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Abstract

We determine the precise asymptotic behaviour (in space) of the Green kernel of simple random walk with drift on the
Diestel-Leader grapbL(q, r), whereq, r > 2. The latter is the horocyclic product of two homogeneous trees with respective
degreeg + 1 andr + 1. Wheng = r, it is the Cayley graph of the wreath product (lamplighter grdfip) Z with respect to a
natural set of generators. We describe the full Martin compactification of these random walksgoaphs and, in particular,
lamplighter groups. This completes previous results of Woess, who has determined all minimal positive harmonic functions.
0 2005 Elsevier SAS. All rights reserved.

Résumé

On détermine le comportement asymptotique précis (dans I'espace) du noyau de Green de la marche aléatoire simple avec
dérive sur le graphe de Diestel-Lea@¢xg, r), oug, r > 2. Ce graphe est le produit horocyclique de deux arbres homogenes
de degrég + 1 etr + 1, respectivement. Quand= r, il s’agit du graphe de Cayley du produit en couronne («lamplighter
group »)Zg @ Z par rapport a un ensemble naturel de genérateurs. On décrit la compactification de Martin complete de ces
marches aléatoires sur les grapbes et en particulier, les groupes du «lamplighter ». Ceci compléte les résultats précédents
de Woess, qui a déterminé les fonctions harmoniques minimales.
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MSC:60J50; 05C25; 20E22; 31C05; 60G50

Keywords:Lamplighter group; Wreath product; Diestel-Leader graph; Random walk; Martin boundary; Harmonic functions

9 Supported by European Commission, Marie Curie Fellowship HPMF-CT-2002-02137 and partially by FWF (Austrian Science Fund) project
P15577.
* Corresponding author.
E-mail addresswoess@weyl.math.tu-graz.ac.at (W. Woess).
1 Current address: Laboratoire de Mathématiques, Université Paris-Sud, batiment 425, 91405 Orsay cedex, France.

0246-0203/$ — see front mattér 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.12.004



1102 S. Brofferio, W. Woess / Ann. |. H. Poincaré — PR 41 (2005) 1101-1123

1. Introduction

Consider the additive group of all integers as a two-way-infinite road where at each point there is a lamp that
may be switched on in one gfdifferent intensities (state)Z, = {0, ..., ¢ — 1}, the group of integers modulp
At the beginning, all lamps are in state 0 (switched off), and a lamplighter starts at some pgbiti®thooses at
random among the following actions (or a suitable combination thereof): he can move to a neighbour Zpint in
or he can change the intensity of the lamp at the actual site to a different state. As the process evolves, we have
to keep track of the positiok € Z of the lamplighter and of the finitely supported configuratiarZz — Z, that
describes the states of all lamps. TheZgt Z of all pairs(n, k) of this type carries the structure of a semi-direct
product ofZ with the additive grougg of all configurations, on whicl acts by translations. This is often called
thelamplighter group the underlying algebraic construction is thieeath producbf two groups.

Random walks on lamplighter groups have been a well-studied subject in recent years, see Kaimanovich and
Vershik [18] and Kaimanovich [17] (Poisson boundarpounded harmonic functions), Lyons, Pemantle and Peres
[20], Erschler [12], Revelle [24], Bertacchi [3] (rate of escape), GrigorchukZand[13], Dicks and Schick [7],
Bartholdi and Woess [2] (spectral theory), Saloff-Coste and Pittet [22,23], Revelle [25] (asymptotic behaviour of
transition probabilities), and Woess [28] (positive harmonic functions).

Here, we shall deal with Green kernel asymptotics and positive harmonic functions. Let us briefly outline in
general how this is linked witiartin boundary theorpf Markov chains. Consider an arbitrary infinite (connected,
locally finite) graphX (e.g., a Cayley graph of a finitely generated group) and the stochastic transition matrix
P = (p(x, y))x,yex Of arandom walkZ, on X. That is,Z, is an X-valued random variable, the position of the
random walker at time, subject to the Markovian transition rule

PriZyt1=y|Zy=x]= p(x,y).
Then-step transition probability
P (x,y)=Pr[Z,=y| Zo=x], x,y€eX,

is the (x, y)-entry of the matrix poweP”, with P = I, the identity matrix. Th&reen kernels

o
Gx,n=) p"xy), xyeX
n=0
This is the expected number of visits in the pointvhen the random walk starts.atWe always consider random
walks that arérreducible andtransient which amounts to

0<G(x,y)<oo forallx,yeX.

Renewal theoryn a wide sense consists in describing the asymptotic behaviour in spaeecof), whenx is
fixed andy tends to infinity (or duallyy is fixed andx tends to infinity). If we fix a reference pointe X, then the
Martin kernelis

K(x,y)=G(x,y)/G(o,y), x,yeX.

If we have precise asymptotic estimates in space of the Green kernel, then we can also deterivizirthe
compactificationThis is the smallest metrizable compactification¥otontainingX as a discrete, dense subset,
and to which all functionK (x, -), x € X, extend continuously. Th®artin boundaryM = M (P) is the ideal
boundary added t& in this compactification. ThusM consists of the “directions of convergence” K{x, y),
wheny — oo. Its significance is that it leads to a complete understanding of the@dne H*(P) of positive
harmonic functionsA function’ : X — R is calledharmonic or P-harmonig if

h=Ph, wherePh(x)= Zp(x, Vh(y).
)7
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A function s € HT is calledminimalif
h(o)=1 and h>hyeHt = hyi/h=constant.

The minimal harmonic functions are the extreme points of the convex Basgh € H™: h(o) = 1} of the
coneH™.

The reader is referred to the excellent introduction to Martin boundary theory by Dynkin [10], based on the
pioneering work by Doob [9] and Hunt [16]. A main result of this theory is that

e Every minimal harmonic function is of the formk (-, &), whereé € M, and the setMmin = {§ € M:
K (-, &) is minimal is a Borel subset aM;
e For everyh e H™ there is a unique Borel measuré on M such that

V(M \ Mmin) =0 and h(-)=/K(-,€)dvh(€)-
M

The above is an abstract construction of the Martin compactification. The kind of approach that we have in mind
here is the following. The transition matriR is adapted to the graph structure, and we want to understand and
describe the Martin compactification in terms of the specific geometky. dfesults of this type for random walks

on various classes of graphs and groups, along with many references, are presented in the book by Woess [27].

Returning to lamplighter walks, this spirit requires as the starting point a good understandingyebthetry
of the wreath producZ, : Z in terms of a suitable Cayley graph of that group. This is the Diestel-Leader graph
DL(q, q), a special case of the Diestel-Leader graph&;, r) (¢, > 2), which were introduced in [8] and are
explained in detail in Section 2. Briefly speakiri,(q, r) is thehorocyclic productof the homogeneous trees
T, andT, with degrees; + 1 andr + 1, respectively. It is precisely this geometric realization of the lamplighter
groups in terms of relatively simple objects such as trees, that allows us to perform many computations.

The random walk with transition matriR, onDL(q, r) that we consider is themple random walkSRW) with
an additional drift parameter € (0, 1). If r = ¢ (the case of the lamplighter group), then this random walk can be
interpreted in lamplighter terms as follows. Think of the lamps not placed at each vertex of the two-way-infinite
pathZ, but at the middle of each edge. Suppose the actual position of the lampliglterZs He first tosses
a coin. If “head” comes up, which happens with probabiityhe moves t& + 1 and switches the lamp on the
transversed edge to a state chosen at randdfy) ifOtherwise, he moves to— 1 and also switches the lamp on
the transversed edge to a random state.

Even wheng # r, the random walkP, on DL(g, r) may be interpreted as a lamplighter walk in an extended
sense. Imagine that on each edg&othere is a green lamp with possible intensities (including “off”) irZ,
plusa red lamp withr possible intensities (including “off”) ifZ,.. The rule is that only finitely many lamps may
be switched on, and in addition, if the lamplighter standk, dahen all red lamps betwednand —oco have to be
switched off, while all green lamps betwekrand+oco must be switched off. The lamplighter tosses dasoin.

If “head” comes up, he moves fromto k£ + 1 and switches thgreenlamp on the transversed edge to a random
state, while switching off the red lamp on that edge. Otherwise, he moves tb and switches theed lamp on
the transversed edge to a random state, while switching off the green lamp sitting there.

Then the random wall? = P, (whose definition is formalised in (2.3)) is irreducible and transient. Via our
geometric interpretation, we see that it has natural projecttens P, , and P, = P1_,,, on the two trees used to
make up the graph, and al$o= P, onZ, which describes just the moves of the lamplighter. A good understanding
of these projected walks is crucial for our approach, and in Section 3, we quickly review the necessary facts
concerning those random walks @ (andT,).

In Section 4, we derive our main results concerning the asymptotic behaviour of the Green kernel associated
with P,, subsumed in Theorem 4.2. The asymptotics are different along different directions of moving to infinity.
Also, the drift-free case(= 1/2) is substantially different from the other cases4 1/2).
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These results are used in Section 5 to describe the full Martin compactification. In the drift-free case, this is
the “natural” geometric compactification in terms of the two underlying trees. NaDely, r) is a subgraph of
T, x T,, and the Martin compactification is the closuremnf(q, r) in T X T,, whereT andT are the well-
known end-compactifications of the respective trees. However, wbem/z the Martin compactlflcatlon is larger
than & surjects non-trivially onto) the geometric one. The minimal Martin boundary, previously described in [28]
without elaborating the directions of convergence, is recovered.

These results can also be adapted to obtain the Martin compactification for all pedigveonicfunctions,
that satisfyPh =t - h, wherer > p(P,) = limsup, p™ (x, x)1/", the “bottom of the positive spectrum”. The
picture at the bottom is that of the drift-free case, while the case (P,) corresponds to non-vanishing drift. See
Section 6.

In the short Section 7, we present another little by-product of our Green kernel estimates, namely, we illustrate
their use for showing directly that SRW @i.(g, ¢) (the lamplighter group) does not satisfy tbliptic Harnack
inequality.

In conclusion, let us remark that in general it is significantly harder to determine the whole Martin compactifi-
cation than to determine the minimal harmonic functions associated with a random walk, since the former contains
more detailed analytic-geometric informations than the latter, whose computation often has rather an algebraic thar
an analytic flavour. Let us also remark that our results provide the first case where one can successfully determine
the whole Martin compactification of a class of random walks on finitely generated groups that are solvable, but do
not have polynomial growth.

2. The geometry of Diestel-Leader graphs and lamplighter groups

We now explain the structure of the DL-graphs and their relation with the wreath prdgiuci. This section
is a short and slightly modified version of §2 in [28], included here for the sake of completeness.

Let T =T, be the homogeneous tree with degtee 1, g > 2. A geodesic pathrespectivelygeodesic ray
respectivelyinfinite geodesién T is a finite, respectively one-sided infinite, respectively doubly infinite sequence
(xn) of vertices ofT' such that/(x;, x;) = |i — j| for all i, j, whered(-, -) denotes the graph distance.

Two rays areequivalentf their symmetric difference is finite. Aandof T is an equivalence class of rays. The
space of ends is denotédl’, and we writel = T U 3T. Forallw,z € T, w # z, there is a unique geodesig that
connects the two. In particular,ife T and§ € oT thenx& is the ray that starts atand represents.

Forx,y €T, x #y, we define the:oneT(x y)={we T: y € xw}. The collection of all cones is a sub-basis
of a topology which make® a compact, totally disconnected Hausdorff space Witis a dense, discrete subset.
We fix a root vertex € T. If w, z € T, then theirconfluentc = w A z with respect tw is defined byow N 0z =
oc. Similarly, we choose and fix i@ference end € 9T. Forz, v € T \ {w}, their confluen® = v A z with respect

to w is defined bybw N zw = bw. We write

z<v ifzAv=2z
Forx,y € T, we describe their relative position by the two numbers
u(x,y)=d(x,x Ay) and 2(x,y)=d(y,x Ay).

Thus,o(x, y) = u(y, x). In Fig. 1,u(x, y) ando(x, y) correspond to the numbers of steps one has to take upwards
(in direction ofw), respectively downwards, on the geodesic path feadimy. We haved (x, y) = u(x, y) +0(x, y).
TheBusemann functioh: T — Z and thehorocyclesH, with respect tav are

h(x) =0(0,x) —u(o,x) and Hy= {x eT: h(x) =k}.

Every horocycle is infinite. We writé? (x) = Hy if x € Hy. Every vertexx in H; has one neighbour~ (its
predecessor) il _; andg neighbours (its successors)ih . 1. Thus< is the transitive closure of the predecessor
relation. We seb*T = 9T \ {w}.
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We label each edge @f by an element o, such that for each vertex, the “downward” edges tq issiccessors
carry labels 0..., g — 1 from left to right (say), see Fig. 1. Thus, for eack T, the sequencer (n)),<o of labels
on the geodesigw has finite suppor{n: o (n) # 0}. We write X, for the set of all those sequences. On every
horocycle, there is exactly one vertex corresponding to eaeh¥,. Thus, T, is in one-to-one correspondence
with the set¥, x Z, and thek-th horocycle isH, = X, x {k}.

Now consider two tree! = T, andT? = T, with rootso1 andoy and reference ends, andwsy, respectively.

2.1. Definition. The Diestel-Leader graghi_(q, r) is
DL(q,r) = {xlxz €T, x T, h(x1) +h(x2) = 0},
and neighbourhood is given by

X1x2~y1y2 < x1~y1 and x2~y.

To visualiseDL(g, r), drawT, in horocyclic layers withw; at the top and*T, at the bottom, and right to it
T, in the same way, but upside down, with the respective horocyél€¥,) and H_,(T,) aligned. Connect the
two originso1, o2 by an elastic spring. It is allowed to move along each of the two trees, may expand infinitely,
but must always remain in horizontal position. The vertex sélgf, consists of all admissible positions of the
spring. From a positiom1xz with h(x1) + h(x2) = 0 the spring may move upwards to one of theuccessors of
x2 in T,, and at the same time to the predecessoridh T,, or it may move downwards in the analogous way.
Such a move corresponds to going to a neighboun ®f. We see thabL(q, r) is regular with degreg + r. As
the reference point iBL(g, ), we choos® = 010>. Fig. 2 illustrateDL(2, 2).

The position ofy = y;y2 with respect toryx2 € DL(q, r) is described by the four numbersrs, y1), 0(x1, y1),
u(xz2, ¥2), 0(x2, y2), see below in Section 4, (4.1) and Fig. 3. The random walks that we are going to deal with are
all such that the transition probabilitiegx1.x2, y2y2) depend only on those four parameters — a crucial prerequisite
for our approach.

We now recall in more detail the construction of tamplighter groupZ, : Z. The group of all finitely supported
configurations is

C={n:Z— Zq, suppy) finite}



1106 S. Brofferio, W. Woess / Ann. |. H. Poincaré — PR 41 (2005) 1101-1123

w1

Fig. 2.

with point-wise addition modulg. The grouf acts orC by translationg — Tj : C — C with Tyn(m) = n(m —k).
The resulting semi-direct produét < C is

Zg:Z={(n,k): neC, keZ} withgroup operation (n,k)(n',k')=(n+ Txn', k + k).

We identify each(n, k) € Z, » Z with the vertexxix; € DL(g, ¢), where according to the identificatidh, <
X, x Z, the vertices; are given by

x1=(n; . k) and xp=(n;,—k), where 2.2)

M =nl—ook1 aNd 0 =nlps1.00)- '
both written as sequences over the non-positive integers.

This is a one-to-one correspondence betwé&gnZ andDL(g, ¢), and that group acts transitively and fixed-

point-freely on the graph. Namely, the actionsefe Z is given byxixa = (01, k) (02, —k) > y1y2 = (01, k +
m)(o2, —k — m), and the action of the group of configurations is point-wise addition moglul'rite 8,1( for the
configuration inC with value! atk and O elsewhere. ThebL(q, ¢) is the (right) Cayley graph of, : Z with
respect to the symmetric set of generators

{(61,2), (6, —2): £ €Zy},

i.e., an edge corresponds to multiplying with a generator on the right. (This is precisely the set of generators
considered in [13] and [7] when computing the spectrum of the associated SRW-operator.)

Returning toDL = DL(g, r), the transition matrix?, of the random walk that we have described in the Intro-
duction is given as follows. For = x1x2, y = y1y2 € DL(q, r)

a/q if y; =x1andy>=x,,
Pa(x,¥) =1 (1—a)/r if yp=x] andy, = xz, (2.3)
0 otherwise

3. Simple random walk with drift on a homogeneous tree

In general, ifP is a transition matrix over a s&t and{X;: i € I} is a partition ofX with the associated quotient
mapx : X — I, then one says that factorises(or projecty with respect tar, if p(i, j) := Zyer p(x,y) does
not depend on the specific choice ok X;. In this case, the Green kernél associated with? = 7 (P) also
satisfies

G, )= Gy, xeX,. (3.1)
yeX;
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In our case, we have three natural, neighbourhood preserving projeetiomt — T,, m2:DL — T,, and
7 :DL — Z, given by

m1(x1x2) =x1,  ma(x1x2) =x2, and 7 (x1x2) = bh(xy).

P, factorises with respect to each of~therrl. et P,) = P1, m2(Py) = P> and7 (Py) = P. Then Py =P, 0N
Tt =T,, Po= P14, ONT?=T,, andP = P, onZ, where

a/q ify; =x1, o ifl=k+1,
Pag(x1, Y1) =3 1—a if yi=xq, ﬁa(k,l)={1—a ifl=k—1, 3.2)
0 otherwise 0 otherwise

The projected random walks are well understood. Everybody is familiar with the gambler’s pRycess.. We
outline the basic features &, , onT, (or, equivalently,P;_, , onT,).
Spectral radius. The spectral radius of any irreducible transition matrix is defined as

p(P) = limsupp™ (x, y)¥".
n

It is independent of, y. In the specific case of our random walks with drift parametexre have

o(Py)oL = p(Pa,q)’]Tq = ,O(Pl—a,r)T,- = p(ﬁa)Z = 2\/ a(l—o). (3-3)
(The subscript refers to the respective underlying graph.)ﬁgc(m Z, this is well known. ForP, , onT,, it can
be easily computed in various ways. See e.g. Saloff-Coste and Woess [26], Example 1.

Green kernel. The — simple — computations of the Green kerGel= G, , associated withP, , can be done
following the method of 81.D in [27], see also [28], (3.9). The main point is that we have a nearest neighbour
random walk on a tree (transition probabilities are positive only between neighbours). Thuyé1if y1) is the
probability that the random walk startingat ever hitsy (x1, y1 € T,), then

Fi(x1, y1) = F1(x1, w1) F1(wy, y1) forall wy € x1y71. (3.4)

Furthermore, sincep1(x1, y1) depends only oni(x1, y1) and 0(x1, y1), the same is true fo#y(x1, y1) and
G1(x1, y1). In particular,

F{ =Fi(x1,x;) and Fj" = Fi(x;, x1)

are independent ofy € T, as well asG1(x1, x1). Using these facts, and setting = max{a, 1 —«}, one computes

G , —F ’ G ’ —(F~ u(x1,y1) F 0(x1,y1) q 7
1(x1, y1) = F1(x1, y1)G1(y1, y1) = (Fy) (F) @iDe 1
where
— 1 . 1
L = if o > =,
_ 2 " q 2
Fy = = (3.5)

! 1 L o 1
1 ifa <=, — ifa< =
2 (1—w)g 2

Martin compactification. By (3.4), the Martin kerneK; = K, , associated wittP, , satisfies
Fi(x1,y1)  Fi(xy, c1)
Fi(o1,y1)  Fi(o1,c1)
(the confluent with respect tg). From here, the following is almost immediate.

Ki(x1,y1) = , Whereci =x1 Ay
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3.6. Proposition. The Martin compactification of, with respect toP, , is the end compactificatioﬁq, and for
& € 0T, the Martin kernel is given b¥1(x1, £&1) = K1(x1, c1), wherecy = x1 A &1.
Furthermore, each functioR 1 (-, £1), &1 € 3T, is minimal harmonic forP, .

For general transient nearest neighbour random walks on arbitrary locally finite trees, this is due to by Cartier [4],
and in the specific case of free groups (which is close to, but not identical with our situation), it was shown
previously by Dynkin and Malyutov [11].

The analogous results fét_, - on T, are obtained from the above by exchangingith 1 — « andg with .

Whena # 1/2, the same computations are also valid Ryronz, settingg = 1. Whena = 1/2 then P, is of
courserecurrent i.e., the associated Green kernel diverges.

Below in Section 5, we shall also need the following function&gx T, , which we call generalisedispherical
functions We setu = u(x1, y1), 9 =0(x1, y1) andg = (1 — a) /«.

1/9+1 . 1
q—a<ﬁ +d(x1,y1)> Ifo&:E,
_ 1 g8+1 p*—-1 1 . }
Pa,q (X1, y1) = PTBE (qﬂ2—1+ ﬂ—l 1) Ifa<2, (3.7)
ﬁd(XLyl) q,B_l—{—l - B~ -0 _1 _
7 (q,BZ +ﬂ T +ﬂ 1 1) Ifoz>§.

(Recall thatd (x1, y1) =u+0.) Theng, (-, y1) is Py 4-harmonic oril', for eachy; € T, .

4. Green kernel asymptotics

We now embark on the main computational part of this paper. We conBjden DL = DL(q, r), andwe shall
always assume that < 1/2, since all results in the case> 1/2 are obtained from the former by exchanging the
role of the two trees (i.e., exchangingvith g).

We want to derive asymptotic estimates of the associated Green k&anetl) = G, (x, y), wherex = x1x2 and
y = y1y2 € DL and the graph distane&x, y) — oco. The latter means that at least onel6f, y1) andd (x2, y2)
(distances in the respective trees) tendsctoWe remark here that

d(x,y) =d(x1,y1) +d(x2, y2) — [h(y1) —
dxi,y)=u;+9, b(y)—-bkx)=09—-w, (=12, and 4.1)
uy +up =01+ 02, wWherew; =u(x;, y;) ando; =0(x;, y;).

(Cf. Bertacchi [3] for the distance formula.) In terms of the lamplighter moving albfwith the lamps — possibly
red and green — sitting on the edges, as described in the Introductign}s the minimal number of steps the
lamplighter has to walk in the negative direction in order to obtain the new position and configuration encoded in
the vertexy = y1y2 of DL, anduy is analogous in the positive direction.

We setc; = x; A y;. See Fig. 3. We also choosg, b; € T with x; < a;, y; < b;, such thath(a1) = h(by) =
—h(c2) andh(az) = h(b2) = —h(c1), i.e., the pairsiica, bic2, c1az, c1b2 belong toDL. In particulard (x, y) — oo
means that — oo, where

s=s5(x,y)=u1+upx=01+02=—h(cy) — h(c2)

is thespanof x andy.
The following is the first main result of this paper.
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Fig. 3.

4.2. Theorem.Referring to(4.1) and Fig. 3, suppose tha#/(x, y) — oo, and hence = s(x, y) — oco. Then we
have the following.

@ fa<1/2andB = (1 —«a)/a then

Ap B —pUrpT—p 1 BE—pUrpi—1
G~ i (B Lt ot ot 1
u S 0 u 0
Bt —1p°-8 1+B§ﬁ t-18 1—1>7
gs—1 ps—1 gs—1 g5s—1
where
Ao G1(01,01)G2(02, 02) _ qr(B?—1)
P G(0,0) @B —Digr—1)’
Bﬂz(ﬁ—l)(wg-i-l)’ and B*Z(ﬁ—l)(rﬂ+1).
ap? -1 o

(b) If « =1/2then

A +1 r+1
G(x,y) ~ 71(q—u202+5u201+5u102+ u101>,

s4qP1r02\ g —1 r—1
where
Ap— G1(01,01)G2(02,02) _ 2qr '
2 (q—DH@r -1

According to the way how tends to infinity geometrically (when we think efbeing fixed), one or more of
the four terms will dominate the others, as we shall see below.

As mentioned at the beginning, the case 1/2 is obtained by exchanging« ¢ anda <> 1 — «. Equivalently,
we may use Lemma 4.12 and apply statement (a) of Theorem &2(1q y), with 8* = 1/8 in the place off.

We now start our (laborious) way towards the proof of Theorem 4.2. The following is obvious, but crucial.

4.3. Lemma.The Green kerndli (x, y) depends only ong, 91, up, 92.

Let Z, be the random position of th,-walk. This is aDL-valued random variable defined on a suitable
probability space (trajectory space). We whtg = Pr[- | Zg = x] andE, for the associated expectation. Aldg,
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will denote the indicator function of an evejnt -] in the trajectory space. The prOjectldr,‘] =m;(Z,) represents
the random position at time of the P;-walk onT:,i =1, 2, and the random variablg, = 7 (Z,) realizes thei-th
position of theP,-walk onZ.

We shall use severatopping timeslf x = x1x2 € DL, x; € T! (i =1, 2), respk € Z, then we set

tx)=inf{n >0: Z, =x}, ti(x)=inf{n>0:2,=x} (=12, and
k) =inf{n >0: Z, =k}.

Note that these random variables are all defined on the same trajectory space associagd with

4.4. Lemma.Referring to the situation of Fi3, we have
ti(c) =t(h(x1) —u1) and ta(c2) =t(h(x2) +uz) Pr,-almost surely.
Furthermore, in order to reacl starting inx, bothZi, have to pass through, i = 1,2, i.e.,
max{t1(c1), ta(c2)} <t(y) Pry-almost surely.
Proof. The P,-walk onDL as well as the projected random walks are of nearest neighbour type. Thus, starting
in x, the firstpoint inthe selv = vyvp € DL: h(v1) = h(c1)} visited by Z,, must be ofthejormlvz. This translates
into t1(c1) = t(h(x1) — u1), and exchanging the roles of the two trees, alsotptey) = t(h(x2) + up). The same
type of argument shows the last statement.
The last lemma leads us to the identities
Pr[ti(c1) <ta(c2)] = @1(u1,u2) and Pry[ta(c2) <ti(c1)] = @2(u1, u2), (4.5)

where fork, ! > 0, the probability that the?,-walk on Z starting in O reachesk before! is g1 (k, ), and the
probability that it reaches before —k is g2(k,l) = 1 — @1(k, ). It is a well-known exercise to compute these
functions, and they are given by

pH — gt pr-1 l-a . 1

(p]_(k, l) ﬁk-‘rl 1 and 902(]6, l) = m, with ﬂ = T, if o # E, (4 6)

(k,1)= ! and ¢a(k, 1) = k if _1 |
P = et R T T2

See e.g. Kemeny and Snell [19], §7.1, in particular (5) and (6) on p. 153. Next, let us introduce the function
k
ar

(k) = ( ) , keZ. 4.7

v Ty (4.7)

If we setm(x) = ¥ (h(x1)), wherex = x1x2 € DL, then we haven(x) p, (x, y) = m(y) p(y, x) for all x, y € DL.
That is, P, is m-reversible and we also get

G(x,y) =¥ (b(y1) —h(x1))G(y,x) forallx =x1x2, y=y1y2 €DL. (4.8)

4.9. Proposition.Referring to the situation of Fi, we have the following decomposition.

G(x,y) = p1(u1, u2)01(01, 92)¥ (01) G (c1b2, c1a2) 0]
+ @1(u1, u2)92(01, 92) ¥ (01) G (b1c2, c1a2) (1))
+ @2(u1, u2)01(01, 92) ¥ (—=02)G (c1b2, aicz) ()

+ @2(u1, u2)2(01, 02) ¥ (=02) G (b1c2, aicz). (V)
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Proof. By (4.4) and (4.5), we have

G(x,¥) = Ex (Uts (1) <t2(c2)1G (Zts(en)» ) + Ex (Uita(en) <tr (01 G Zia(en)» 1))
If ti(c1) < ta(c2) and Z, () = ciwz, then we must haves < wp and furthermorewz A by = ¢2. Thus,
w(wa, y2) = u(az, y2) ando(wy, y2) =0(az, y2). Lemma 4.3 implie€5 (Zt,(¢,), y) = G(c1az, y). In the same way,
G(Zty(cp)» ¥) = G(aicz, y). Thus,

G(x,y) =Pre[ti(c1) <ta(c2)|G(craz, y) + Pri[ta(c2) < ti(c1)]Gazca, y)

= @1(u1, u2)G(c1a2, y) + @2(u1, u2) G(aicz, y).

Using (4.8), we geG (ci1az, y) = ¥ (01)G(y, c1a2). Applying once more (4.4) and (4.5),

G(y, c1a2) = Ey (Lty (1) <ta(e)1 G Zty(en)s 1)) + Ey (Lita(en) <ta (01 G (Zt(e)s ¥))-

We can repeat the above argument witim the place ofc andciaz in the place ofy, and we have to replaea, a;
with b1, by. Therefore

G(y, c1a2) = p1(01, 02) G (c1b2, c1a2) + 2(01, 02) G (b1c2, c1a2).
Analogously,G(aic2, y) = ¥ (—02)G(y, a1c2) and

G(y,a1c2) = p1(01, 02) G (c1b2, aic2) + 2(01, 02) G (bic2, aic2).
Combining these formulas, we obtain the proposed decompositian.

Thus, in order to understand the asymptotic&@%, y) in the general case of Fig. 3, we can reduce our com-
putations to the following four basic cases of relative positions afidy.

In all four casess = s(x, y) — oo. In case (l),us =01 = 0 andup =02 = 5. In case (II),u; =02 = s and
01 =u2 =0.Incase (lll);o1 =up = s andu; =02 =0. In case (IV)u; =01 =s andup =0, =0.

We start with an extended version of case I, see Fig. 5.

Fig. 5.
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4.10. Proposition If, as in Fig.5, x = x1x2 andy = y1y2 withs = s(x, y) are such thatiy — 01 =02 — oo, u2 =0
ando; is arbitrary, then

Gi(x1,y1) = C(5)r®2G(x, y) + R(01,02), (4.11)
where
G(0,0) . 1 25 _ 1
C5 —_— IfC( -, C5’\,7 |f0[:—,
® G2(02,02) 7 2 © G2(02,02) 2

and0 < R(01,02) < G1(x1, y1) With

lim R(01,02)=0.
02—>00

Proof. Applying (3.1) to the projectiorr; givesG1(x1, y1) = szeH(m G(x, y1w2).

Let wz € H(y2), where H(yy) is the horocycle ofy; in T,. We write v, = v(w2) for the unique element in
H (xp) that satisfies; < wp. By Lemma 4.4, the random walk has to pass through some point of the form in
{ugv2: u1 € H(x1)} on the way fromx to yjw», that is,

G(x, y1w2) = Ex (1ty(0p) <001 G (Ztp(v)» Y1W?2))
= Ex (Lt (v2)<t1 (01 G (Zta(v)» Y1W2)) + Exx (Lt (1) <to(v2)<001G (Zta(vp)» Y1W2)).
Now, if starting atx, we haveta(v2) < ti(c1), thenZi,q,) = uiv2 for some randonu; € H(x1) that must sat-
isfy u(u, y1) = ug ando(u1, y1) = 01, sinceci cannot lie onxiuz. But we also havei(vo, w) = up = 0 and
0(v2, w2) = 02. That is, the pointsi1v2 and yiw2 have the same relative position as the pointand y, and
thereforeG (u1vz, yiw2) = G(x, y) by Lemma 4.3. We get

Ex (1[t2(v2)<t1(c1)]G(th(vz) ’ ylw2)) =Pry [tZ(UZ) < t]_(Cl)]G(x, )’)

Now, givenv; € H (x7), there are precisely’? elementsw, € H(y2) with v(w2) = vo. Combining all these obser-
vations,

G1(X1,y1)=< Z Prx[tz(vz)<t1(61)]>r02G(x,y)+R(01,02), where

v2€H (x2)
R(01,02) = Z Ex (Lits (e <towws)) <001 G (Zty(u(ws)) » Y1W2)).-
w2€H (y2)

Let us first consider the error terR 01, 02). Note thatG (-, -) < G(o, 0) < o0, since our random walk is transient.
(Already the projections ont@, andT, are transient!) Sincg — oo, alsoty1(c1) — oo almost surely. It follows
that

ro1,0,(W2) := Ex (Lits(cr) <to(w(w:) <001 G (Zta(w(wz))» Y1W2))
< Pry [tl(cl) < tz(v(wz)) < oo]G(o, 0) — 0 whendy — oo.

On the other hand,

For,0,(w2) < G(x, yrwp) and Z G(x, y1w2) = G1(x1, y1) < G1(01, 01).
wo2eH (y2)

Thus, dominated convergence (in the summation) impliesR@, 02) — 0 asdy — oo.

It remains to show thaf'(s) = ) ) Prefta(v2) <ta(ea)] has the proposed asymptotic behaviour, when
(ands) — oo.

We may suppose without loss of generality thét;) = h(x2) = 0, so thay(c1) = —s. Then Lemma 4.4 implies
Pr,[t2(v2) < t1(c1)] = Pryta(v2) < t(—s)]. Now let the superscript®) refer to the random wall onZ stopped

voeH (x2
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Fig. 6.

at—s, i.e., we consider the restriction &fto {k € Z: k > —s}. We use the same superscript for the random walk
P> onT, stopped at the horocyclg; in T,, i.e., we consider the restriction & to {z2 € T,: h(z2) < s}. Using
the notation of (3.5), we have

G({s) (x2,v2) G({s) (x2, v2)

Pr.[ta(v2) <T(—=9)] = Fy * (x2, v2) = —2- =2 .
G5 (w2, v2) G5 (02,02)

Since P9 is the projection ofP>(—s) under the mappingz — —h(z2), we find

G5V (x2, G9(0,0
C(s) = Z (275) (x2,v2) =— (0,0 .
voeH (x2) G2 (02,02) G2 (02,02)
If 5 — 0o thenGy ™ (02, 02) — G2(02, 02) < o0, for each value of. If « < 1/2 thenG = (0,0) — G(0,0) <
co. If @ = 1/2 then routine calculations regarding SRW&wyield G(—%)(0, 0) = 2s. Thus,C(s) has the proposed
asymptotic behaviour. O

The last proposition is valid for arbitraty. However, it becomes meaningful only wher< 1/2. Indeed, when
a > 1/2, then the left-hand side in the decomposition (4.11) tends to 0 by (3.5). In this case, (4.11) contains no
information about the asymptotic behaviour@tx, y). On the other hand, wheln < 1/2 ando; = O (situation
(IN of Fig. 4) thenG1(x1, y1) = G1(01, 01) is constant, see (3.5). When we consider the “dual” situation of Fig. 5,
as illustrated in Fig. 6, this discussion shows that it is not useful to rewrite Proposition 4.10 by just exchanging
boththe roles of the two treemnd« with 1 — .

We shall use the superscriptfor the respective random walks an., T,, T,, andZ that are obtained by
exchanging: <> 1—a, withoutexchanging roles of the two trees. Thify, = P1—o, Py, = Pi-aq, P{  , = Pa.r,
and P* onZ moves fromk to k + 1 with probability 1— & and tok — 1 with probabilityc.

4.12. Lemma.

1—
G*(x,y) = HOD-IEDG(x, y) Vx,yeDL(,B: a).
o

Proof. The functiong(x) = 890 satisfiesPg = g, andp*(x, y) = p(x, y)g(y)/g(x). O

4.13. Corollary. If, as in Fig.6, x = x1x2 andy = y1y2 with s = s(x, y) are such thadb; =uy — 02 - oo, u3 =0
andoy is arbitrary, then

G3(x2, y2) = C*(8)(gB)° G (x, y) + R* (01, 02), (4.14)
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where
C*(s)eM ifa;é}, C*(s)'vi ifa:l,
G1(01,01) 2 G1(01,01) 2
and0 < R*(01,02) < G;(xz, y2) with

lim R*(91,02) =0.

01—>00

This is immediate by applying Proposition 4.10R6 with r < ¢. Also observe thaG*(0, 0) = G(0, 0) and
G?(0i,0)) = Gi(0;,0;) for i = 1,2. In the specific case; = 0 (resp.22 = 0), Proposition 4.10 (resp. Corol-
lary 4.13) yields the asymptotic behaviour@fx, y) in situation (II) (resp. (l1I)) of Fig. 4.

4.15. Corollary. (a) Referring to situatior{ll) of Fig. 4, if s = u; =02 — co ando; = up = 0then
G1(01,01)G2(02,02)

i ife>1/2, and
Glx, y) ~ oo
G1(01,01)G2(02, 02) if o =1/2
2519 B .

(b) Referring to situatior{lll) of Fig. 4, if s =01 = up — oo anduj =92 =0then
G1(01,01)G2(02,02)
G(0,0)(¢gp)®

Gi1(01,01)G2(02,02) .
if
2s5qg°

ifa>1/2, and

Gx,y)~
=1/2.

Proposition 4.10, resp. Corollary 4.13, also leads to an asymptotic estin@e of) wheno, resp0z, remains
bounded. Otherwise, the left-hand side of the decomposition (4.11), resp. (4.14), tends to 0. Nevertheless, those
decompositions will now be useful “on the average” for situations (I) and (IV) of Fig. 4.

4.16. Proposition.Referring to situatior(lV) of Fig. 4, if x = x1x2 andy = y1y> with s = s(x, y) are such that
U =01 =5 — oo andup =02 =0 (y2 = x2) then

. G1(01,01)G2(02, 02)

B-DB+1D

P ., WhereBj = 5 , fa<1/2,
Gy ~ G(0.0)(gp)* rpe-1
) G 01)G , 1 .
B} 1(01 01)2 2(02 02), whereB} = Tt , ifa=1/2.
252g° r—1

Proof. Again, we may assume thitx;) = h(x2) =0. Since 1-a > 1/2,
t:=t1(c1) =t(—s) <oo Pr, -almost surely.

This and Lemma 4.4 yield
G(x,y) =Ey(Lit<oo)G(Zt, y)) =Ex(G(Zt, y)).

We haver1(Zi) = c1. SetD; = a(th, x2), @ hon-negative, integer-valued random variable, see Fig. 7.
The relative position oélztz (in the place oft) andy = y1x» is precisely the one of Fig. 6, replaciag= s(x, y)
with s + D¢ ando, with Dy. We can apply Corollary 4.13. Note that by (3.5), applie®$o= P,.,,

G3(Z8, x2) = (rB) 21 G3(x2, x2) = (rB) PG 2(02, 02).
We get
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Fig. 7.
1
G(Zt,y) = C*(s—i-—Dt)(q/S)ﬁ(G;(th’xz) - R*(s, Dt))
1 1
= C e+ DO@h® <(rﬁ)D‘ G2loz.02) = K'Ce D‘))' (#.17)

Case 1a < 1/2. ThenC*(s + Dy) — 5(0, 0)/G1(01, 01), a finite limit. SinceR*(s, Dy) < G;(th,xz) <
G35(02,02) andR*(s, Dy) — 0 ass — oo, dominated convergence yields

Ex[R*(s, Dy)] — 0. (4.18)

Also, ZE converges almost surely tadT, -valued random variablégo; see Cartwright, Kaimanovich and Woess
[5], where this is proved under much more general assumptions. Sirceo whens — oo, we ge’[Zt2 — Zgo
and consequently

Dt — Do, = d(oz, 02 A Zgo)
(Cf. Section 2 for notation.) Therefore, (4.17) and (4.18) yield
Gl((ll, 01)G2(02, 02) B ass— oo,
G(0,0)(gB)*

WhereBg‘ = E,[(rB)~P=]. This number can be computed explicitly: {ei’”) denote the vertex afpw; at distance

Ex(G(Zt, y)) ~

m from xp. If m > 1, thenDy, > m precisely wherizgO e T, (x2, wé’")). Applying a frequently used formula for
the limit distribution on the boundary of arbitrary transient nearest neighbour random walks on trees (see e.g. [4]),
we get that

-1
o 1D o1 P20 ™ A Fawy” wy) L pr—p
c[Doo > m] = m=1)__(m) T T -
1— Fo(wy 7wy ) Fa(wy wy )

We have used th@,-version of (3.5) in the last computation. It is now straightforward m/?lhas the proposed
value.

Case 2o = 1/2. Here, we need to compute explicitly the distribution/&f which depends on. Consider
the random variable/ = M, = max{Z,: n <t}. If n=n, = maxn < t: Z, = M}, thenZ2 must be the point
wo = wéM) ono2wy.

Conditioned on the value of/,, the random elemerflt2 is equidistributed on the s¢bto € T,: h(v2) = s,
wo < vo}, which hasr*™™ elements. Among the latter, the number of elements with, x) =d € {0, ..., M}
isrs,if d =0, and(r — 1)rst9-1 if d > 1. If D; =d thenM; > d. Thus, if 0< d < m then

_ 1 if d=0,
Pri[Di=d|M=m]=eqr®™, Whefeéd={(r_1)/r ifd>1
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Also, Pr.[M > m] is the probability that the random walT(,, on Z reachesn before —s. This is ¢2(s, m) =
s/(s +m), as given in (4.6), an8r, [M = m] = @2(s, m) — p2(s, m + 1). We find
0 g
’

5
Pr(Di =d] = — . 4.19
LDy =4l deg;irm(s—i-m)(s—}-m—i-l) (4.19)
We know from Corollary 4.13 that*(s) ~ 25/ G1(01, 01). Therefore (4.17) implies
2
252615G(X7 y) ~ G1(01,01)G2(02, 02)E, (W) — Rest(s),
where
Rest(s) =E s R*(s, Dy)
- =x 5 + Dt k] t .
Using (4.19), we can write
§2 >
E]l ——— ) = d ith
(civo) S ha w
52 00 2
5 5
fs(d) =Pr [ Dy =d] =€ >

(s +dyrd 5+dm:d s+m)(s+m+1)

Now f.(d) is increasing ins, and fs(d) — f(d) with f(0) =r/(r — 1) and f(d) = r—¢ for d > 1. Monotone
convergence implies that

Zfs(dHwa ARt

To conclude our asymptot|c estimate, we have to show that the rest tends to zero. We expand

0 52
— — - d px*
Rest(s)_;)Prx[Dt_d] +dR (s,d) = d;‘)fﬁ(d)r R*(s,d).

We haveR*(s, Dy) < G3(Z2, x2) = r Pt G2(02, 02) and fs(@)r?R*(s,d) < f(d)G2(02,02). Also, Y, f(d) <
oco. On the other hand lig, o fs(d)r?R*(s,d) = 0 point-wise in d. Dominated convergence implies
Rest(s) -~ 0. O

We remark that in the proof we might have treated Case 1 in the same way as Case 2, by first determining
the distribution of Dy and then lettings — oo (whencet — oo). However, it is more likely that the method used
above will lend itself to an extension to finite range (instead of nearest neighbour) random wallkg on where
p(x,y) depends only omng, 91, up, 02.

Again, from the last proposition we can also deduce the asymptoti@sxafy) in the dual situation (I) of Fig. 4
by consideringP*. In this case we hav&*(x, y) = G(x, y), sinceh(x1) — h(y1) = 0. Thus, we only have to
exchange < g¢.

4.20. Corollary. Referring to situation(l) of Fig. 4, if x = x1x2 and y = y1y> with s = s(x, y) are such that
u1 =01 =0 (y1 = x1) andup = 02 = s — oo then
G1(01,01)G2(02, 02)
G(0.0)(rp)* af?—1
G1(01, 01)G2(02, 02) :
, whereB1 = ——, ifa=1/2.
2525 ! qg-—1 “ /

B - 1)(4/3 +1)

Bg , whereBg = if e <1/2,

G(x,y)~
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Combining Corollary 4.15, Proposition 4.16 and Corollary 4.20 with Proposition 4.9, we obtain Theo-
rem4.2.

5. The Martin compactification

We are now ready to determine the full Martin compactificatio®ct P, onDL(q, r). Recall that the Martin
compactification of the projected random waltk , is ﬁfq, the end compactification of the tree. (The analogous
result holds of course for the second project®n, , on T,.) The end compactification df, was described in
82; in particular, it is a compact metric space with the ultra-metric

if z1=w1,

wherec1 = z1 A wi(confluent w.rtoq), if z1 £ wq CRY

07
0(z1, wy) = {q—d(cl,ol)

forz1, w1 € 11‘ In particular (recall)z(”) — £1 € 9T, ifand only |fd(z(") A &1, 01) = 0.
Since DL(q r) C Ty x Tl‘r, this provides us Wlth a naturgleometrlc compactificatioBbL(q, ), namely, the

closure ofbL(g, r) in Tq x T,. The ideal boundary dbL in this compactification consists of 5 disjoint pieces:

(B*Tq X {a)z}) U ({wl} X B*Tr) U {wiw2} U (Tq X {wz}) U ({wl} X T,), (5.2)
compare with [3]. For a sequengé” = y{"y{" € DL, we have

y® > E1wy, £ € 0*T,, |if y(”) — £ and yé") — wo;

vy > &, E€d*T,, if y(”) — w1 and yé") — £

y® = wiw), if yl ) w1 and y2 ) w?2; (5.3)

YW — yrwp, y1eTy, if y(") =y1Vn>ng and yé") — wp;

y® > wiys,  yoeT,, if y(") — w1 and yé") =yoVn>n

Every sequence iDL that tends to infinity has a subsequence of one of these 5 types.
Recall from &3 the Martin kernels associated with, and P1_, , and the spherical functions (3.7).

5.4. Theorem.If o = 1/2 then the Martin compactification @flL(g, r) with respect toP = Py, is the geometric
compactificatiorDL(g, ). The extension of the Martin kernel on the boundary describ€sl &) and (5.3)is given

by
(i) K(xixz,E10) = K1(x1,61), §1€9"Ty,
(i) K(x1x2, w182) = K2(x2,&2), &€ d*T,,
(i) K(x1x2, w1w2) =1
) ¢1 ,(x1, 1)
(V) K(x1x2, yyp) = 2——, y1€T,, and
91 401, y1)
¢, (x2, y2)

(V) K(x1x2, w1y2) = —————, y2€T,.
3,02, y2)

Each of the kernels ifi)—(iii) constitutes a minimal harmonic function, while the onegiwf and (v) are non-
minimal harmonic.
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Proof. We use part (b) of Theorem 4.2.

(i) Suppose first thay = y1y2» — &1w2. Then, with the usual notatian = u(x;, y;) andd; = 0(x;, y;), we see
thatu; = d(x1, x1 A &1) is constant when is sufficiently close t@&1. On the other handy, u, — 92 — co. Recall
thatuy +u» =01 + 02 = s — oo. The dominant term in

1 r—+
U202 + su201 + 5u102 + U101
-1 r—1
IS 5u201, Since
U202 < i’ 51702 < ug and U101 < ug
s5U201 01 S5U201 01 S5U201 5
all tend to zero. Asi; ~ s, we find
01 0(x1, y1)
G(x,y)~A = F1(x1, Fo(xo, .
(x,y) 12,0 ~ Al5q 2 1(x1, y») F2(x2, y2)

For eachy € DL we have that(x, y) — s(o, y) andd(x1, y1) — 0(0o1, y1) are constant whem is close tog; in the
end metricd. Therefore

5(0, )?0(x1, y1)
s(x, ¥)20(01, y1)
sinceKa(-,wp) =1

(ii) follows immediately from (i), exchanging <> g.

(i) If y = y1y2 > wiw2 thenu; = u(x;, y;) - oo for i = 1,2. For givenx, whenu; > u(x;, 0;) for i =
1, 2, thend; = 0(x;, y;) coincides witho(o;, y;) ands = s(x, y) coincides withs(o, y), and we also have; —
u(o1, y1) = u(o2, y2) — up = k, wherek = h(x1). Therefore

((q +1)/(qg — )u2d2 + sup01 + su1d2 + ((r + 1) /(r — 1))u1dy 1

(g +D/(q — D)2+ k)02 +5(uz + k)01 +s(ug — k)02 + ((r +1)/(r — 1)) (w1 — k)01

(iv) If y; remains fixed andy — wp, thendo = 0(x1, y1) andug = u(x1, y1) are constant. Sincg, =s — ug
ando, = s — 01, wheres = s(x1, y1), we get

A1 g+1 U 01 r+1u0q
Gx,y)~—————(1- 1-— 1-%)y 1-— —
o g (a1 9) (-0 (0 D2 2) 15550)
A1 qg+1 A1
W(C] 1+01+U1> r°2¢%’q(xl’ y1)-
As above in (iii), 0(02, y2) = 02 (= 0(x2, y2)) whenu(xz, y2) > u(xz2, 02), and then alsa(o1, y1) — s =k, a
constant. Therefore,
Aq
(s + k)2r02
Thus, we obtain the proposed limit &f(x, y) asy — y1w2).
(v) follows from (iv), exchanging < ¢.
Finally, the — simple — proof of minimality of the functions in (i), (i) and (iiij) can be found in [28]. Non-
minimality of the spherical functions in (iv) and (v) is straightforward, since they are also non-minimal for the
projected random walks on the respective trees.

K(x,y)~ K1(x1, y1) K2(x2, y2) — Ki(x1,81) K2(x2, w2) = K1(x1, £1),

K(x,y)~

G(o,y)~ ¢1 401, y1).

Next, we explain what happens in the cas¢ 1/2. If (y(")) is a sequence iff, with u(oy, yi")) — oo then
i") — w1, independently of the values b(y(")) The horocyclic drawing dff; as in Fig. 1 suggests that one may
use a finer distinction by introducing boundary poim{is k € Z = 7. U {400}, at infinity, one for each horocycle,
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one at the “level’—o0, and one at the “level’-co (thinking of 3*T, as the horocycle at-oc). We seth(w’{) =

k € Z. The new boundary i8*T, U {»}: k € Z}. We write T, for the new compactification, which we call the

horocyclic compactificationt is induced by the metric
bz1)  b(wy)

14+ 1hzD)l  1+1bwol]

wheref is as in (5.1) and we setoo/(1 + oo) = £1. In this metric, a sequenc(gi”)) tends to¢; € 9*T, if and
only if it converges tat; in the end topology. It tends tﬁ§_ if and only if b(yi")) —k (keZ) andyf’) — w1 in
the end topology. _ .

Again, we can take the closum. (g, ) of DL(q,r) in T, x T,, thehorocyclic compactificationf DL. In this
case, the boundary consists of the following 5 disjoint pieces:

(8*Tq X {a)z_oo}) U ({a)l_oo} X 8*'1[}) U {a)]{wz_k: k GZ}
U{yla)z_h(yl): yle']I‘q}U{wl_h(yZ)yz: y2€T,}. (5.6)

We omit the detailed description of convergence, which is a straightforward adaptation of (5.3). The mapping
a)f.‘ — w; (i =1, 2) extends to a continuous surjection from the horocyclic onto the geometric compactification,

which restricted t®dL(g, r) is the identity.

On(z1, w1) =0(z1, w1) + (5.5)

5.7. Theorem.If aF# 1/2 then the Martin compactification @L(q, r) with respect toP = P, is the horocyclic
compactificatiorDL(q, ). The extension of the Martin kernel on the boundary describ€8.8)is given by

(i) K(x1x2, E10,%°) = K1(x1,&1), &1€0*T,

(i) K(x1x2, 0] % 62) = Ka(x2,82), &2€0*T,,

k b (x1)
k —k ,8 + ﬁ A
(|||) K(X]_)CZ, ) ) = W, k e Z,
. —bh(y1) ¢a,q (x1,y1)
iv) K (x1x2, y10 =——=— yeT,, and
™) ( %2 ) ¢a,q(01, y1) Y !

_ ¢17a,r (x2, y2)

—bh(y2)
(V) K(x1x2, w yo) = ,
( 1 ) ¢1—a,r (02, ¥2)

yo € T,.

In (i), 8 = (1 — )/, and fork = +o0, the right-hand side is to be understood as the respective limit.
Each of the kernels i) and (ii) constitutes a minimal harmonic function, while the onegiigf, (iv) and (v)
are non-minimal harmonic.

Proof. Once more, the proof that the minimal harmonic functions are precisely those in (i) and (ii) can be found
in [28].

We now study convergence &f(x, y) asy tends to a boundary point. This time, we use part (a) of Theorem 4.2.
We assume that < 1/2, since the case > 1/2 follows by exchanging <> r and usingx™ = 1 — « in the place
of «, or also by using the relation (4.12).

(i) Suppose thay = y1y2 — &0, in DL. Thenyi — & and y» — w3 in the end compactifications of the
respective trees. We proceed as in the proof of Theorem 5.4 and find that in the formula of Theorem 4.2(a), the
dominant one among the four terms in the.) on the right-hand side is the second one. It behavesdik®.
Therefore, using (3.5),

G(x,y)~ = AgF1(x1, y1) F5 (x2, y2),

Ag
(gB)°(rp)°2
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where (recall)F; (x2, y2) corresponds to exchanging<> 1 — «, that is, to the projectio®,,, onto T, of P; =
P1_,. Therefore we obtain

K(0,y) ~ K1(x1, yD) K3 (x2, y2) — K1(x1, §1) K5 (x2, ).
Noting thatK3 (x2, w2) = 1, we get the proposed Martin kernel.
(i) Similarly, if y = y1y2 — »7°&2 then the dominant term in the formula of Theorem 4.2(a) is the third one,
which behaves likgg 2. This and (3.5) yield

G(x,y)~ = ApgF1(x1, y1) Fa(x2, y2),

B
(gB)°rrozpH2
this time without passing t&@*. The conclusion is now as in (i) above.

(i) Let y — wfw,*, so thaty — oo (i = 1,2).

(@) k = +00. Thendy — ug = up — 02 — 00, so that the dominant term in the formula of Theorem 4.2(a) is the
second one, as in (i). We get the same estimate as in (i), but have to réplaite v, i.e.,

K(x,y) = Ki(x1, 01) K5 (x2, w2) = 1.
(b) k = —o0. In this case, the dominant term and asymptotic estima€&(of y) are the same as in (ii), whence
K (0,y) > K1(x1, 1) Ka(x2, wp) = p~002) = o),

sinceK1(x1, w1) = 1.

(c) k € Z, andh(y1) = k. In this case, all ofy;,0; (i =1, 2) tend tooco. Also 01 — u3 =up — 02 =k — h(x1).
Therefore, in the formula of Theorem 4.2(a), among the four terms iQ thethe second and the third one are of
the same order and dominate the other two. We obtain

G(x,y)~ (qﬂ?ﬁ (’3—12 + ﬂ—iz> = ApFi(x1, y1) F3 (x2, y2) (1 + gV 7F).
Therefore
1+ phGo—k gk gbx)
1+5% — gk41
(iv) Recall that whery; remains fixed ang — a)z_h(yl), thend = 0(x1, y1) anduy = u(x1, y1) are constant,

while up = s — uy ando, = s — 01. In Theorem 4.2(a), the first three of the four terms inthe) are of the same
order and dominate fourth. Thus

K(x,y) = Ki(x1, w1)K5(x2, w2)

G Ap_(Bp pTo1 gLy 1 F3
(x,y) ~ @Bz \ pe 5 + 55 = Ap(B — D F5(x2, y2)Pa,q (X1, y1).
This yields the proposed limit & (x, y).
(v) Whenys is fixed andy; — wl_h(”), we get analogously
Ag Bg phr—1 pu_-1 _ "
Gx,y)~ @p)oirez (E 55 g )~ Ap(B — DFY (x1, yD)P1-a.r (X2, y2).

Again, this yields the proposed limit &f (x, y). O

6. Positive eigenfunctions

It is well known and easy to prove that positisaarmonicfunctionsh (satisfyingPh =t - h) exist if and only
if t > p(P), see e.g.[27], Lemma 7.2. The Green kernel (resolvent) associated with eigenigalue

o0
Gl yly=>Y_p"x. /1", x.yeX.
n=0



S. Brofferio, W. Woess / Ann. |. H. Poincaré — PR 41 (2005) 1101-1123 1121

(Instead of the variable, oftenz = 1/t is used in the literature.) The Martin compactification associated ®ith
and the eigenvaluecan be constructed in the same way as described in the Introduction, using the Martin kernel

K(x,ylt) = G(x,ylt)/G(o, y|t).

Now considerP = P, on DL(q, r), its projections to the two trees, and in particulﬁrpn Z. We fixt > p =
p(P)=2a(l— a). Set

1 — /12— p? t— /1?2 —p?
)=————— and A(t)=————.
«) 2 ® 20
Then the function orZ defined byy (k) = A(1)* satisfiesﬁal/f =1 - . We can lift this function tdl'l, T2 and
DL by using the respective projection, and we obtairh@rmonic function for the respective random walk. Then
we can conjugate the respective transition matrix with the lifted function, and divideWg end up with a new

transition matrix. OrbL, this becomes

Pa(x, Y)Y (h(y1))
1y (h(x1))

Consequently, the associated Green and Martin kerndts @atisfy

= Pa(n) (X, ). (6.1)

Go(x,y|t) = Gaqy(x, y))\(t)h(xl)—h(yl) and
Golx, ylt) _
Ga(0,yI1)
whereGy ) (x, y) andKy () (x, y) are the ordinary Green and Martin kernels (with 1) of P,(;) onDL. Thus, the

estimates of 84 also yield the asymptotica®f(x, y|t). Note here that(p) = 1/2 anda () < 1/2 whent > p.
Also note that formulas analogous to (6.1) and (6.2) hold for the projected random walks on the two trees.

(6.2)

Ko(x, ylt) = Ko (x, A1)V,

6.3. Corollary. The Martin compactification obL(g, ) with respect toP, and eigenvalue is the geometric
compactificatiorDL(q, r) whens = p(P,) and the horocyclic compactificatidblL(g, r) whent > p(Py).

We omit transcribing from 85 the explicit formulas for all the extended Martin kernels and just remark that for
anyr > p, we get

K (x1x2, 105, (1) = K1(x1, 61]1),  £1€0*T,, and
K (x1x2, 0] ©&2|t) = Ka(x1, £1]t), &2€0*T,.

We have omitted the, resp. 1— « in the subscripts, and the superscript.gf (i = 1, 2) has to be omitted when
t=p.

Once more, the Martin compactificationgtablein the sense of Picardello and Woess [21]: in particular, the
compactification is the same for all> p, while at the bottom of the positive spectrum, i.e.,fet p, it is smaller.
Indeed, the identity oL(g, r) extends to a continuous surjection from the horocyclic onto the geometric com-
pactification.

7. Aremark on the elliptic Harnack inequality

The elliptic Harnack inequalityfor reversible random walks on graphs appears frequently in recent research,
see e.g. Hebisch and Saloff-Coste [15], Delmotte [6], Grigor'yan and Telcs [14], or — most suitable in our context
— the recent note of Barlow [1]. Barlow shows among other that the elliptic Harnack inequality for a random walk
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with “controlled weights” (in particular, for SRW on a graphwith bounded vertex degrees) is equivalent with a
Harnack inequality for restricted Green functions

o0
GP(x,y)=) Pi[Z,=y,Zr e Dk <n)| Zo=x],
n=0
whereD C X is finite.
In the formulation of [1], Theorem 2, this inequality — denoted (HG) — requires that there is a cafistaah
that if xg, x, y € X are such thad (xg, x) = d(xp, y) = R > 1 andv € D for all v with d(xg, v) < 2R, then

GP(x0,y) < C - GP(x0, x). (7.1)
When the random walk is transient then we canldeend toX (i.e., we use an increasing sequebg) of finite
subsets whose union 1), and we see that (HG) implies

G(x0,y) <C-G(xp,x) forallxg,x,ye X with d(xg, x) =d(xo, y). (7.2)

In [1], it is shown that the random walk on the lamplighter group which corresponds to SRW(@n2) doesnot
satisfy (HG), or equivalently, the elliptic Harnack inequality.

This can also be seen easily from our asymptotic estimate. Indeed, consider SBWgon) andR > 1. We
choosex = x1x2 such thaty(x1) = d(o, x) = 2R, so that the relative position afwith respect tw is that of (Ill)
in Fig. 4. Also, we choose = y1y» such thab(y1) =0 andd (o, y) = 2R, with relative position as in (1) of Fig. 4.
Then, using Corollaries 4.15 and 4.20 witk=r andg = 1, we get

G1(01,01)G2(02,02) q +1Gi(01,01)G2(02,02)
~ 4Rq2R and G(o,y)~ -1 2R2gF

asR — oo. Thus,G(o, x)/G (o, y) — 0, and (7.2) does not hold.

G(o,x)

)
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