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Abstract

We determine the precise asymptotic behaviour (in space) of the Green kernel of simple random walk with drif
Diestel–Leader graphDL(q, r), whereq, r � 2. The latter is the horocyclic product of two homogeneous trees with respe
degreesq + 1 andr + 1. Whenq = r, it is the Cayley graph of the wreath product (lamplighter group)Zq � Z with respect to a
natural set of generators. We describe the full Martin compactification of these random walks onDL-graphs and, in particula
lamplighter groups. This completes previous results of Woess, who has determined all minimal positive harmonic func
 2005 Elsevier SAS. All rights reserved.

Résumé

On détermine le comportement asymptotique précis (dans l’espace) du noyau de Green de la marche aléatoire s
dérive sur le graphe de Diestel–LeaderDL(q, r), oùq, r � 2. Ce graphe est le produit horocyclique de deux arbres homog
de degrésq + 1 et r + 1, respectivement. Quandq = r, il s’agit du graphe de Cayley du produit en couronne (« lamplig
group »)Zq � Z par rapport à un ensemble naturel de générateurs. On décrit la compactification de Martin complèt
marches aléatoires sur les graphesDL, et en particulier, les groupes du « lamplighter ». Ceci complète les résultats préc
de Woess, qui a déterminé les fonctions harmoniques minimales.
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1. Introduction

Consider the additive groupZ of all integers as a two-way-infinite road where at each point there is a lam
may be switched on in one ofq different intensities (states)∈ Zq = {0, . . . , q − 1}, the group of integers moduloq.
At the beginning, all lamps are in state 0 (switched off), and a lamplighter starts at some point ofZ. He chooses a
random among the following actions (or a suitable combination thereof): he can move to a neighbour poiZ,
or he can change the intensity of the lamp at the actual site to a different state. As the process evolves,
to keep track of the positionk ∈ Z of the lamplighter and of the finitely supported configurationη :Z → Zq that
describes the states of all lamps. The setZq � Z of all pairs(η, k) of this type carries the structure of a semi-dir
product ofZ with the additive groupC of all configurations, on whichZ acts by translations. This is often calle
the lamplighter group; the underlying algebraic construction is thewreath productof two groups.

Random walks on lamplighter groups have been a well-studied subject in recent years, see Kaimano
Vershik [18] and Kaimanovich [17] (Poisson boundary≡ bounded harmonic functions), Lyons, Pemantle and P
[20], Erschler [12], Revelle [24], Bertacchi [3] (rate of escape), Grigorchuk andŻuk [13], Dicks and Schick [7]
Bartholdi and Woess [2] (spectral theory), Saloff-Coste and Pittet [22,23], Revelle [25] (asymptotic behav
transition probabilities), and Woess [28] (positive harmonic functions).

Here, we shall deal with Green kernel asymptotics and positive harmonic functions. Let us briefly ou
general how this is linked withMartin boundary theoryof Markov chains. Consider an arbitrary infinite (connect
locally finite) graphX (e.g., a Cayley graph of a finitely generated group) and the stochastic transition
P = (p(x, y))x,y∈X of a random walkZn on X. That is,Zn is anX-valued random variable, the position of t
random walker at timen, subject to the Markovian transition rule

Pr[Zn+1 = y | Zn = x] = p(x, y).

Then-step transition probability

p(n)(x, y) = Pr[Zn = y | Z0 = x], x, y ∈ X,

is the(x, y)-entry of the matrix powerP n, with P 0 = I , the identity matrix. TheGreen kernelis

G(x,y) =
∞∑

n=0

p(n)(x, y), x, y ∈ X.

This is the expected number of visits in the pointy, when the random walk starts atx. We always consider random
walks that areirreducibleandtransient, which amounts to

0< G(x,y) < ∞ for all x, y ∈ X.

Renewal theoryin a wide sense consists in describing the asymptotic behaviour in space ofG(x,y), whenx is
fixed andy tends to infinity (or dually,y is fixed andx tends to infinity). If we fix a reference pointo ∈ X, then the
Martin kernelis

K(x,y) = G(x,y)/G(o, y), x, y ∈ X.

If we have precise asymptotic estimates in space of the Green kernel, then we can also determine thMartin
compactification. This is the smallest metrizable compactification ofX containingX as a discrete, dense subs
and to which all functionsK(x, ·), x ∈ X, extend continuously. TheMartin boundaryM = M(P ) is the ideal
boundary added toX in this compactification. Thus,M consists of the “directions of convergence” ofK(x,y),
wheny → ∞. Its significance is that it leads to a complete understanding of the coneH+ = H+(P ) of positive
harmonic functions. A functionh :X → R is calledharmonic, or P -harmonic, if

h = Ph, wherePh(x) =
∑

p(x, y)h(y).
y
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A functionh ∈ H+ is calledminimal if

h(o) = 1 and h � h1 ∈ H+ �⇒ h1/h ≡ constant.

The minimal harmonic functions are the extreme points of the convex baseB = {h ∈ H+: h(o) = 1} of the
coneH+.

The reader is referred to the excellent introduction to Martin boundary theory by Dynkin [10], based
pioneering work by Doob [9] and Hunt [16]. A main result of this theory is that

• Every minimal harmonic function is of the formK(·, ξ), where ξ ∈ M, and the setMmin = {ξ ∈ M:
K(·, ξ) is minimal} is a Borel subset ofM;

• For everyh ∈H+ there is a unique Borel measureνh onM such that

νh(M \Mmin) = 0 and h(·) =
∫
M

K(·, ξ)dνh(ξ).

The above is an abstract construction of the Martin compactification. The kind of approach that we have
here is the following. The transition matrixP is adapted to the graph structure, and we want to understan
describe the Martin compactification in terms of the specific geometry ofX. Results of this type for random walk
on various classes of graphs and groups, along with many references, are presented in the book by Woes

Returning to lamplighter walks, this spirit requires as the starting point a good understanding of thegeometry
of the wreath productZq � Z in terms of a suitable Cayley graph of that group. This is the Diestel–Leader
DL(q, q), a special case of the Diestel–Leader graphsDL(q, r) (q, r � 2), which were introduced in [8] and a
explained in detail in Section 2. Briefly speaking,DL(q, r) is thehorocyclic productof the homogeneous tree
Tq andTr with degreesq + 1 andr + 1, respectively. It is precisely this geometric realization of the lamplig
groups in terms of relatively simple objects such as trees, that allows us to perform many computations.

The random walk with transition matrixPα onDL(q, r) that we consider is thesimple random walk(SRW) with
an additional drift parameterα ∈ (0, 1). If r = q (the case of the lamplighter group), then this random walk ca
interpreted in lamplighter terms as follows. Think of the lamps not placed at each vertex of the two-way-
pathZ, but at the middle of each edge. Suppose the actual position of the lamplighter isk ∈ Z. He first tosses
a coin. If “head” comes up, which happens with probabilityα, he moves tok + 1 and switches the lamp on th
transversed edge to a state chosen at random inZq . Otherwise, he moves tok − 1 and also switches the lamp o
the transversed edge to a random state.

Even whenq 	= r , the random walkPα on DL(q, r) may be interpreted as a lamplighter walk in an exten
sense. Imagine that on each edge ofZ, there is a green lamp withq possible intensities (including “off”) inZq

plusa red lamp withr possible intensities (including “off”) inZr . The rule is that only finitely many lamps ma
be switched on, and in addition, if the lamplighter stands atk, then all red lamps betweenk and−∞ have to be
switched off, while all green lamps betweenk and+∞ must be switched off. The lamplighter tosses hisα-coin.
If “head” comes up, he moves fromk to k + 1 and switches thegreenlamp on the transversed edge to a rand
state, while switching off the red lamp on that edge. Otherwise, he moves tok − 1 and switches thered lamp on
the transversed edge to a random state, while switching off the green lamp sitting there.

Then the random walkP = Pα (whose definition is formalised in (2.3)) is irreducible and transient. Via
geometric interpretation, we see that it has natural projectionsP1 = Pα,q andP2 = P1−α,r on the two trees used t
make up the graph, and alsõP = P̃α onZ, which describes just the moves of the lamplighter. A good understan
of these projected walks is crucial for our approach, and in Section 3, we quickly review the necessa
concerning those random walks onTq (andTr ).

In Section 4, we derive our main results concerning the asymptotic behaviour of the Green kernel as
with Pα , subsumed in Theorem 4.2. The asymptotics are different along different directions of moving to i
Also, the drift-free case (α = 1/2) is substantially different from the other cases (α 	= 1/2).
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These results are used in Section 5 to describe the full Martin compactification. In the drift-free case
the “natural” geometric compactification in terms of the two underlying trees. Namely,DL(q, r) is a subgraph o
Tq × Tr , and the Martin compactification is the closure ofDL(q, r) in T̂q × T̂r , whereT̂q andT̂r are the well-
known end-compactifications of the respective trees. However, whenα 	= 1/2, the Martin compactification is large
than (≡ surjects non-trivially onto) the geometric one. The minimal Martin boundary, previously described i
without elaborating the directions of convergence, is recovered.

These results can also be adapted to obtain the Martin compactification for all positivet-harmonicfunctions,
that satisfyPh = t · h, wheret � ρ(Pα) = lim supn p(n)(x, x)1/n, the “bottom of the positive spectrum”. Th
picture at the bottom is that of the drift-free case, while the caset > ρ(Pα) corresponds to non-vanishing drift. S
Section 6.

In the short Section 7, we present another little by-product of our Green kernel estimates, namely, we i
their use for showing directly that SRW onDL(q, q) (the lamplighter group) does not satisfy theelliptic Harnack
inequality.

In conclusion, let us remark that in general it is significantly harder to determine the whole Martin comp
cation than to determine the minimal harmonic functions associated with a random walk, since the former
more detailed analytic-geometric informations than the latter, whose computation often has rather an algeb
an analytic flavour. Let us also remark that our results provide the first case where one can successfully d
the whole Martin compactification of a class of random walks on finitely generated groups that are solvable
not have polynomial growth.

2. The geometry of Diestel–Leader graphs and lamplighter groups

We now explain the structure of the DL-graphs and their relation with the wreath productsZq � Z. This section
is a short and slightly modified version of §2 in [28], included here for the sake of completeness.

Let T = Tq be the homogeneous tree with degreeq + 1, q � 2. A geodesic path, respectivelygeodesic ray,
respectivelyinfinite geodesicin T is a finite, respectively one-sided infinite, respectively doubly infinite sequ
(xn) of vertices ofT such thatd(xi, xj ) = |i − j | for all i, j , whered(·, ·) denotes the graph distance.

Two rays areequivalentif their symmetric difference is finite. Anendof T is an equivalence class of rays. T
space of ends is denoted∂T, and we writêT = T ∪ ∂T. For allw,z ∈ T̂, w 	= z, there is a unique geodesicwz that
connects the two. In particular, ifx ∈ T andξ ∈ ∂T thenxξ is the ray that starts atx and representsξ .

For x, y ∈ T, x 	= y, we define theconeT̂(x, y) = {w ∈ T̂: y ∈ xw}. The collection of all cones is a sub-bas
of a topology which makeŝT a compact, totally disconnected Hausdorff space withT as a dense, discrete subse

We fix a root vertexo ∈ T. If w,z ∈ T̂, then theirconfluentc = w ∧ z with respect too is defined byow ∩ oz =
oc. Similarly, we choose and fix areference endω ∈ ∂T. Forz, v ∈ T̂ \ {ω}, their confluentb = v � z with respect
to ω is defined byvω ∩ zω = bω. We write

z � v if z � v = z.

Forx, y ∈ T, we describe their relative position by the two numbers

u(x, y) = d(x, x � y) and d(x, y) = d(y, x � y).

Thus,d(x, y) = u(y, x). In Fig. 1,u(x, y) andd(x, y) correspond to the numbers of steps one has to take upw
(in direction ofω), respectively downwards, on the geodesic path fromx to y. We haved(x, y) = u(x, y)+d(x, y).

TheBusemann functionh :T → Z and thehorocyclesHk with respect toω are

h(x) = d(o, x) − u(o, x) and Hk = {
x ∈ T: h(x) = k

}
.

Every horocycle is infinite. We writeH(x) = Hk if x ∈ Hk . Every vertexx in Hk has one neighbourx− (its
predecessor) inHk−1 andq neighbours (its successors) inHk+1. Thus� is the transitive closure of the predeces
relation. We set∂∗

T = ∂T \ {ω}.
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Fig. 1.

We label each edge ofT by an element ofZq such that for each vertex, the “downward” edges to itsq successors
carry labels 0, . . . , q − 1 from left to right (say), see Fig. 1. Thus, for eachx ∈ T, the sequence(σ (n))n�0 of labels
on the geodesicxω has finite support{n: σ(n) 	= 0}. We writeΣq for the set of all those sequences. On ev
horocycle, there is exactly one vertex corresponding to eachσ ∈ Σq . Thus,Tq is in one-to-one corresponden
with the setΣq × Z, and thek-th horocycle isHk = Σq × {k}.

Now consider two treesT1 = Tq andT
2 = Tr with rootso1 ando2 and reference endsω1 andω2, respectively.

2.1. Definition.The Diestel–Leader graphDL(q, r) is

DL(q, r) = {
x1x2 ∈ Tq × Tr : h(x1) + h(x2) = 0

}
,

and neighbourhood is given by

x1x2 ∼ y1y2 ⇐⇒ x1 ∼ y1 and x2 ∼ y2.

To visualiseDL(q, r), drawTq in horocyclic layers withω1 at the top and∂∗
Tq at the bottom, and right to i

Tr in the same way, but upside down, with the respective horocyclesHk(Tq) andH−k(Tr ) aligned. Connect th
two originso1, o2 by an elastic spring. It is allowed to move along each of the two trees, may expand infi
but must always remain in horizontal position. The vertex set ofDLq,r consists of all admissible positions of th
spring. From a positionx1x2 with h(x1) + h(x2) = 0 the spring may move upwards to one of ther successors o
x2 in Tr , and at the same time to the predecessor ofx1 in Tq , or it may move downwards in the analogous w
Such a move corresponds to going to a neighbour ofx1x2. We see thatDL(q, r) is regular with degreeq + r . As
the reference point inDL(q, r), we chooseo = o1o2. Fig. 2 illustratesDL(2,2).

The position ofy = y1y2 with respect tox1x2 ∈ DL(q, r) is described by the four numbersu(x1, y1),d(x1, y1),

u(x2, y2),d(x2, y2), see below in Section 4, (4.1) and Fig. 3. The random walks that we are going to deal w
all such that the transition probabilitiesp(x1x2, y2y2) depend only on those four parameters – a crucial prerequ
for our approach.

We now recall in more detail the construction of thelamplighter groupZq �Z. The group of all finitely supporte
configurations is

C = {
η :Z → Zq,supp(η) finite

}



1106 S. Brofferio, W. Woess / Ann. I. H. Poincaré – PR 41 (2005) 1101–1123

d-

erators

tro-

t

Fig. 2.

with point-wise addition moduloq. The groupZ acts onC by translationsk �→ Tk :C → C with Tkη(m) = η(m−k).
The resulting semi-direct productZ � C is

Zq � Z = {
(η, k): η ∈ C, k ∈ Z

}
with group operation (η, k)(η′, k′) = (η + Tkη

′, k + k′).

We identify each(η, k) ∈ Zq � Z with the vertexx1x2 ∈ DL(q, q), where according to the identificationTq ↔
Σq × Z, the verticesxi are given by

x1 = (η−
k , k) and x2 = (η+

k ,−k), where

η−
k = η|(−∞,k] and η+

k = η|[k+1,∞),
(2.2)

both written as sequences over the non-positive integers.
This is a one-to-one correspondence betweenZq � Z andDL(q, q), and that group acts transitively and fixe

point-freely on the graph. Namely, the action ofm ∈ Z is given byx1x2 = (σ1, k)(σ2,−k) �→ y1y2 = (σ1, k +
m)(σ2,−k − m), and the action of the group of configurations is point-wise addition moduloq. Write δl

k for the
configuration inC with value l at k and 0 elsewhere. ThenDL(q, q) is the (right) Cayley graph ofZq � Z with
respect to the symmetric set of generators{(

δl
1,1

)
,
(
δl

0,−1
)
: l ∈ Zq

}
,

i.e., an edge corresponds to multiplying with a generator on the right. (This is precisely the set of gen
considered in [13] and [7] when computing the spectrum of the associated SRW-operator.)

Returning toDL = DL(q, r), the transition matrixPα of the random walk that we have described in the In
duction is given as follows. Forx = x1x2, y = y1y2 ∈ DL(q, r)

pα(x, y) =
α/q if y−

1 = x1 andy2 = x−
2 ,

(1− α)/r if y1 = x−
1 andy−

2 = x2,

0 otherwise.

(2.3)

3. Simple random walk with drift on a homogeneous tree

In general, ifP is a transition matrix over a setX and{Xi : i ∈ I } is a partition ofX with the associated quotien
mapπ :X → I , then one says thatP factorises(or projects) with respect toπ , if p̃(i, j) := ∑

y∈Xj
p(x, y) does

not depend on the specific choice ofx ∈ Xi . In this case, the Green kernel̃G associated with̃P = π(P ) also
satisfies

G̃(i, j) =
∑
y∈X

G(x, y), x ∈ Xi. (3.1)

j
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In our case, we have three natural, neighbourhood preserving projectionsπ1 : DL → Tq , π2 : DL → Tr , and
π̃ : DL → Z, given by

π1(x1x2) = x1, π2(x1x2) = x2, and π̃ (x1x2) = h(x1).

Pα factorises with respect to each of them. Letπ1(Pα) = P1, π2(Pα) = P2 and π̃ (Pα) = P̃ . ThenP1 = Pα,q on
T

1 = Tq , P2 = P1−α,r on T
2 = Tr , andP̃ = P̃α on Z, where

pα,q(x1, y1) =
α/q if y−

1 = x1,

1− α if y1 = x−
1 ,

0 otherwise,
p̃α(k, l) =

{
α if l = k + 1,

1− α if l = k − 1,

0 otherwise.
(3.2)

The projected random walks are well understood. Everybody is familiar with the gambler’s processP̃α on Z. We
outline the basic features ofPα,q on Tq (or, equivalently,P1−α,r on Tr ).

Spectral radius. The spectral radius of any irreducible transition matrix is defined as

ρ(P ) = lim sup
n

p(n)(x, y)1/n.

It is independent ofx, y. In the specific case of our random walks with drift parameterα, we have

ρ(Pα)DL = ρ(Pα,q)Tq
= ρ(P1−α,r )Tr

= ρ(P̃α)Z = 2
√

α(1− α). (3.3)

(The subscript refers to the respective underlying graph.) ForP̃α on Z, this is well known. ForPα,q on Tq , it can
be easily computed in various ways. See e.g. Saloff-Coste and Woess [26], Example 1.

Green kernel. The – simple – computations of the Green kernelG1 = Gα,q associated withPα,q can be done
following the method of §1.D in [27], see also [28], (3.9). The main point is that we have a nearest nei
random walk on a tree (transition probabilities are positive only between neighbours). Thus, ifF1(x1, y1) is the
probability that the random walk starting atx1 ever hitsy1 (x1, y1 ∈ Tq ), then

F1(x1, y1) = F1(x1,w1)F1(w1, y1) for all w1 ∈ x1y1. (3.4)

Furthermore, sincep1(x1, y1) depends only onu(x1, y1) and d(x1, y1), the same is true forF1(x1, y1) and
G1(x1, y1). In particular,

F−
1 = F1(x1, x

−
1 ) and F+

1 = F1(x
−
1 , x1)

are independent ofx1 ∈ Tq as well asG1(x1, x1). Using these facts, and settingα+ = max{α,1−α}, one computes

G1(x1, y1) = F1(x1, y1)G1(y1, y1) = (
F−

1

)u(x1,y1)
(
F+

1

)d(x1,y1) q

(q + 1)α+ − 1
,

where

F−
1 =


1− α

α
if α � 1

2
,

1 if α � 1

2
,

F+
1 =


1

q
if α � 1

2
,

α

(1− α)q
if α � 1

2
.

(3.5)

Martin compactification. By (3.4), the Martin kernelK1 = Kα,q associated withPα,q satisfies

K1(x1, y1) = F1(x1, y1)

F1(o1, y1)
= F1(x1, c1)

F1(o1, c1)
, wherec1 = x1 ∧ y1

(the confluent with respect too1). From here, the following is almost immediate.
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3.6. Proposition.The Martin compactification ofTq with respect toPα,q is the end compactification̂Tq , and for
ξ1 ∈ ∂Tq , the Martin kernel is given byK1(x1, ξ1) = K1(x1, c1), wherec1 = x1 ∧ ξ1.

Furthermore, each functionK1(·, ξ1), ξ1 ∈ ∂Tq , is minimal harmonic forPα,q .

For general transient nearest neighbour random walks on arbitrary locally finite trees, this is due to by Ca
and in the specific case of free groups (which is close to, but not identical with our situation), it was
previously by Dynkin and Malyutov [11].

The analogous results forP1−α,r on Tr are obtained from the above by exchangingα with 1− α andq with r .
Whenα 	= 1/2, the same computations are also valid forP̃α on Z, settingq = 1. Whenα = 1/2 thenP̃α is of
courserecurrent, i.e., the associated Green kernel diverges.

Below in Section 5, we shall also need the following functions onTq ×Tq , which we call (generalised) spherical
functions. We setu = u(x1, y1), d = d(x1, y1) andβ = (1− α)/α.

φα,q(x1, y1) =



1

qd

(
q + 1

q − 1
+ d(x1, y1)

)
, if α = 1

2
,

1

(qβ2)d

(
qβ + 1

qβ2 − 1
+ βu − 1

β − 1
+ βd − 1

β − 1

)
if α <

1

2
,

βd(x1,y1)

qd

(
qβ−1 + 1

qβ−2 − 1
+ β−u − 1

β−1 − 1
+ β−d − 1

β−1 − 1

)
if α >

1

2
.

(3.7)

(Recall thatd(x1, y1) = u + d.) Thenφα,q(·, y1) is Pα,q -harmonic onTq for eachy1 ∈ Tq .

4. Green kernel asymptotics

We now embark on the main computational part of this paper. We considerPα on DL = DL(q, r), andwe shall
always assume thatα � 1/2, since all results in the caseα � 1/2 are obtained from the former by exchanging
role of the two trees (i.e., exchangingr with q).

We want to derive asymptotic estimates of the associated Green kernelG(x,y) = Gα(x, y), wherex = x1x2 and
y = y1y2 ∈ DL and the graph distanced(x, y) → ∞. The latter means that at least one ofd(x1, y1) andd(x2, y2)

(distances in the respective trees) tends to∞. We remark here that

d(x, y) = d(x1, y1) + d(x2, y2) − ∣∣h(y1) − h(x1)
∣∣,

d(xi, yi) = ui + di , h(yi) − h(xi) = di − ui , (i = 1,2), and

u1 + u2 = d1 + d2, whereui = u(xi, yi) anddi = d(xi, yi).

(4.1)

(Cf. Bertacchi [3] for the distance formula.) In terms of the lamplighter moving alongZ (with the lamps – possibly
red and green – sitting on the edges, as described in the Introduction),u1 is the minimal number of steps th
lamplighter has to walk in the negative direction in order to obtain the new position and configuration enc
the vertexy = y1y2 of DL, andu2 is analogous in the positive direction.

We setci = xi � yi . See Fig. 3. We also chooseai, bi ∈ T
i with xi � ai , yi � bi , such thath(a1) = h(b1) =

−h(c2) andh(a2) = h(b2) = −h(c1), i.e., the pairsa1c2, b1c2, c1a2, c1b2 belong toDL. In particular,d(x, y) → ∞
means thats → ∞, where

s = s(x, y) = u1 + u2 = d1 + d2 = −h(c1) − h(c2)

is thespanof x andy.
The following is the first main result of this paper.
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4.2. Theorem.Referring to(4.1) and Fig.3, suppose thatd(x, y) → ∞, and hences = s(x, y) → ∞. Then we
have the following.

(a) If α < 1/2 andβ = (1− α)/α then

G(x,y) ∼ Aβ

(qβ)d1rd2

(
Bβ

βs − βu1

βs − 1

βs − βd1

βs − 1

1

βs
+ βs − βu1

βs − 1

βd1 − 1

βs − 1

+ βu1 − 1

βs − 1

βs − βd1

βs − 1
+ B∗

β

βu1 − 1

βs − 1

βd1 − 1

βs − 1

)
,

where

Aβ = G1(o1, o1)G2(o2, o2)

G̃(0,0)
= qr(β2 − 1)

(qβ − 1)(qr − 1)
,

Bβ = (β − 1)(qβ + 1)

qβ2 − 1
, and B∗

β = (β − 1)(rβ + 1)

rβ2 − 1
.

(b) If α = 1/2 then

G(x,y) ∼ A1

s4qd1rd2

(
q + 1

q − 1
u2d2 + su2d1 + su1d2 + r + 1

r − 1
u1d1

)
,

where

A1 = G1(o1, o1)G2(o2, o2)

2
= 2qr

(q − 1)(r − 1)
.

According to the way howy tends to infinity geometrically (when we think ofx being fixed), one or more o
the four terms will dominate the others, as we shall see below.

As mentioned at the beginning, the caseα > 1/2 is obtained by exchangingr ↔ q andα ↔ 1−α. Equivalently,
we may use Lemma 4.12 and apply statement (a) of Theorem 4.2 toG∗(x, y), with β∗ = 1/β in the place ofβ.

We now start our (laborious) way towards the proof of Theorem 4.2. The following is obvious, but crucia

4.3. Lemma.The Green kernelG(x,y) depends only onu1,d1,u2,d2.

Let Zn be the random position of thePα-walk. This is aDL-valued random variable defined on a suita
probability space (trajectory space). We writePrx = Pr[· | Z0 = x] andEx for the associated expectation. Also,1[···]
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will denote the indicator function of an event[· · ·] in the trajectory space. The projectionZi
n = πi(Zn) represents

the random position at timen of thePi -walk onT
i , i = 1,2, and the random variablẽZn = π̃(Zn) realizes then-th

position of theP̃α-walk onZ.
We shall use severalstopping times.If x = x1x2 ∈ DL, xi ∈ T

i (i = 1,2), resp.k ∈ Z, then we set

t(x) = inf
{
n � 0: Zn = x

}
, ti (xi) = inf

{
n � 0: Zi

n = xi

}
(i = 1,2), and

t̃(k) = inf
{
n � 0: Z̃n = k

}
.

Note that these random variables are all defined on the same trajectory space associated withPα .

4.4. Lemma.Referring to the situation of Fig.3, we have

t1(c1) = t̃
(
h(x1) − u1

)
and t2(c2) = t̃

(
h(x2) + u2

)
Prx -almost surely.

Furthermore, in order to reachy starting inx, bothZ
i
n have to pass throughci , i = 1,2, i.e.,

max
{
t1(c1), t2(c2)

}
� t(y) Prx -almost surely.

Proof. The Pα-walk on DL as well as the projected random walks are of nearest neighbour type. Thus, s
in x, the first point in the set{v = v1v2 ∈ DL: h(v1) = h(c1)} visited byZn must be of the formc1v2. This translates
into t1(c1) = t̃(h(x1) − u1), and exchanging the roles of the two trees, also intot2(c2) = t̃(h(x2) + u2). The same
type of argument shows the last statement.�

The last lemma leads us to the identities

Prx
[
t1(c1) < t2(c2)

] = ϕ1(u1,u2) and Prx
[
t2(c2) < t1(c1)

] = ϕ2(u1,u2), (4.5)

where fork, l � 0, the probability that thẽPα-walk on Z starting in 0 reaches−k beforel is ϕ1(k, l), and the
probability that it reachesl before−k is ϕ2(k, l) = 1 − ϕ1(k, l). It is a well-known exercise to compute the
functions, and they are given by

ϕ1(k, l) = βk+l − βk

βk+l − 1
and ϕ2(k, l) = βk − 1

βk+l − 1
, with β = 1− α

α
, if α 	= 1

2
;

ϕ1(k, l) = l

k + l
and ϕ2(k, l) = k

k + l
, if α = 1

2
.

(4.6)

See e.g. Kemeny and Snell [19], §7.1, in particular (5) and (6) on p. 153. Next, let us introduce the function

ψ(k) =
(

αr

(1− α)q

)k

, k ∈ Z. (4.7)

If we setm(x) = ψ(h(x1)), wherex = x1x2 ∈ DL, then we havem(x)pα(x, y) = m(y)pα(y, x) for all x, y ∈ DL.
That is,Pα is m-reversible, and we also get

G(x,y) = ψ
(
h(y1) − h(x1)

)
G(y,x) for all x = x1x2, y = y1y2 ∈ DL. (4.8)

4.9. Proposition.Referring to the situation of Fig.3, we have the following decomposition.

G(x,y) = ϕ1(u1,u2)ϕ1(d1,d2)ψ(d1)G(c1b2, c1a2) (I)

+ ϕ1(u1,u2)ϕ2(d1,d2)ψ(d1)G(b1c2, c1a2) (II)

+ ϕ2(u1,u2)ϕ1(d1,d2)ψ(−d2)G(c1b2, a1c2) (III)

+ ϕ2(u1,u2)ϕ2(d1,d2)ψ(−d2)G(b1c2, a1c2). (IV)
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Proof. By (4.4) and (4.5), we have

G(x,y) = Ex

(
1[t1(c1)<t2(c2)]G(Zt1(c1), y)

) + Ex

(
1[t2(c2)<t1(c1)]G(Zt2(c2), y)

)
.

If t1(c1) < t2(c2) and Zt1(c1) = c1w2, then we must havec2 � w2 and furthermorew2 � b2 = c2. Thus,
u(w2, y2) = u(a2, y2) andd(w2, y2) = d(a2, y2). Lemma 4.3 impliesG(Zt1(c1), y) = G(c1a2, y). In the same way
G(Zt2(c2), y) = G(a1c2, y). Thus,

G(x,y) = Prx
[
t1(c1) < t2(c2)

]
G(c1a2, y) + Prx

[
t2(c2) < t1(c1)

]
G(a1c2, y)

= ϕ1(u1,u2)G(c1a2, y) + ϕ2(u1,u2)G(a1c2, y).

Using (4.8), we getG(c1a2, y) = ψ(d1)G(y, c1a2). Applying once more (4.4) and (4.5),

G(y, c1a2) = Ey

(
1[t1(c1)<t2(c2)]G(Zt1(c1), y)

) + Ey

(
1[t2(c2)<t1(c1)]G(Zt2(c2), y)

)
.

We can repeat the above argument withy in the place ofx andc1a2 in the place ofy, and we have to replacea1, a2
with b1, b2. Therefore

G(y, c1a2) = ϕ1(d1,d2)G(c1b2, c1a2) + ϕ2(d1,d2)G(b1c2, c1a2).

Analogously,G(a1c2, y) = ψ(−d2)G(y, a1c2) and

G(y,a1c2) = ϕ1(d1,d2)G(c1b2, a1c2) + ϕ2(d1,d2)G(b1c2, a1c2).

Combining these formulas, we obtain the proposed decomposition.�
Thus, in order to understand the asymptotics ofG(x,y) in the general case of Fig. 3, we can reduce our c

putations to the following four basic cases of relative positions ofx andy.
In all four cases,s = s(x, y) → ∞. In case (I),u1 = d1 = 0 andu2 = d2 = s. In case (II),u1 = d2 = s and

d1 = u2 = 0. In case (III),d1 = u2 = s andu1 = d2 = 0. In case (IV),u1 = d1 = s andu2 = d2 = 0.
We start with an extended version of case II, see Fig. 5.

Fig. 5.
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4.10. Proposition.If, as in Fig.5, x = x1x2 andy = y1y2 with s = s(x, y) are such thatu1 −d1 = d2 → ∞, u2 = 0
andd1 is arbitrary, then

G1(x1, y1) = C(s)rd2G(x,y) + R(d1,d2), (4.11)

where

C(s) → G̃(0,0)

G2(o2, o2)
if α 	= 1

2
, C(s) ∼ 2s

G2(o2, o2)
if α = 1

2
,

and0< R(d1,d2) < G1(x1, y1) with

lim
d2→∞R(d1,d2) = 0.

Proof. Applying (3.1) to the projectionπ1 givesG1(x1, y1) = ∑
w2∈H(y2)

G(x, y1w2).

Let w2 ∈ H(y2), whereH(y2) is the horocycle ofy2 in Tr . We write v2 = v(w2) for the unique element in
H(x2) that satisfiesv2 � w2. By Lemma 4.4, the random walk has to pass through some point of the fo
{u1v2: u1 ∈ H(x1)} on the way fromx to y1w2, that is,

G(x,y1w2) = Ex

(
1[t2(v2)<∞]G(Zt2(v2), y1w2)

)
= Ex

(
1[t2(v2)<t1(c1)]G(Zt2(v2), y1w2)

) + Ex

(
1[t1(c1)<t2(v2)<∞]G(Zt2(v2), y1w2)

)
.

Now, if starting atx, we havet2(v2) < t1(c1), thenZt2(v2) = u1v2 for some randomu1 ∈ H(x1) that must sat-
isfy u(u1, y1) = u1 andd(u1, y1) = d1, sincec1 cannot lie onx1u1. But we also haveu(v2,w2) = u2 = 0 and
d(v2,w2) = d2. That is, the pointsu1v2 and y1w2 have the same relative position as the pointsx and y, and
thereforeG(u1v2, y1w2) = G(x,y) by Lemma 4.3. We get

Ex

(
1[t2(v2)<t1(c1)]G(Zt2(v2), y1w2)

) = Prx
[
t2(v2) < t1(c1)

]
G(x,y).

Now, givenv2 ∈ H(x2), there are preciselyrd2 elementsw2 ∈ H(y2) with v(w2) = v2. Combining all these obse
vations,

G1(x1, y1) =
( ∑

v2∈H(x2)

Prx
[
t2(v2) < t1(c1)

])
rd2G(x,y) + R(d1,d2), where

R(d1,d2) =
∑

w2∈H(y2)

Ex

(
1[t1(c1)<t2(v(w2))<∞]G(Zt2(v(w2)), y1w2)

)
.

Let us first consider the error termR(d1,d2). Note thatG(·, ·) � G(o,o) < ∞, since our random walk is transien
(Already the projections ontoTq andTr are transient!) Sinced2 → ∞, alsot1(c1) → ∞ almost surely. It follows
that

rd1,d2(w2) := Ex

(
1[t1(c1)<t2(v(w2))<∞]G(Zt2(v(w2)), y1w2)

)
� Prx

[
t1(c1) < t2

(
v(w2)

)
< ∞]

G(o,o) → 0 whend2 → ∞.

On the other hand,

rd1,d2(w2) � G(x,y1w2) and
∑

w2∈H(y2)

G(x, y1w2) = G1(x1, y1) � G1(o1, o1).

Thus, dominated convergence (in the summation) implies thatR(d1,d2) → 0 asd2 → ∞.
It remains to show thatC(s) = ∑

v2∈H(x2)
Prx[t2(v2) < t1(c1)] has the proposed asymptotic behaviour, whend2

(ands) → ∞.
We may suppose without loss of generality thath(x1) = h(x2) = 0, so thath(c1) = −s. Then Lemma 4.4 implie

Prx[t2(v2) < t1(c1)] = Prx[t2(v2) < t̃(−s)]. Now let the superscript(−s) refer to the random walk̃P on Z stopped
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at −s, i.e., we consider the restriction of̃P to {k ∈ Z: k > −s}. We use the same superscript for the random w
P2 on Tr stopped at the horocycleHs in Tr , i.e., we consider the restriction ofP2 to {z2 ∈ Tr : h(z2) < s}. Using
the notation of (3.5), we have

Prx
[
t2(v2) < t̃(−s)

] = F
(−s)
2 (x2, v2) = G

(−s)
2 (x2, v2)

G
(−s)
2 (v2, v2)

= G
(−s)
2 (x2, v2)

G
(−s)
2 (o2, o2)

.

SinceP̃ (−s) is the projection ofP2(−s) under the mappingz2 �→ −h(z2), we find

C(s) =
∑

v2∈H(x2)

G
(−s)
2 (x2, v2)

G
(−s)
2 (o2, o2)

= G̃(−s)(0,0)

G
(−s)
2 (o2, o2)

.

If s → ∞ thenG
(−s)
2 (o2, o2) → G2(o2, o2) < ∞, for each value ofα. If α < 1/2 thenG̃(−s)(0,0) → G̃(0,0) <

∞. If α = 1/2 then routine calculations regarding SRW onZ yield G̃(−s)(0,0) = 2s. Thus,C(s) has the propose
asymptotic behaviour. �

The last proposition is valid for arbitraryα. However, it becomes meaningful only whenα � 1/2. Indeed, when
α > 1/2, then the left-hand side in the decomposition (4.11) tends to 0 by (3.5). In this case, (4.11) cont
information about the asymptotic behaviour ofG(x,y). On the other hand, whenα � 1/2 andd1 = 0 (situation
(II) of Fig. 4) thenG1(x1, y1) = G1(o1, o1) is constant, see (3.5). When we consider the “dual” situation of Fi
as illustrated in Fig. 6, this discussion shows that it is not useful to rewrite Proposition 4.10 by just exch
boththe roles of the two treesandα with 1− α.

We shall use the superscript∗ for the respective random walks onDL, Tq , Tr , andZ that are obtained b
exchangingα ↔ 1−α, withoutexchanging roles of the two trees. Thus,P ∗

α = P1−α , P ∗
α,q = P1−α,q , P ∗

1−α,r = Pα,r ,

andP̃ ∗ on Z moves fromk to k + 1 with probability 1− α and tok − 1 with probabilityα.

4.12. Lemma.

G∗(x, y) = βh(y1)−h(x1)G(x, y) ∀x, y ∈ DL

(
β = 1− α

α

)
.

Proof. The functiong(x) = βh(x1) satisfiesPg = g, andp∗(x, y) = p(x, y)g(y)/g(x). �
4.13. Corollary. If, as in Fig.6, x = x1x2 andy = y1y2 with s = s(x, y) are such thatd1 = u2 − d2 → ∞, u1 = 0
andd2 is arbitrary, then

G∗
2(x2, y2) = C∗(s)(qβ)d1G(x,y) + R∗(d1,d2), (4.14)
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where

C∗(s) → G̃(0,0)

G1(o1, o1)
if α 	= 1

2
, C∗(s) ∼ 2s

G1(o1, o1)
if α = 1

2
,

and0< R∗(d1,d2) < G∗
2(x2, y2) with

lim
d1→∞R∗(d1,d2) = 0.

This is immediate by applying Proposition 4.10 toP ∗ with r ↔ q. Also observe that̃G∗(0,0) = G̃(0,0) and
G∗

i (oi, oi) = Gi(oi, oi) for i = 1,2. In the specific cased1 = 0 (resp.d2 = 0), Proposition 4.10 (resp. Coro
lary 4.13) yields the asymptotic behaviour ofG(x,y) in situation (II) (resp. (III)) of Fig. 4.

4.15. Corollary. (a)Referring to situation(II) of Fig. 4, if s = u1 = d2 → ∞ andd1 = u2 = 0 then

G(x,y) ∼


G1(o1, o1)G2(o2, o2)

G̃(0,0)rs
if α > 1/2, and

G1(o1, o1)G2(o2, o2)

2srs
if α = 1/2.

(b) Referring to situation(III) of Fig. 4, if s = d1 = u2 → ∞ andu1 = d2 = 0 then

G(x,y) ∼


G1(o1, o1)G2(o2, o2)

G̃(0,0)(qβ)s
if α > 1/2, and

G1(o1, o1)G2(o2, o2)

2sqs
if α = 1/2.

Proposition 4.10, resp. Corollary 4.13, also leads to an asymptotic estimate ofG(x,y) whend1, resp.d2, remains
bounded. Otherwise, the left-hand side of the decomposition (4.11), resp. (4.14), tends to 0. Neverthele
decompositions will now be useful “on the average” for situations (I) and (IV) of Fig. 4.

4.16. Proposition.Referring to situation(IV) of Fig. 4, if x = x1x2 andy = y1y2 with s = s(x, y) are such that
u1 = d1 = s → ∞ andu2 = d2 = 0 (y2 = x2) then

G(x,y) ∼


B∗

β

G1(o1, o1)G2(o2, o2)

G̃(0,0)(qβ)s
, whereB∗

β = (β − 1)(rβ + 1)

rβ2 − 1
, if α < 1/2,

B∗
1
G1(o1, o1)G2(o2, o2)

2s2qs
, whereB∗

1 = r + 1

r − 1
, if α = 1/2.

Proof. Again, we may assume thath(x1) = h(x2) = 0. Since 1− α � 1/2,

t := t1(c1) = t̃(−s) < ∞ Prx -almost surely.

This and Lemma 4.4 yield

G(x,y) = Ex

(
1[t<∞]G(Zt, y)

) = Ex

(
G(Zt, y)

)
.

We haveπ1(Zt) = c1. SetDt = d(Z2
t , x2), a non-negative, integer-valued random variable, see Fig. 7.

The relative position ofc1Z
2
t (in the place ofx) andy = y1x2 is precisely the one of Fig. 6, replacings = s(x, y)

with s + Dt andd2 with Dt . We can apply Corollary 4.13. Note that by (3.5), applied toP ∗
2 = Pα,r ,

G∗
2

(
Z2

t , x2
) = (rβ)−Dt G∗

2(x2, x2) = (rβ)−Dt G2(o2, o2).

We get
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G(Zt, y) = 1

C∗(s + Dt)(qβ)s

(
G∗

2

(
Z2

t , x2
) − R∗(s,Dt)

)
= 1

C∗(s + Dt)(qβ)s

(
1

(rβ)Dt
G2(o2, o2) − R∗(s,Dt)

)
. (4.17)

Case 1. α < 1/2. ThenC∗(s + Dt) → G̃(0,0)/G1(o1, o1), a finite limit. SinceR∗(s,Dt) < G∗
2(Z

2
t , x2) �

G∗
2(o2, o2) andR∗(s,Dt) → 0 ass → ∞, dominated convergence yields

Ex

[
R∗(s,Dt)

] → 0. (4.18)

Also, Z2
n converges almost surely to a∂∗

Tr -valued random variableZ2∞; see Cartwright, Kaimanovich and Woe
[5], where this is proved under much more general assumptions. Sincet → ∞ whens → ∞, we getZ2

t → Z2∞
and consequently

Dt → D∞ = d
(
o2, o2 � Z∞

2

)
.

(Cf. Section 2 for notation.) Therefore, (4.17) and (4.18) yield

Ex

(
G(Zt, y)

) ∼ G1(o1, o1)G2(o2, o2)

G̃(0,0)(qβ)s
B∗

β ass → ∞,

whereB∗
β = Ex[(rβ)−D∞]. This number can be computed explicitly: letw

(m)
2 denote the vertex onx2ω2 at distance

m from x2. If m � 1, thenD∞ � m precisely whenZ2∞ ∈ T̂r (x2,w
(m)
2 ). Applying a frequently used formula fo

the limit distribution on the boundary of arbitrary transient nearest neighbour random walks on trees (see e
we get that

Prx[D∞ � m] = F2(x2,w
(m)
2 )(1− F2(w

(m)
2 ,w

(m−1)
2 ))

1− F2(w
(m−1)
2 ,w

(m)
2 )F2(w

(m)
2 ,w

(m−1)
2 )

= β−m βr − β

βr − 1
.

We have used theP2-version of (3.5) in the last computation. It is now straightforward thatB∗
β has the propose

value.
Case 2. α = 1/2. Here, we need to compute explicitly the distribution ofDt , which depends ons. Consider

the random variableM = Ms = max{Z̃n: n < t}. If n = ns = max{n < t: Z̃n = Ms}, thenZ2
n must be the poin

w2 = w
(M)
2 ono2ω2.

Conditioned on the value ofMs, the random elementZ2
t is equidistributed on the set{v2 ∈ Tr : h(v2) = s,

w2 � v2}, which hasrs+M elements. Among the latter, the number of elements withd(v2, x2) = d ∈ {0, . . . ,M}
is rs, if d = 0, and(r − 1)rs+d−1, if d � 1. If Dt = d thenMs � d . Thus, if 0� d � m then

Prx[Dt = d | M = m] = εdrd−m, whereεd =
{

1 if d = 0,

(r − 1)/r if d � 1.
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Also, Prx[M � m] is the probability that the random walk̃Zn on Z reachesm before−s. This is ϕ2(s,m) =
s/(s + m), as given in (4.6), andPrx[M = m] = ϕ2(s,m) − ϕ2(s,m + 1). We find

Pr[Dt = d] = εd

∞∑
m=d

rd

rm

s

(s + m)(s + m + 1)
. (4.19)

We know from Corollary 4.13 thatC∗(s) ∼ 2s/G1(o1, o1). Therefore (4.17) implies

2s2qsG(x,y) ∼ G1(o1, o1)G2(o2, o2)Ex

(
s2

(s + Dt)rDt

)
− Rest(s),

where

Rest(s) = Ex

(
s2

s + Dt
R∗(s,Dt)

)
.

Using (4.19), we can write

Ex

(
s2

(s + Dt)rDt

)
=

∞∑
d=0

fs(d) with

fs(d) = Prx[Dt = d] s2

(s + d)rd
= εd

s

s + d

∞∑
m=d

r−m s2

(s + m)(s + m + 1)
.

Now fs(d) is increasing ins, andfs(d) → f (d) with f (0) = r/(r − 1) andf (d) = r−d for d � 1. Monotone
convergence implies that

∞∑
d=0

fs(d) →
∞∑

d=0

f (d) = r + 1

r − 1
= B∗

1 .

To conclude our asymptotic estimate, we have to show that the rest tends to zero. We expand

Rest(s) =
∞∑

d=0

Prx[Dt = d] s2

s + d
R∗(s, d) =

∞∑
d=0

fs(d)rdR∗(s, d).

We haveR∗(s,Dt) < G∗
2(Z

2
t , x2) = r−Dt G2(o2, o2) andfs(d)rdR∗(s, d) < f (d)G2(o2, o2). Also,

∑
d f (d) <

∞. On the other hand, lims→∞ fs(d)rdR∗(s, d) = 0 point-wise in d . Dominated convergence implie
Rest(s) → 0. �

We remark that in the proof we might have treated Case 1 in the same way as Case 2, by first dete
the distribution ofDt and then lettings → ∞ (whencet → ∞). However, it is more likely that the method us
above will lend itself to an extension to finite range (instead of nearest neighbour) random walks onDL(q, r) where
p(x, y) depends only onu1,d1,u2,d2.

Again, from the last proposition we can also deduce the asymptotics ofG(x,y) in the dual situation (I) of Fig. 4
by consideringP ∗. In this case we haveG∗(x, y) = G(x,y), sinceh(x1) − h(y1) = 0. Thus, we only have to
exchanger ↔ q.

4.20. Corollary. Referring to situation(I) of Fig. 4, if x = x1x2 and y = y1y2 with s = s(x, y) are such that
u1 = d1 = 0 (y1 = x1) andu2 = d2 = s → ∞ then

G(x,y) ∼


Bβ

G1(o1, o1)G2(o2, o2)

G̃(0,0)(rβ)s
, whereBβ = (β − 1)(qβ + 1)

qβ2 − 1
, if α < 1/2,

B1
G1(o1, o1)G2(o2, o2)

2s2rs
, whereB1 = q + 1

q − 1
, if α = 1/2.
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Combining Corollary 4.15, Proposition 4.16 and Corollary 4.20 with Proposition 4.9, we obtain
rem 4.2.

5. The Martin compactification

We are now ready to determine the full Martin compactification ofP = Pα on DL(q, r). Recall that the Martin
compactification of the projected random walkPα,q is T̂q , the end compactification of the tree. (The analog
result holds of course for the second projectionP1−α,r on Tr .) The end compactification ofTq was described in
§2; in particular, it is a compact metric space with the ultra-metric

θ(z1,w1) =
{

0, if z1 = w1,

q−d(c1,o1), wherec1 = z1 ∧ w1(confluent w.r.t.o1), if z1 	= w1
(5.1)

for z1,w1 ∈ T̂q . In particular (recall),z(n)
1 → ξ1 ∈ ∂Tq if and only if d(z

(n)
1 ∧ ξ1, o1) → ∞.

SinceDL(q, r) ⊂ Tq × Tr , this provides us with a naturalgeometric compactification̂DL(q, r), namely, the

closure ofDL(q, r) in T̂q × T̂r . The ideal boundary ofDL in this compactification consists of 5 disjoint pieces:(
∂∗

Tq × {ω2}
) ∪ ({ω1} × ∂∗

Tr

) ∪ {ω1ω2} ∪ (
Tq × {ω2}

) ∪ ({ω1} × Tr

)
, (5.2)

compare with [3]. For a sequencey(n) = y
(n)
1 y

(n)
2 ∈ DL, we have

y(n) → ξ1ω2, ξ1 ∈ ∂∗
Tq, if y

(n)
1 → ξ1 and y

(n)
2 → ω2;

y(n) → ω1ξ2, ξ2 ∈ ∂∗
Tr , if y

(n)
1 → ω1 and y

(n)
2 → ξ2;

y(n) → ω1ω2, if y
(n)
1 → ω1 and y

(n)
2 → ω2;

y(n) → y1ω2, y1 ∈ Tq, if y
(n)
1 = y1 ∀n � n0 and y

(n)
2 → ω2;

y(n) → ω1y2, y2 ∈ Tr , if y
(n)
1 → ω1 and y

(n)
2 = y2 ∀n � n0.

(5.3)

Every sequence inDL that tends to infinity has a subsequence of one of these 5 types.
Recall from §3 the Martin kernels associated withPα,q andP1−α,r and the spherical functions (3.7).

5.4. Theorem.If α = 1/2 then the Martin compactification ofDL(q, r) with respect toP = P1/2 is the geometric
compactification̂DL(q, r). The extension of the Martin kernel on the boundary described in(5.2)and(5.3) is given
by

(i) K(x1x2, ξ1ω2) = K1(x1, ξ1), ξ1 ∈ ∂∗
Tq ,

(ii) K(x1x2,ω1ξ2) = K2(x2, ξ2), ξ2 ∈ ∂∗
Tr ,

(iii) K(x1x2,ω1ω2) = 1,

(iv) K(x1x2, y1ω2) =
φ 1

2 ,q
(x1, y1)

φ 1
2 ,q

(o1, y1)
, y1 ∈ Tq , and

(v) K(x1x2,ω1y2) =
φ 1

2 ,r
(x2, y2)

φ 1
2 ,r

(o2, y2)
, y2 ∈ Tr .

Each of the kernels in(i)–(iii) constitutes a minimal harmonic function, while the ones of(iv) and (v) are non-
minimal harmonic.
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Proof. We use part (b) of Theorem 4.2.
(i) Suppose first thaty = y1y2 → ξ1ω2. Then, with the usual notationui = u(xi, yi) anddi = d(xi, yi), we see

thatu1 = d(x1, x1 ∧ ξ1) is constant wheny1 is sufficiently close toξ1. On the other hand,d1,u2 − d2 → ∞. Recall
thatu1 + u2 = d1 + d2 = s → ∞. The dominant term in

q + 1

q − 1
u2d2 + su2d1 + su1d2 + r + 1

r − 1
u1d1

is su2d1, since

u2d2

su2d1
� 1

d1
,

su1d2

su2d1
� u1

d1
and

u1d1

su2d1
� u1

s

all tend to zero. Asu2 ∼ s, we find

G(x,y) ∼ A1
d1

s2qd1rd2
= A1

d(x1, y1)

s(x, y)2
F1(x1, y1)F2(x2, y2).

For eachx ∈ DL we have thats(x, y) − s(o, y) andd(x1, y1) − d(o1, y1) are constant wheny1 is close toξ1 in the
end metricθ . Therefore

K(x,y) ∼ s(o, y)2d(x1, y1)

s(x, y)2d(o1, y1)
K1(x1, y1)K2(x2, y2) → K1(x1, ξ1)K2(x2,ω2) = K1(x1, ξ1),

sinceK2(·,ω2) ≡ 1.
(ii) follows immediately from (i), exchangingr ↔ q.
(iii) If y = y1y2 → ω1ω2 then ui = u(xi, yi) → ∞ for i = 1,2. For givenx, whenui > u(xi, oi) for i =

1,2, thendi = d(xi, yi) coincides withd(oi, yi) ands = s(x, y) coincides withs(o, y), and we also haveu1 −
u(o1, y1) = u(o2, y2) − u2 = k, wherek = h(x1). Therefore

K(x,y) ∼ ((q + 1)/(q − 1))u2d2 + su2d1 + su1d2 + ((r + 1)/(r − 1))u1d1

((q + 1)/(q − 1))(u2 + k)d2 + s(u2 + k)d1 + s(u1 − k)d2 + ((r + 1)/(r − 1))(u1 − k)d1
→ 1.

(iv) If y1 remains fixed andy2 → ω2, thend1 = d(x1, y1) andu1 = u(x1, y1) are constant. Sinceu2 = s − u1
andd2 = s − d1, wheres = s(x1, y1), we get

G(x,y) ∼ A1

s2qd1rd2

(
q + 1

q − 1

(
1− u1

s

)(
1− d1

s

)
+

(
1− u1

s

)
d1 + u1

(
1− d1

s

)
+ r + 1

r − 1

u1d1

s2

)
∼ A1

s2qd1rd2

(
q + 1

q − 1
+ d1 + u1

)
= A1

s2rd2
φ 1

2 ,q
(x1, y1).

As above in (iii), d(o2, y2) = d2 (= d(x2, y2)) when u(x2, y2) > u(x2, o2), and then alsos(o1, y1) − s = k, a
constant. Therefore,

G(o,y) ∼ A1

(s + k)2rd2
φ 1

2 ,q
(o1, y1).

Thus, we obtain the proposed limit ofK(x,y) asy → y1ω2).
(v) follows from (iv), exchangingr ↔ q.
Finally, the – simple – proof of minimality of the functions in (i), (ii) and (iii) can be found in [28]. N

minimality of the spherical functions in (iv) and (v) is straightforward, since they are also non-minimal fo
projected random walks on the respective trees.�

Next, we explain what happens in the caseα 	= 1/2. If (y
(n)
1 ) is a sequence inTq with u(o1, y

(n)
1 ) → ∞ then

y
(n)
1 → ω1, independently of the values ofh(y

(n)
1 ). The horocyclic drawing ofTq as in Fig. 1 suggests that one m

use a finer distinction by introducing boundary pointsωk , k ∈ �Z = Z ∪ {±∞}, at infinity, one for each horocycle
1
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4.2.

e
2(a), the
one at the “level”−∞, and one at the “level”+∞ (thinking of ∂∗
Tq as the horocycle at+∞). We seth(ωk

1) =
k ∈ �Z. The new boundary is∂∗

Tq ∪ {ωk
1: k ∈ �Z}. We write T̃q for the new compactification, which we call th

horocyclic compactification.It is induced by the metric

θh(z1,w1) = θ(z1,w1) +
∣∣∣∣ h(z1)

1+ |h(z1)| − h(w1)

1+ |h(w1)|
∣∣∣∣, (5.5)

whereθ is as in (5.1) and we set±∞/(1 + ∞) = ±1. In this metric, a sequence(y(n)
1 ) tends toξ1 ∈ ∂∗

Tq if and

only if it converges toξ1 in the end topology. It tends toωk
1 if and only if h(y

(n)
1 ) → k (k ∈ �Z) andy

(n)
1 → ω1 in

the end topology.
Again, we can take the closurẽDL(q, r) of DL(q, r) in T̃q × T̃r , thehorocyclic compactificationof DL. In this

case, the boundary consists of the following 5 disjoint pieces:(
∂∗

Tq × {
ω−∞

2

}) ∪ ({
ω−∞

1

} × ∂∗
Tr

) ∪ {
ωk

1ω
−k
2 : k ∈ �Z}

∪ {
y1ω

−h(y1)

2 : y1 ∈ Tq

} ∪ {
ω

−h(y2)

1 y2: y2 ∈ Tr

}
. (5.6)

We omit the detailed description of convergence, which is a straightforward adaptation of (5.3). The m
ωk

i �→ ωi (i = 1,2) extends to a continuous surjection from the horocyclic onto the geometric compactific
which restricted toDL(q, r) is the identity.

5.7. Theorem.If α 	= 1/2 then the Martin compactification ofDL(q, r) with respect toP = Pα is the horocyclic
compactificatioñDL(q, r). The extension of the Martin kernel on the boundary described in(5.6) is given by

(i) K
(
x1x2, ξ1ω

−∞
2

) = K1(x1, ξ1), ξ1 ∈ ∂∗
Tq ,

(ii) K
(
x1x2,ω

−∞
1 ξ2

) = K2(x2, ξ2), ξ2 ∈ ∂∗
Tr ,

(iii) K
(
x1x2,ω

k
1ω

−k
2

) = βk + βh(x1)

βk + 1
, k ∈ �Z,

(iv) K
(
x1x2, y1ω

−h(y1)

2

) = φα,q(x1, y1)

φα,q(o1, y1)
, y1 ∈ Tq , and

(v) K
(
x1x2,ω

−h(y2)

1 y2
) = φ1−α,r (x2, y2)

φ1−α,r (o2, y2)
, y2 ∈ Tr .

In (iii) , β = (1− α)/α, and fork = ±∞, the right-hand side is to be understood as the respective limit.
Each of the kernels in(i) and (ii) constitutes a minimal harmonic function, while the ones of(iii) , (iv) and (v)

are non-minimal harmonic.

Proof. Once more, the proof that the minimal harmonic functions are precisely those in (i) and (ii) can be
in [28].

We now study convergence ofK(x,y) asy tends to a boundary point. This time, we use part (a) of Theorem
We assume thatα < 1/2, since the caseα > 1/2 follows by exchangingq ↔ r and usingα∗ = 1− α in the place
of α, or also by using the relation (4.12).

(i) Suppose thaty = y1y2 → ξ1ω
−∞
2 in D̃L. Theny1 → ξ1 andy2 → ω2 in the end compactifications of th

respective trees. We proceed as in the proof of Theorem 5.4 and find that in the formula of Theorem 4.
dominant one among the four terms in the(. . .) on the right-hand side is the second one. It behaves likeβ−d2.
Therefore, using (3.5),

G(x,y) ∼ Aβ

d1 d2
= AβF1(x1, y1)F

∗
2 (x2, y2),
(qβ) (rβ)
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where (recall)F ∗
2 (x2, y2) corresponds to exchangingα ↔ 1 − α, that is, to the projectionPα,r ontoTr of P ∗

α =
P1−α . Therefore we obtain

K(o,y) ∼ K1(x1, y1)K
∗
2(x2, y2) → K1(x1, ξ1)K

∗
2(x2,ω2).

Noting thatK∗
2(x2,ω2) = 1, we get the proposed Martin kernel.

(ii) Similarly, if y = y1y2 → ω∞
1 ξ2 then the dominant term in the formula of Theorem 4.2(a) is the third

which behaves likeβ−u2. This and (3.5) yield

G(x,y) ∼ Aβ

(qβ)d1rd2βu2
= AβF1(x1, y1)F2(x2, y2),

this time without passing toP ∗. The conclusion is now as in (i) above.
(iii) Let y → ωk

1ω
−k
2 , so thatui → ∞ (i = 1,2).

(a) k = +∞. Thend1 − u1 = u2 − d2 → ∞, so that the dominant term in the formula of Theorem 4.2(a) is
second one, as in (i). We get the same estimate as in (i), but have to replaceξ1 with ω1, i.e.,

K(x,y) → K1(x1,ω1)K
∗
2(x2,ω2) = 1.

(b) k = −∞. In this case, the dominant term and asymptotic estimate ofG(x,y) are the same as in (ii), whenc

K(o,y) → K1(x1,ω1)K2(x2,ω2) = β−h(x2) = βh(x1),

sinceK1(x1,ω1) = 1.
(c) k ∈ Z, andh(y1) = k. In this case, all ofui ,di (i = 1,2) tend to∞. Also d1 − u1 = u2 − d2 = k − h(x1).

Therefore, in the formula of Theorem 4.2(a), among the four terms in the(. . .) the second and the third one are
the same order and dominate the other two. We obtain

G(x,y) ∼ Aβ

(qβ)d1rd2

(
1

βd2
+ 1

βu2

)
= AβF1(x1, y1)F

∗
2 (x2, y2)

(
1+ βh(x1)−k

)
.

Therefore

K(x,y) → K1(x1,ω1)K
∗
2(x2,ω2)

1+ βh(x1)−k

1+ β−k
= βk + βh(x1)

βk + 1
.

(iv) Recall that wheny1 remains fixed andy2 → ω
−h(y1)

2 , thend1 = d(x1, y1) andu1 = u(x1, y1) are constant
while u2 = s − u1 andd2 = s − d1. In Theorem 4.2(a), the first three of the four terms in the(. . .) are of the same
order and dominate fourth. Thus

G(x,y) ∼ Aβ

(qβ)d1rd2

(
Bβ

βs
+ βd1 − 1

βs
+ βu1 − 1

βs

)
= Aβ(β − 1)F ∗

2 (x2, y2)φα,q(x1, y1).

This yields the proposed limit ofK(x,y).
(v) Wheny2 is fixed andy1 → ω

−h(y2)

1 , we get analogously

G(x,y) ∼ Aβ

(qβ)d1rd2

(
Bβ

βs
+ βd1 − 1

βs
+ βu1 − 1

βs

)
= Aβ(β − 1)F ∗

1 (x1, y1)φ1−α,r (x2, y2).

Again, this yields the proposed limit ofK(x,y). �

6. Positive eigenfunctions

It is well known and easy to prove that positivet-harmonicfunctionsh (satisfyingPh = t · h) exist if and only
if t � ρ(P ), see e.g. [27], Lemma 7.2. The Green kernel (resolvent) associated with eigenvaluet is

G(x,y|t) =
∞∑

p(n)(x, y)/tn, x, y ∈ X.
n=0
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(Instead of the variablet , oftenz = 1/t is used in the literature.) The Martin compactification associated wiP

and the eigenvaluet can be constructed in the same way as described in the Introduction, using the Martin

K(x,y|t) = G(x,y|t)/G(o, y|t).
Now considerP = Pα on DL(q, r), its projections to the two trees, and in particular,P̃ on Z. We fix t � ρ =
ρ(P ) = 2

√
α(1− α). Set

α(t) = t − √
t2 − ρ2

2t
and λ(t) = t − √

t2 − ρ2

2α
.

Then the function onZ defined byψ(k) = λ(t)k satisfiesP̃αψ = t · ψ . We can lift this function toT1, T
2 and

DL by using the respective projection, and we obtain at-harmonic function for the respective random walk. Th
we can conjugate the respective transition matrix with the lifted function, and divide byt . We end up with a new
transition matrix. OnDL, this becomes

pα(x, y)ψ(h(y1))

tψ(h(x1))
= pα(t)(x, y). (6.1)

Consequently, the associated Green and Martin kernels onDL satisfy

Gα(x, y|t) = Gα(t)(x, y)λ(t)h(x1)−h(y1) and

Kα(x, y|t) = Gα(x, y|t)
Gα(o, y|t) = Kα(t)(x, y)λ(t)h(x1),

(6.2)

whereGα(t)(x, y) andKα(t)(x, y) are the ordinary Green and Martin kernels (witht = 1) of Pα(t) onDL. Thus, the
estimates of §4 also yield the asymptotics ofGα(x, y|t). Note here thatα(ρ) = 1/2 andα(t) < 1/2 whent > ρ.
Also note that formulas analogous to (6.1) and (6.2) hold for the projected random walks on the two trees.

6.3. Corollary. The Martin compactification ofDL(q, r) with respect toPα and eigenvaluet is the geometric
compactification̂DL(q, r) whent = ρ(Pα) and the horocyclic compactificatioñDL(q, r) whent > ρ(Pα).

We omit transcribing from §5 the explicit formulas for all the extended Martin kernels and just remark th
any t � ρ, we get

K
(
x1x2, ξ1ω

−∞
2 |t) = K1(x1, ξ1|t), ξ1 ∈ ∂∗

Tq, and

K
(
x1x2,ω

−∞
1 ξ2|t

) = K2(x1, ξ1|t), ξ2 ∈ ∂∗
Tr .

We have omitted theα, resp. 1− α in the subscripts, and the superscript ofω∞
2 (i = 1,2) has to be omitted whe

t = ρ.
Once more, the Martin compactification isstablein the sense of Picardello and Woess [21]: in particular,

compactification is the same for allt > ρ, while at the bottom of the positive spectrum, i.e., fort = ρ, it is smaller.
Indeed, the identity onDL(q, r) extends to a continuous surjection from the horocyclic onto the geometric
pactification.

7. A remark on the elliptic Harnack inequality

The elliptic Harnack inequalityfor reversible random walks on graphs appears frequently in recent res
see e.g. Hebisch and Saloff-Coste [15], Delmotte [6], Grigor’yan and Telcs [14], or – most suitable in our
– the recent note of Barlow [1]. Barlow shows among other that the elliptic Harnack inequality for a random
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with “controlled weights” (in particular, for SRW on a graphX with bounded vertex degrees) is equivalent wit
Harnack inequality for restricted Green functions

GD(x,y) =
∞∑

n=0

Pr
[
Zn = y,Zk ∈ D(k � n) | Z0 = x

]
,

whereD ⊂ X is finite.
In the formulation of [1], Theorem 2, this inequality – denoted (HG) – requires that there is a constantC such

that if x0, x, y ∈ X are such thatd(x0, x) = d(x0, y) = R � 1 andv ∈ D for all v with d(x0, v) � 2R, then

GD(x0, y) � C · GD(x0, x). (7.1)

When the random walk is transient then we can letD tend toX (i.e., we use an increasing sequence(Dn) of finite
subsets whose union isX), and we see that (HG) implies

G(x0, y) � C · G(x0, x) for all x0, x, y ∈ X with d(x0, x) = d(x0, y). (7.2)

In [1], it is shown that the random walk on the lamplighter group which corresponds to SRW onDL(2,2) doesnot
satisfy (HG), or equivalently, the elliptic Harnack inequality.

This can also be seen easily from our asymptotic estimate. Indeed, consider SRW onDL(q, q) andR � 1. We
choosex = x1x2 such thath(x1) = d(o, x) = 2R, so that the relative position ofx with respect too is that of (III)
in Fig. 4. Also, we choosey = y1y2 such thath(y1) = 0 andd(o, y) = 2R, with relative position as in (I) of Fig. 4
Then, using Corollaries 4.15 and 4.20 withq = r andβ = 1, we get

G(o,x) ∼ G1(o1, o1)G2(o2, o2)

4Rq2R
and G(o,y) ∼ q + 1

q − 1

G1(o1, o1)G2(o2, o2)

2R2qR
,

asR → ∞. Thus,G(o,x)/G(o, y) → 0, and (7.2) does not hold.
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