with Lemma 1.10 above, allows us to conclude that for
μsc-almost all x ∈ (0,+∞), the nontangential limit of ψμ at 1/x is infinite.
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Remark 1.12. For measures μ ∈M∗, we have

ψμ(z) =
∫
T

z

t̄ − z
dμ(t) = −1

2
+ 1

2

∫
T

t + z

t − z
dμ(t̄ ), z ∈ D,

and hence the function ψμ satisfies the condition �ψμ(z) � −1/2 for all z ∈ D. The real part of

1

π

(
ψμ(z) + 1

2

)
= 1

2π

∫
T

t + z

t − z
dμ(t̄ ), z ∈ D,

is the Poisson integral of the measure dμ(t̄ ), and thus, by Lemma 1.10 and a conformal transformation, for μsc-almost
all x ∈ T, the nontangential limit of ψμ at x̄ is infinite (a detailed presentation of Poisson integrals of measures on the
unit circle can be found in [11]).

We conclude the introduction with a proposition which essentially characterizes analytic functions that are Cauchy
transforms of probability measures.

Proposition 1.13.

(a) For every μ ∈ M, we have �Fμ(z) � �z, z ∈ C
+. The inequality is strict if and only if μ is not a point mass.

(b) For every μ ∈ M+, μ �= δ0, we have π > argημ(z) � arg z, z ∈ C
+. The second inequality is strict if and only if

μ is not a point mass.
(c) For every μ ∈ M∗, we have |ημ(z)| � |z|, z ∈ D. The inequality is strict if and only if μ is not a point mass.

Part (a) of the above proposition can be found also in [5], while parts (b) and (c) appear in [3] as Propositions 2.2
and 3.2.

2. Boundary behavior of Gμ�ν

In the following we shall denote by supp τ the topological support of the measure τ , and by τ ac (respectively
τ s, τ sc, τ a) the absolutely continuous (respectively singular, singular continuous, atomic) part of the measure τ with
respect to the Lebesgue measure. We shall fix two Borel probability measures μ, ν on the real line, none of them
concentrated in one point. For simplicity, denote the subordination functions ωμ,ν and ων,μ provided by Theorem 1.1
by ω1 and ω2, respectively.

Lemma 2.1 ([4]). Assume that there exists a ∈ R such that Fμ(z) = Fν(a + Fμ(z) − z) for all z ∈ C
+. Then the

functions hμ(z) = Fμ(z) − z + a, hν(z) = Fν(z) − z + a, z ∈ C
+, are conformal self-maps of the upper half-plane,

inverse to each other.

Proof. Let hμ, hν be as in the statement of the lemma. We have:

z = Fν

(
Fμ(z) − z + a

) − (
Fμ(z) − z + a

) + a = hν

(
hμ(z)

)
, z ∈ C

+.

Since, by Proposition 1.13, both hμ and hν are nonconstant analytic self-maps of the upper half-plane, applying hμ

in both sides of the previous equality yields hμ(hν(w)) = w, for all w in the open nonempty set hμ(C+), and, by
analytic continuation, for all w ∈ C

+. This shows that both hμ,hν are conformal self-maps of C
+ inverse to each

other and completes the proof. �
We effectively use in the proof the fact that neither one of μ,ν is concentrated at one point.

Remark 2.2. Any function Fμ satisfying the conditions of Lemma 2.1 must be of the form

Fμ(z) = z2 + mz + p
, m,p, r ∈ R,
z + r
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and thus, μ is purely atomic with at most two atoms. Using relation (1), it is easy to see that, if both μ and ν are
convex combinations of two atoms, then for any x ∈ R limz→x,�z>0 Fμ�ν(z) exists in C

+ ∪ R ∪ {∞}.

The next theorem describes the boundary behavior of the Cauchy transform of μ � ν.

Theorem 2.3. Let μ,ν ∈ M, none of them concentrated in one point. Then the set

C+ = {
a ∈ R: C(Fμ�ν, a) ∩ C

+ is infinite
}

is empty. If μ and ν have compact support, then the set

C = {
a ∈ R: C(Fμ�ν, a) is infinite

}
is empty.

Let us note that C is empty if and only if limz→x,�z>0 Gμ�ν(z) exists for all x ∈ R, or, equivalently, if the restriction
of Gμ�ν to the upper half-plane extends continuously to C

+ ∪ R as function with values in C ∪ {∞}.

Proof. We shall consider the restriction of the functions F and ω to the upper half-plane. By Lemma 2.1 and
Remark 2.2, it is enough to show that if a ∈ C+ (or, in the second case, if a ∈ C), then Fμ and Fν satisfy either
Fμ(z) = Fν(a + Fμ(z) − z), or Fν(z) = Fμ(a + Fν(z) − z).

Suppose a ∈ C+. The relation

ω1(z) + ω2(z) = z + Fμ�ν(z)

from Lemma 1.2(a), together with Gμ ◦ ω1 = Gν ◦ ω2 = Gμ�ν , assures us that at least one of C(ω1, a) ∩ C
+,

C(ω2, a) ∩ C
+ will be infinite. Without loss of generality, assume that C(ω1, a) ∩ C

+ is infinite, hence, according to
Lemma 1.6, a continuum.

For any z ∈ C(ω1, a) ∩ C
+ there exists a sequence {zn}n∈N ⊂ C

+ converging to a such that limn→∞ ω1(zn) = z.
Using Lemma 1.2(a), we have:

lim
n→∞ω2(zn) = lim

n→∞ zn + Fμ�ν(zn) − ω1(zn) = a + lim
n→∞Fμ

(
ω1(zn)

) − z = a + Fμ(z) − z.

Now the subordination formula from Theorem 1.1(a), will give

Fμ(z) = lim
n→∞Fμ

(
ω1(zn)

) = lim
n→∞Fν

(
ω2(zn)

) = Fν

(
a + Fμ(z) − z

)
,

for all z ∈ C(ω1, a) ∩ C
+. Since C(ω1, a) ∩ C

+, is a continuum in C
+, the identity theorem for analytic functions

will imply that

Fμ(z) = Fν

(
a + Fμ(z) − z

)
for all z ∈ C+. By Remark 2.2, we have C+ = ∅.

Let us assume now that μ and ν have compact support, and suppose that C(Fμ�ν, a) ⊆ R ∪ {∞} has more than
one point. Then, by Lemma 1.6, C(Fμ�ν, a) must be either a closed interval, or the complement of an open (possibly
empty) interval in R ∪ {∞}. It is easy to see that C(ω1, a), C(ω2, a) do not contain points in C

+. As before, at least
one of C(ω1, a), C(ω2, a) ⊆ R ∪ {∞} will be nontrivial. Without loss of generality, assume C(ω1, a) is nontrivial.

We claim that for any c in C(ω1, a) \ {∞}, with the possible exception of three points, there exists a sequence
{z(c)

n }n∈N converging to a such that limn→∞ ω1(z
(c)
n ) = c, and �ω1(z

(c)
n ) = c for all n. Let {cn}n∈N be a dense sequence

in C(ω1, a), and consider zn ∈ C
+, such that |zn − a| < 1/n, and |ω1(zn) − cn| < 1/n, n ∈ N. We define a path

γ : [0,1] → C
+ ∪ {a} such that γ (1 − 1/n) = zn, γ (1) = a, and γ is linear on the intervals [1 − 1/n,1 − 1/(n + 1)],

n ∈ N. It will suffice to show that there exists at most one point c in the interior of C(ω1, a) such that ω1(γ ([0,1))) ∩
{c + it : t ∈ [0, ε)} = ∅ for some ε > 0. Indeed, assume to the contrary that c < c′ are two such points. The set

K = {
c + it : t ∈ (0,1)

} ∪ {
c′ + it : t ∈ (0,1)

} ∪ {
s + i, c � s � c′}

separates C+ into two components, and the path ω1(γ (t)) contains infinitely many points in either of the components,
hence it crosses K infinitely many times. By our assumption, crossings cannot be close to c or c′, and this implies the
existence of a point in C(ω1, a) ∩ K ⊂ C+, contradicting the fact that C(ω1, a) ∩ C+ = ∅. This proves our claim.
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We shall next show that, in fact, both C(ω1, a),C(ω2, a) ⊆ R∪{∞} contain more than one point. Indeed, suppose,
for example, that limz→a ω2(z) = ω2(a) ∈ R ∪ {∞}. If ω2(a) = ∞, then

−
∞∫

−∞
t dν(t) = lim

z→∞Fν(z) − z = lim
z→a

Fν

(
ω2(z)

) − ω2(z) = lim
z→a

ω1(z) − z,

so that C(ω1, a) = {a − ∫ ∞
−∞ t dν(t)}, which is a contradiction. Assume ω2(a) ∈ R. By Theorems 1.3, 1.4, and 1.5,

the nontangential limit of Fμ at x exists and is finite for all x ∈ R, with the possible exception of a subset of Lebesgue
measure zero. Thus, for almost all c ∈ C(ω1, a), we have:

Fμ(c) = lim
z−→c�

Fμ(z) = lim
n→∞Fμ

(
ω1

(
z(c)
n

)) = lim
n→∞Fμ�ν

(
z(c)
n

) = lim
n→∞ω1

(
z(c)
n

) + ω2
(
z(c)
n

) − z(c)
n

= c + ω2(a) − a.

Using Privalov’s theorem (Theorem 1.5), we conclude that Fμ(z) = z − (a − ω2(a)) for all z ∈ C
+. This contradicts

the fact that μ is not concentrated at the point a − ω2(a). So indeed both C(ω1, a), C(ω2, a) are infinite.
Assume that the nontangential limit of Fμ exists at c ∈ C(ω1, a), and there exists a sequence {z(c)

n }n∈N converging

to a such that limn→∞ ω1(z
(c)
n ) = c and �ω1(z

(c)
n ) = c for all n. Then

Fμ(c) = lim
z−→c�

Fμ(z) = lim
n→∞Fμ

(
ω1

(
z(c)
n

)) = lim
n→∞Fμ�ν

(
z(c)
n

) = lim
n→∞Fν

(
z(c)
n + Fμ

(
ω1

(
z(c)
n

)) − ω1
(
z(c)
n

))
.

If there exists a subset E of C(ω1, a) of nonzero Lebesgue measure such that Fμ(c) ∈ C
+ for all c ∈ E, then we have

Fμ(c) = lim
z−→c�

Fμ(z) = lim
z−→c�

Fν

(
a + Fμ(z) − z

) = Fν

(
a + Fμ(c) − c

)
, c ∈ E.

By Theorem 1.5, this implies that the equality Fμ(z) = Fν(a + Fμ(z) − z) holds for all z ∈ C
+, and thus, by Re-

mark 2.2, we obtain a contradiction.
If Fμ(c) ∈ R for almost all c ∈ C(ω1, a), then we use Theorem 1.7 to conclude that either C(Fμ, c) = C

+∪R∪{∞}
for some c ∈ C(ω1, a), or Fμ extends meromorphically through the interior of C(ω1, a).

In the former case, since suppν is compact, we use Proposition 1.9(b) to conclude that there exists a set E ⊂
C(ω1, a) of nonzero Lebesgue measure such that

lim
z−→c�

Fμ(z) − z + a ∈ R \ suppν, c ∈ E.

But this means that

Fμ(c) = lim
z−→c�

Fμ(z) = lim
n→∞Fμ

(
ω1

(
z(c)
n

)) = lim
n→∞Fν

(
z(c)
n + Fμ

(
ω1

(
z(c)
n

)) − ω1
(
z(c)
n

)) = Fν

(
a + Fμ(c) − c

)
,

for all c ∈ E. Since E is of positive Lebesgue measure, we apply Privalov’s theorem to conclude that Fμ(z) = Fν(a +
Fμ(z) − z) for all z ∈ C+ and obtain a contradiction.

In the latter case, we look at C(ω2, a). If either there is a subset of nonzero Lebesgue measure of C(ω2, a) on
which the nontangential limit of Fν has imaginary part strictly greater than zero, or there is a c′ ∈ C(ω2, a) at which
C(Fν, c

′) = C+ ∪ R ∪ {∞}, then by the same argument as before we have the equality

Fν(z) = Fμ

(
a + Fν(z) − z

)
, z ∈ C

+,

and then C(Fμ�ν, a) must be trivial by Lemma 2.1 and Remark 2.2.
The only case that remains to be analyzed is when Fμ extends analytically through the interior of C(ω1, a) and Fν

extends analytically through the interior of C(ω2, a). By dropping if necessary to a subsequence, we may assume that
both c = limn→∞ ω1(z

(c)
n ) and limn→∞ ω2(z

(c)
n ) exist, where z

(c)
n is such that �ω1(z

(c)
n ) = c.

Suppose there were a point d ∈ C(ω2, a) and a set Vd ⊆ C(ω1, a) of nonzero Lebesgue measure such that
limn→∞ ω2(z

(c)
n ) = d for all c ∈ Vd . Taking limit as n → ∞ in the equality

Fμ

(
ω1

(
z(c)
n

)) + z(c)
n = Fμ�ν

(
z(c)
n

) + z(c)
n = ω1

(
z(c)
n

) + ω2
(
z(c)
n

)
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gives

Fμ(c) + a = c + d, for all c ∈ Vd.

Applying again Privalov’s theorem, we obtain that Fμ(z) = z − (a − d) for all z ∈ C
+. This contradicts the fact that

μ is not concentrated at the point a − d . Thus, there exists a set E ⊂ C(ω1, a) of positive Lebesgue measure such that
{c′ = limn→∞ ω2(z

(c)
n ): c ∈ E} ⊆ IntC(ω2, a). Then

Fμ(c) = lim
z→c

Fμ(z) = lim
n→∞Fμ

(
ω1

(
z(c)
n

)) = lim
n→∞Fμ�ν

(
z(c)
n

) = lim
n→∞Fν

((
z(c)
n + Fμ

(
ω1

(
z(c)
n

)) − ω1
(
z(c)
n

))
= Fν

(
a + Fμ(c) − c

)
for all c ∈ E. Privalov’s theorem implies that Fμ(z) = Fν(a +Fμ(z)−z) for all z ∈ C+. This concludes the proof. �
Remark 2.4. The proof of Theorem 2.3 implies that, whenever μ,ν have compact support and neither of them is
concentrated in one point, the restrictions to the upper half-plane of ω1 and ω2 can be continuously extended to R.

An immediate consequence of Theorem 2.3 is the following

Corollary 2.5. If μ and ν have compact support and neither of them is concentrated in one point, then supp(μ � ν)s

is closed and of zero Lebesgue measure. Moreover, supp(μ � ν)sc ⊂ supp(μ � ν)ac. In particular, μ � ν can never be
singular (the last statement holds also for Borel probability measures with noncompact support on R).

Proof. Suppose first that μ,ν have compact support. According to Theorem 2.3, Fμ�ν extends continuously to R.
Thus, the preimage of zero under the extension of Fμ�ν to C

+ ∪ R must be a closed set. This fact, together with
Lemma 1.10, imply that the set supp(μ � ν)sc is included in the closed set F−1

μ�ν
({0}). According to Privalov’s

theorem (Theorem 1.5), F−1
μ�ν

({0}) must be of zero Lebesgue measure. Since by Theorem 7.4 of [6], μ � ν can have
only finitely many atoms, we conclude that supp(μ � ν)s is a closed set of zero Lebesgue measure.

Assume now that x ∈ supp(μ � ν)sc. As μ � ν can have only finitely many atoms, there is no loss of generality
to assume that x is not an atom of μ � ν. Recall that −π−1�Gμ�ν is the Poisson integral of μ � ν. Assume to the
contrary that x does not belong to supp(μ � ν)ac. Thus, there exists an open neighborhood V ⊆ R of x such that
the nontangential limit of the Poisson integral of μ � ν at a equals zero for almost all a ∈ V with respect to the
Lebesgue measure. We conclude that � limz→a Gμ�ν(z) ∈ R for Lebesgue-almost all a ∈ V . On the other hand, the
set V ∩ supp(μ � ν)sc is infinite, without isolated points, and the nontangential limit of Gμ�ν at (μ � ν)sc-almost
all points in V ∩ supp(μ � ν)sc is infinite, by Lemma 1.10. Thus, the identity theorem for analytic functions implies
that G(μ�ν)sc does not extend meromorphically through any a ∈ V ∩ supp(μ � ν)sc. We conclude by Theorem 1.7,
applied to the upper half-plane, that C(−Gμ�ν, x) = C

+ ∪ R ∪ {∞}, and thus C(Fμ�ν, x) = C
+ ∪ R ∪ {∞}. This

contradicts Theorem 2.3.
Finally, suppose that μ and ν have arbitrary support, and assume that μ � ν is purely singular. According to

Theorem 7.4 of [6], μ � ν cannot be purely atomic, and can have only finitely many atoms. Thus, it must have a
singular continuous component. As before, we conclude that for any x ∈ supp(μ � ν) which is not an atom of μ � ν

we have C(Fμ�ν, x) = C
+ ∪ R ∪ {∞}, contradicting Theorem 2.3. �

3. Boundary behavior of ψμ�ν

3.1. Measures supported on [0,+∞)

As in Section 2, let μ,ν ∈ M+, neither of them a point mass, and denote the subordination functions provided by
Theorem 1.1 ωμ,ν = ω1, and ων,μ = ω2. We have the following analogue of Lemma 2.1:

Lemma 3.1. If there exists a ∈ (0,+∞) such that ημ(z) = ην(
a
z
ημ(z)), then there exist α1, α2, β1, β2 > 0, t, s ∈ (0,1)

such that α1 �= α2, β1 �= β2, and μ = tδα + (1 − t)δα , ν = sδβ + (1 − s)δβ .
1 2 1 2
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Proof. Consider the analytic functions hμ(z) = aημ(z)/z, hν(z) = aην(z)/z, z ∈ C \ [0,+∞). The equation ημ(z) =
ην(

a
z
ημ(z)) implies

hν

(
hμ(z)

) = a

hμ(z)
ην

(
hμ(z)

) = a

hμ(z)
ημ(z) = z, z ∈ C \ R.

Since, by Proposition 1.13, hμ is not constant, applying hμ to the previous equality, we obtain hμ(hν(w)) = w for all
w in the nonempty open set hμ(C \ R). So hμ and hν are conformal maps inverse to each other.

Since z(ψμ(z) + 1) = Gμ(1/z), we have

hμ(z) = a

(
1

z
− 1

Gμ(1/z)

)
= a

(
1

z
− Fμ

(
1

z

))
, z ∈ C \ [0,+∞),

so hμ(C+) ⊆ C+, by Proposition 1.13.
As we also have ημ((−∞,0)) ⊂ (−∞,0), so that hμ maps (−∞,0) into (0,∞), and μ,ν are not point masses, it

follows that

hμ(z) = cz + d

z + b
, c > 0, b < 0, d < cb, z �= −b.

Then

hν(z) = −bz + d

z − c
, z �= c.

Thus, ημ(z) = (cz2 +dz)/(az+ab) and ην(z) = (−bz2 +dz)/(az−ac) extend analytically through [0,+∞)\{−b},
and [0,+∞) \ {c}, respectively. This implies that both μ and ν must be convex combination of two distinct Dirac
measures, μ = tδα1 + (1 − t)δα2 , and ν = sδβ1 + (1 − s)δβ2 for some α1, α2, β1, β2 > 0, t, s ∈ (0,1), and concludes
the proof. �

It is not obvious that, for μ and ν as in Lemma 3.1, C(ημ�ν, x) is finite for all x ∈ [0,+∞). To prove this, we
shall compute explicitly ημ�ν . Let us note that

ημ(z) = ψμ(z)

1 + ψμ(z)
= tzα1(1 − zα2) + (1 − t)zα2(1 − zα1)

(1 − zα1)(1 − zα2) + tzα1(1 − zα2) + (1 − t)zα2(1 − zα1)

= z(tα1 + (1 − t)α2) − z2α1α2

1 − z((1 − t)α1 + tα2)
,

so that α1α2 = −c/(ab), α1 + α2 = (d − a)/(ab), and t = (1 + bα1)/(bα1 − bα2). This implies

b = 1

(t − 1)α1 − tα2
, c = aα1α2

(1 − t)α1 + tα2
, and d = a + a(α1 + α2)

(t − 1)α1 − tα2
.

Thus, α1, α2, t , and a determine uniquely b, c, and d . For simplicity, we shall compute ημ�ν in terms of b, c, d .
Using successively Theorem 1.1(c), Lemmas 3.1, and 1.2, we have

ημ

(
ω1(z)

) = ην

(
ω2(z)

) = ημ

(
a
ην(ω2(z))

ω2(z)

)
= ημ

(
a
ω1(z)

z

)
, z ∈ C \ [0,+∞).

Since ημ(z) = (cz2 + dz)/(az + ab), the previous equality will imply that the subordination function ω1 satisfies

acω1(z)
2 + bc(a + z)ω1(z) + bdz = 0, z ∈ C \ [0,+∞).

This, together with the condition ω1((−∞,0)) ⊆ (−∞,0) (required by Theorem 1.1(c1)), shows that

ω1(z) = −bc(a + z) − √
b2c2(a + z)2 − 4abcdz

2ac
, z ∈ C \ [0,+∞).

A similar computation gives

ω2(z) = bc(a + z) + √
b2c2(a + z)2 − 4abcdz

2ab
, z ∈ C \ [0,+∞).

Since, by Lemma 1.2(b) ημ�ν(z) = ω1(z)ω2(z)/z for all z ∈ C \ [0,+∞), we conclude that C(ημ�ν, x) is finite for
all x ∈ [0,+∞). Now we are ready to prove the following
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Theorem 3.2. Let μ,ν ∈ M+, none of them concentrated in one point. Then the set

D = {
a ∈ (0,∞): C(ψμ�ν, a) is infinite

}
is empty.

Let us note that D is empty if and only if limz→x,�z>0 ψμ�ν(z) exists for all x ∈ (0,+∞), or, equivalently, if the
restriction of ψμ�ν to the upper half-plane extends continuously to C

+ ∪ R as function with values in C ∪ {∞}.

Proof. It is easy to observe that C(ψμ�ν, a) is infinite if and only if C(ημ�ν, a) is infinite. For the sake of simplicity,
we will work mainly with η. As the functions ψ , η, and ω map the upper half-plane into itself, it will be convenient
from now on to consider their restrictions to C

+. We shall prove the theorem by showing that if a ∈D, then ημ(z) =
ην(aημ(z)/z), and using Lemma 3.1 and the observations following it to obtain a contradiction. So suppose there
exists a number a ∈D. The relation

ημ�ν(z) = 1

z
ω1(z)ω2(z)

from Lemma 1.2(b) assures us that at least one of C(ω1, a), C(ω2, a) is infinite.
Consider first the case when C(ημ�ν, a) ∩ C

+ is infinite. Then at least one of C(ω1, a) ∩ C
+, C(ω2, a) ∩ C

+
is infinite. Without loss of generality, assume that C(ω1, a) ∩ C

+ is infinite. For any z ∈ C(ω1, a) ∩ C
+, there is a

sequence {zn}n∈N converging to a such that limn→∞ ω1(zn) = z. Then, by Lemma 1.2 and Theorem 1.1,

lim
n→∞ω2(zn) = lim

n→∞
znημ�ν(zn)

ω1(zn)
= lim

n→∞
znημ(ω1(zn))

ω1(zn)
= aημ(z)

z
.

Since μ is not a point mass, �(
aημ(z)

z
) > 0 whenever �z > 0, by Proposition 1.13(b). This gives directly

ημ(z) = lim
n→∞ημ

(
ω1(zn)

) = lim
n→∞ην

(
ω2(zn)

) = lim
n→∞ην

(
znημ�ν(zn)

ω1(zn)

)
= ην

(
aημ(z)

z

)
,

for all z ∈ C(ω1, a) ∩ C
+, and hence for all z ∈ C \ [0,+∞), which, is a contradiction.

Now suppose that C(ημ�ν, a) ⊆ R ∪ {∞} is infinite. By an argument similar to the one in the proof of Theo-
rem 2.3, one concludes that in fact both sets C(ω1, a), C(ω2, a) ⊆ R ∪ {∞} are infinite. Indeed, suppose, say, that
limz→a ω2(z) = ω2(a). Then C(ω1, a) must be infinite, so, as seen in the proof of Theorem 2.3, for any c ∈ C(ω1, a),
with at most three exceptions, there exists a sequence {z(c)

n }n∈N such that ω1(z
(c)
n ) ∈ c + iR and ω1(z

(c)
n ) → c as

n → ∞. If ω2(a) ∈ R, then

ω2(a) = lim
n→∞

z
(c)
n ημ(ω1(z

(c)
n ))

ω1(z
(c)
n )

= a

c
lim
z−→c�

ημ(z) = ημ(c)
a

c
,

for all c ∈ C(ω1, a), with the possible exception of a subset of zero Lebesgue measure. Since the nontangential limit
of ημ exists at almost every point of R, we can apply Theorem 1.5 to conclude that ημ(z) = z

ω2(a)
a

for all z ∈ C
+,

and, by analytic continuation, for all z ∈ C \ [0,+∞). This contradicts the fact that μ is not a point mass at ω2(a)/a.
If ω2(a) = ∞, then we obtain the equality

1

c
ημ(c) = lim

n→∞
ημ(ω1(z

(c)
n ))

ω1(z
(c)
n )

= lim
n→∞

ω2(z
(c)
n )

z
(c)
n

= ∞

for almost all c ∈ C(ω1, a). This is impossible. Thus, both C(ω1, a) and C(ω2, a) must be infinite.
Suppose there exists a subset E of C(ω1, a) of nonzero Lebesgue measure such that ημ(c) ∈ C

+ for all c ∈ E.
Then

ημ(c) = lim
z−→c�

ημ(z) = lim
n→∞ημ

(
ω1

(
z(c)
n

)) = lim
n→∞ην

(
ω2

(
z(c)
n

)) = lim
n→∞ην

(
z
(c)
n ημ(ω1(z

(c)
n ))

ω1(z
(c)
n )

)
= ην

(
aημ(c)

c

)
,

which, by Theorem 1.5, implies ημ(z) = ην(aημ(z)/z) for all z ∈ C+, and hence for all z ∈ C \ [0,+∞), which is a
contradiction.
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If the nontangential limit of ημ at c is real for almost all c ∈ C(ω1, a), and ημ cannot be continued meromorphically
through some point x belonging to the interior of C(ω1, a), we apply Proposition 1.9(b) to conclude that there exists
a set E ⊂ IntC(ω1, a) of nonzero Lebesgue measure such that the set{

lim
z−→c�

ημ(z)/z: c ∈ E
}

is dense in (−∞,0). Then

ημ(c) = lim
z−→c�

ημ(z) = lim
n→∞ημ

(
ω1

(
z(c)
n

)) = lim
n→∞ην

(
z
(c)
n ημ(ω1(z

(c)
n ))

ω1(z
(c)
n )

)
= ην

(
aημ(c)

c

)
,

for all c ∈ E. By Privalov’s theorem, ημ(z) = ην(
aημ(z)

z
) for all z ∈ C

+, and hence for all z ∈ C \ [0,+∞), which is a
contradiction.

If ημ extends meromorphically through the interior of C(ω1, a) and ην extends analytically through the interior of

C(ω2, a), then we obtain again that ημ(z) = ην(
aημ(z)

z
) for all z ∈ C \ [0,+∞), in the same way as in the proof of

Theorem 2.3, which provides a contradiction.
Thus, the restriction of ημ�ν to the upper half-plane extends continuously to R \ {0}. Since ημ�ν(z̄) = ημ�ν(z),

z ∈ C \ [0,+∞), we obtain that D is indeed empty. This concludes the proof. �
Remark 3.3. The proof of Theorem 3.2 implies that whenever μ,ν ∈ M+, and neither of them is concentrated in one
point, the restriction to the upper half-plane of the subordination functions ω1 and ω2 can be continuously extended
to R, including zero. Thus, a stronger result holds for the subordination functions than for ψμ�ν .

We have the following analogue of Corollary 2.5:

Corollary 3.4. If μ,ν ∈ M+, and none of them is concentrated at one point, then supp(μ � ν)s is closed and of zero
Lebesgue measure. Moreover, supp(μ � ν)sc ⊂ supp(μ � ν)ac. In particular, μ � ν can never be singular.

Proof. As observed in Remark 1.11, ψμ(z) = 1
z
Gμ( 1

z
) − 1 for all z ∈ C \ [0,+∞). By Lemma 1.10, for (μ � ν)sc-

almost all x, the nontangential limit of Gμ�ν at x, and thus of ψμ�ν at 1/x, is infinite. According to Theo-
rem 3.2, the restriction of ψμ�ν to the upper half-plane extends continuously to (0,+∞), so the preimage of
infinity under the extension of (ψμ�ν)|C+ to C

+ ∪ (0,+∞) (denoted also by ψμ�ν ) is a closed set. Thus, the set
{x ∈ R: 1/x ∈ supp(μ � ν)sc} is included in the closed set ψ−1

μ�ν
({∞}). According to Theorem 1.5, the Lebesgue

measure of ψ−1
μ�ν

({∞}) must be zero. Since, by Theorem 4.1 of [1], the number of atoms of μ � ν must be finite, we
conclude that, indeed, supp(μ � ν)s is a closed set of zero Lebesgue measure.

Let now x ∈ R \ {0} be such that 1/x ∈ supp(μ � ν)sc. Since μ � ν can have only finitely many atoms, we
may assume that (μ � ν)({1/x}) = 0. Suppose that 1/x /∈ supp(μ � ν)ac. By the same argument as in the proof of
Corollary 2.5, we obtain that C(Gμ�ν,1/x) = −C

+ ∪R∪{∞}, so that C(ψμ�ν, x) = C
+ ∪R∪{∞}. This contradicts

Theorem 3.2. �
3.2. Measures supported on T

Fix μ,ν ∈ M∗, and, as before, denote ωμ,ν = ω1, and ων,μ = ω2. According to Proposition 1.13(c), |ημ(z)| < 1
for z ∈ D, and ημ(0) = 0. (Recall that T denotes the boundary of D.)

Lemma 3.5. Let μ,ν ∈ M∗, neither of them concentrated in one point. If there exists a ∈ T such that ημ(z) =
ην(aημ(z)/z), then there exist α1, α2 ∈ T and t ∈ (0,1) such that μ = tδα1 + (1 − t)δα2 and ν = tδaα2 + (1 − t)δaα1 .

Proof. The proof is similar to the proof of Lemma 3.1. Define hμ(z) = aημ(z)/z, hν(z) = aην(z)/z, z ∈ D. The
equation ημ(z) = ην(

a
z
ημ(z)) implies

hν

(
hμ(z)

) = a
ην

(
hμ(z)

) = a
ημ(z) = z, z ∈ D.
hμ(z) hμ(z)
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Applying hμ to the previous inequality, we conclude as in the proof of Lemma 3.1 that hμ and hν are conformal
self-maps of the open unit disk D, inverse to each other. Thus, there exist b ∈ D and w ∈ T such that

hμ(z) = wz − b

1 − b̄wz
, and hν(z) = 
w z + b

1 + b̄z
, z ∈ D.

But this implies that ημ(z) = zhμ(z)/a = (wz2 − bz)(a − ab̄wz), and ην(z) = (
w(z2 + bz))(a + ab̄z). So both ημ

and ην extend analytically through T. This is possible only if μ and ν are purely atomic. According to [1], we have

μ
({α}) = lim

z−→ᾱ�
(1 − zα)ψμ(z),

so, in our case, α is an atom if and only if

ημ(α) = lim
z−→ᾱ�

ημ(z) = 1.

This shows that μ (and, by symmetry, ν) must have exactly two atoms, namely the solutions of the equation ημ(z) = 1
(and, respectively, ην(z) = 1). Let us focus on μ. Suppose that μ = tδα1 + (1 − t)δα2 , α1, α2 ∈ T, α1 �= α2, so that

ημ(z) = z(tα1 + (1 − t)α2) − z2α1α2

1 − z((1 − t)α1 + tα2)
.

We have seen before that ημ(z) = (z2w − zb)(a − ab̄wz). Evaluating ημ(z)/z in z = 0 and z = 1 will give

tα1 + (1 − t)α2 = −b/a and α1α2 = −w/a.

A straightforward calculation will give

ην(z) = z(taα2 + (1 − t)aα1) − z2aα2aα1

1 − z((1 − t)aα2 + taα1)
,

so ν = tδaα2 + (1 − t)δaα1 . This concludes the proof. �
An argument identical to the one following the proof of Lemma 3.1 will show that C(ημ�ν, a) contains exactly

one point for any a ∈ T whenever μ and ν are as in Lemma 3.5. We have the following

Theorem 3.6. Let μ,ν ∈ M∗, none of them concentrated in one point. Then the set

E1 = {
a ∈ T: C(ημ�ν, a) ∩ D is infinite

}
is empty. If suppμ �= T and suppν �= T, then the set

E = {
a ∈ T: C(ημ�ν, a) is infinite

}
is empty.

Let us note that E is empty if and only if limz→a ημ�ν(z) exists for all a ∈ T, or equivalently, ημ�ν extends
continuously to 
D.

Proof. Using the fact that ημ(D) ⊆ D, provided by Proposition 1.13(c), and Proposition 1.9(a), the proof becomes a
straightforward adaptation of the proofs of Theorems 2.3 and 3.2. We omit the details. �
Corollary 3.7. If suppμ �= T, suppν �= T, then supp(μ � ν)s a closed set of zero linear measure. Moreover,
supp(μ � ν)sc ⊂ supp(μ � ν)ac. In particular, μ � ν can never be singular (the last statement holds for arbitrary
elements in M∗).

Proof. Let us start by recalling that, as observed in Remark 1.12, the real part of the function 1
π
(ψμ�ν(z) + 1

2 ) is the
Poisson integral of the measure d(μ � ν)(t̄ ). Thus, as seen in Lemma 1.10, for any x ∈ T outside a set of (μ � ν)sc-
measure zero, the real part of ψμ�ν will converge to infinity as z approaches x̄ nontangentially. (We recall that the
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imaginary part of the Cauchy transform of a probability measure on R is, up to a constant, the Poisson integral of the
measure.)

Assume first that suppμ �= T, and suppν �= T. For (μ � ν)sc-almost all x ∈ T, the nontangential limit of ψ(μ�ν)s

(respectively of η(μ�ν)s ) at x̄ is infinity (respectively 1). Since, by Theorem 3.6, ημ�ν extends continuously to 
D, the
preimage of 1 via ημ�ν is a closed set. According to Privalov’s theorem (Theorem 1.5), the preimage of 1 via the
extension of ημ�ν to 
D must be of zero linear measure. On the other hand, as shown in [1], Theorem 3.1, μ � ν can
have only finitely many atoms. Thus, the support of (μ � ν)s is a closed set of zero linear measure in T.

Let now x ∈ T be such that x̄ ∈ supp(μ � ν)sc. Since μ � ν has only finitely many atoms, there is no loss of
generality in assuming that x̄ is not an atom of μ � ν. Assume to the contrary that x̄ does not belong to supp(μ�ν)ac.
Then there exists a neighborhood V of x in T such that the Poisson integral of d(μ � ν)(t̄ ) has nontangential limit
equal to zero at all points of V , outside a set of linear measure zero. But {ā: a ∈ V } ∩ supp(μ � ν)sc is an infinite set.
Since � limz→ā

1
π
(ψμ�ν(z) + 1

2 ) = ∞ for (μ � ν)sc-almost all a ∈ supp(μ � ν)sc and x ∈ V , x̄ ∈ supp(μ � ν)sc, we
conclude by the identity theorem for analytic functions that ημ�ν = ψμ�ν/(1 + ψμ�ν) does not extend analytically
through x. Thus, according to Theorem 1.7, C(ημ�ν, x) = 
D. This contradicts Theorem 3.6.

Suppose now that μ,ν have arbitrary supports in T, and assume that μ � ν is purely singular. This will imply
that the nontangential limit of ημ�ν will have absolute value one at all points x ∈ T, with the possible exception
of a set of linear measure zero. Since μ � ν cannot be purely atomic, it must have a singular continuous part. Let
x̄ ∈ supp(μ � ν)sc. As we have seen above, ημ�ν does not extend analytically through points in supp(μ � ν)sc. Thus,
according to Theorem 1.7, C(ημ�ν, x) = 
D. This contradicts Theorem 3.6. �
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