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Abstract

We study existence of non-uniform continuo8&(2, R)-valued cocycles over uniquely ergodic dynamical systems. We
present a class of subshifts over finite alphabets on which every locally constant cocycle is uniform. On the other hand, we also
show that every irrational rotation admits non-uniform cocycles. Finally, we discuss characterizations of uniformity.

0 2003 Elsevier SAS. All rights reserved.

Résumé

On étudie I'existence de cocycles non uniformes & valeurs &3 R), pour les systétmes dynamiques uniqguement
ergodiques. On présente une classe de sous-shifts a alphabets finis pour lesquels tout cocycle localement constant est
uniforme. Par ailleurs, on montre que toute rotation irrationelle admet des cocycles non-uniformes. Enfin, nous présentons

des caractérisations de I'uniformité.
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1. Introduction

This paper is concerned witBL(2, R)-valued cocycles over dynamical systems. Through@®t,7) will be
a uniquely ergodic dynamical system (i.is a compact metric spacé,: 2 — £ is a homeomorphism and
there is only ond'-invariant probability measure af?). The uniquer -invariant probability measure o2 will
be denoted by:. Let SL(2, R) denote the group of real-valued<2-matrices with determinant equal to one. This
is a topological group whose topology is induced by the standard metric onsthz-@atrices. To a continuous
function A : 2 — SL(2, R) we associate the cocycle

A(-,):Z x 2 — SL(2, R)
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defined by

A(T" 1w) - A(w), n>0,
An,w) =1 Id, n =0,
A Y T"w) - - A~ Y (T w), n<O.
By the multiplicative ergodic theorem, there existd @4) € R with

1
A(A) = lim =log|A(n, )|
n—-oon
for u-almost every € £2. Following [6] (cf. [21] as well), we introduce the following definition.

Definition 1. Let (§2, T) be uniquely ergodic. The continuous functian2 — SL(2, R) is called uniform if the
limit A(A) =1im, 0 % log||A(n, )| exists for allw € £2 and the convergence is uniform ¢h

Remark 1. For minimal (not necessarily uniquely ergodic) systems, uniform existence of the limit in the definition
already implies uniform convergence, as proven by Furstenberg and Weiss [7]. Their result is actually even more
general and applies to arbitrary real valued continuous cocycles.

Existence or non-existence of uniforfi(2, R)-valued functions has been studied by various people, e.g. in
[21,8,6,16]. In fact, Walters asked the following question [21]:

(Q) Does every uniquely ergodic dynamical system with non-atomic megasadeit a non-uniform cocycle?

Using results of Veech [20], Walters presents a class of examples admitting non-uniform cocycles. He also
discusses a further class of examples, namely suitable irrational rotations, for which non-uniformity was shown
by Herman [8]. Recently, Furman carried out a careful study of uniformity of cocycles [6]. For strictly ergodic
dynamical systems, he characterizes uniform cocycles with positive in terms of uniform diagonalizability.
Related results on positivity of cocycles can also be found in [12].

The aim of this article is to adress (Q) for certain examples and to study conditions for uniformity of cocycles.
In order to be more precise recall th@2, T) is called a subshift over the compatif §2 is a closed subset of
SZ (with product topology) invariant under the shift % — S%, (Ts)(n) = s(n + 1). If S is finite, it is called the
alphabet. A functiory on a subshift oves is called locally constant if there exists Ahe N such that

f(@) = f(p), wheneve({w(—N),...,o(N))=(p(=N),..., p(N)). (1)
Our results will show the following:

e There exist subshifts over finite alphabets which do not admit locally constant non-uniform cocycles
(Theorem 1).

e Every irrational rotation admits a non-uniform cocycle (Theorem 2).

e For strictly ergodic dynamical systems, uniformity #fwith A(A) > 0 follows already from suitable lower
bounds om~tIn||A(n, w)| (Theorem 3).

e For uniquely ergodic dynamical system, uniformity #fwith A(A) > O can be characterized by a certain
uniform hyperbolicity condition (Theorem 4).

As mentioned already, these results are closely related to results of Furman [6] and Herman [8,9] respectively.
This will be discussed in more detail at the corresponding places.

This paper is organised as follows. In Section 2, we prove Theorem 1. Section 3 is devoted to a proof of
Theorem 2 and discussion of its background. Finally, we discuss Theorem 3 and Theorem 4 in Section 4.
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2. Subshifts with only uniform locally constant functions

In this section we present a class of subshifts over finite alphabets on which every locally constant cocycle is
uniform.
For a subshift{s2, T) over the finite sef, let W be the associated set of finite words i.e.

W={owm)...on+k): we, nel, keNo}

We will use standard concepts from combinatorics on words. In particular, we define the |ehgtha word
w=w(1)...w(n) to ben and we denote the number of copiesvoh w by §,(w) for arbitraryv, w € W. The
class of subshifts we are particularly interested in is presented in the next definition.

Definition 2. A subshift($2, T') over the finite sef is said to satisfy uniform positivity of weights, (PW), if there

exists a constar® > 0 with [iminfj,| e “l'l(lj‘l’) lv| > C forallveWw.

Remark 2. (a) Condition (PW) says roughly that the amount of “space” covered by a ward) in a long word
w € W is bounded below uniformly im € W. In particular, (PW) implies minimality.

(b) The condition (PW) is in particular satisfied for subshifts associated to primitive substitutions and more
generally for linearly recurrent subshifts [5,17].

(c) Itis not hard to see that (PW) implies that the subshift has linear complexity. More precisely, the number of
different words inV of lengthn is bounded byC 1 (see e.g. [18]).

Theorem 1.Let (£2, T) be a subshift over the finite sét If (£2, T) satisfies(PW), then every locally constant
functionG : 2 — SL(2, R) is uniform.

The theorem is a rather direct consequence of the following lemma. The lemma relates (PW) to existence of
averages for subadditive functions . Recall thatF : 1V — R is called subadditive it (xy) < F(x) + F(y) for
arbitraryx, y e W with xy e W.

Lemma 2.1.Let($2, T) be a minimal subshift over the finife Then, the limitim |- |x|~1F (x) exists for every
subadditiveF : W — R if and only if (£2, T) satisfies(PW).

Proof. One implication follows from Theorem 2 of [17] and the other by Proposition 4.2. of [1].

Proof of Theorem 1. Define F¢ : W — R by
FO(x) =sup{log|G(Ix|, o) |: @(D)...w(x]) =x}.

Apparently,F¢ is subadditive. Thus, by the preceeding lemma, the limit iz, |x| 1 F ¢ (x) exists. Therefore,
it remains to show that

1 1
A(n, 0, p) = |-log |G, o) - ~log |G, p)| (2)

is arbitrarily small for allo, p € £2 with

o(l)...on)=p@)...pn) Q)

whenever € N is large enough. LeV € N be the constant of (1) for the locally constahtConsider an arbitrary
neNwithn > 2N.
FromG(n,w) =GN, T" Nw)G(n — 2N, TN w)G (N, w) for arbitraryn > 2N, we infer

log |G (n, )| <log||G(n — 2N, TN w)|| +1log |G(N, T" N w) | +log||G(N, 0) |
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as well asG(n — 2N, TVw) = G(N, T" Nw)"1G(n, w)G(N, w)~1 for arbitraryw € £2. Combining this latter
equality with the fact thatM || = | M 1| for all M € SL(2, R), we infer

log|G(n —2N, TV )| —log |G(N, T" N w)| —log |G(N, w)|| < log |G (1, o) |

for all w € 2. By local constancy, we hav@(n — 2N, TVo) = G(n — 2N, TV p) whenever andp satisfy (3)
with n > 2N. Thus, for suchr, p the above inequalities yield

|log||G(n,0)| —log |G (n. p)|| < 4sud|log |[G(N,w)|||: @ € 2}.

As the right hand side is independentmafthis easily gives the desired smallness of the:, o, p) in (2) for
largen. O

3. Non-uniform functions

In this section we will discuss certain examples of non-uniform cocycles. These examples will be based on
recent results of the author [16] on spectral theory of certain Schrddinger operators and known results on positivity
of Lyapunov exponents [1,2,9].

Let (£2, T) be as above and let: 2 — R be a continuous function. To these data we can associate a family
(Hy)weg Of operators,, : ¢2(Z) — %(Z), w € 2, given by

(How)() =u(n +1) +u(n — 1) + f(T" to)un). (4)

Such families of operators arise in the study of disordered media. Depending on the underlying dynamical
systems, they provide examples for a variety of interesting spectral features such as dense pure point spectrum,
purely singularly continuous spectrum and Cantor spectrum of measure zero (see [3,4] for details and further
references).

An important tool in the investigation of their spectral theory is the study of solutionsthe associated
eigenvalue equation

u(n+1)+u(n—1)+(a)(n)—E)u(n)=O (5)
for E e R. Itis not hard to see thatis a solution of this equation if and only if
1 1
<”(”+ )>=ME(n,a))<u( )), nez, (6)
u(n) u(0)
where the continuous functia £ : 2 — SL(2, R) is defined by
E—f(w) -1
ME = . 7
w=(""]"7) ™

As discussed in the introductio £ gives rise to the average(E) = A(MF). This average is called the
Lyapunov exponent for the enerdy. It measures the rate of exponential growth of solutions of (5).

As is well known (see e.g. Proposition 1.2.2 in [15]), for minini@, T') the spectrun® = o (H,,) of the self-
adjoint operatoid,, does not depend on the pointe 2. Moreover, for strictly ergodic systems, it was shown by
the author in Theorem 3 of [16] that

2 ={E: y(E)=0} U{E: M* is not uniforn}, (8)
where the union is disjoint. This implies immediately the following result.

Lemma 3.1.Let (£2, T) be strictly ergodic and H,) as above. ThetX = {E: ME is not uniforn if and only if
y(E) > Ofor everyE € R.
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Thus, examples of operators of the foltH,) with positive Lyapunov exponent give rise to non-uniform
matrices. Indeed, there are well known examples of operators with uniformly positive Lyapunov exponent and
we will discuss one of them next.

Fix a € (0,1) irrational andA > 0. Denote the irrational rotation by on the unit circle,S, by R,

(i.e. Ryz = exp(2ria)z, wherei is the square root of-1). Define f*:S — R by f*(z) = A(z +z7 1) (i.e.
fH(expif)) = 2acogh)). Denote the associated operators(h;g\) and their spectrum by’ (A). The operators

(Hz’\) are called almost-Mathieu operators. They have attracted much attention (see e.g. [11,10,13] for further
discussion and references). We have the following theorem.

Theorem 2.For arbitrary irrational « € (0, 1) andx > 1, the functionM £ is non-uniform if and only i£ belongs
to X ().

Proof. By the foregoing lemma, it suffices to show positivityyofE) for every E € R. This is well known [1,2]
(see [9] for an alternative proof as well)O

Remark 3. The result shows that every irrational rotation allows for a non-uniform matrix. This generalizes results
of Herman [8], where this was only shown for certain rotation numbers. Note, however, that the results of [9]
combined with Theorem 4 of [6] (or Theorem 4 below) also show existence of non-uniform cocycles for every
irrational rotation. Still, the above result is more explicit in that the set of energies with non-uniform matrices is
identified asX' (A).

4. Characterizations of uniformity

In this section we study uniformity of cocycles for uniquely ergodic and strictly ergodic systems.

Let P = PR? be the projective space ovB?. Thus,P is the space of all one-dimensional subspaceR%f
To X € R?\ {0}, we associate the elemdi] = {1 X: » € R} € P. Obviously, every element i can be written
as[(cog0), sin(®))] with a suitabled € [0, 7]. The spacéP is a complete metric space, when equipped with the
metric

d([(cog6), sin®))]. [(cosn), sin(m))]) =min{|6 —nl, 10 —n — x|, 10 —n+ 7|}
We start with a characterization of uniformity of cocycles for strictly ergodic systems.

Theorem 3.Let (£2, T') be strictly ergodic. Then, a continuods 2 — SL(2, R) is uniform withA(A) > 0 if and
only if there exisin € N and$ > 0 such thats < % In||A(n, w)| for all w € 2 andn > m.

Remark 4. The theorem deals with a uniform lower bound%)hn |A(n, w)|. As for an upper bound, we mention

Corollary 2 of [6] which shows lim qu%oonflln A, w)|| < A(A) uniformly in w € 2 for arbitrary (not
necessarily uniform) continuous: 2 — SL(2, R).

The proof of this theorem and of further results will be based on some auxiliary propositions.

Proposition 4.1.Let (A,)) be a sequence in $2 R). Then, there exists at most ones P with ||A,V| — O,
n — oo, for everyV € v.

Proof. Assume the contrary. Then, there exist linearly independent vetioasd V> in R2 with ||A, V;| — O,
n— oo, i =1,2. Thus,||A|| — 0, n — 0 and this contradict§A,| > 1 (which is a direct consequence of
detA, =1). O
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Part (a) of the following proposition contains the key to our considerations, viz the estimate (10) below. We take
it from recent work of Last/Simon in [14] which in turn essentially abstracts a result of Ruelle [19]. As pointed out
to the author by the referee it can also be understood as a consequence of the classical geometric Morse-Lemma
by viewing SL(2, R) as the group of isometries of the hyperbolic plane and then using that the orbit in question
Vo = A,jlvo is quasi-geodesic (due to the assumptions).
While (a) of the proposition is clearly the main new input in our argument, we will mostly use the the variant of
(a) given in part (b) of the proposition.

Proposition 4.2.Let (4,) be a sequence of matrices in@LR) with D = sup,y ||An+1A;1|| < 00. Define the
selfadjoint operatottA,| by |A,| = (A;A,,)l/2 and letu, be the eigenspace oA, | associated to the eigenvalue
an = 1A lI71 = 1AL~
(a) If there exists > 0 andm € N with § <n~1In||A,| for n > m thenu, is one-dimensional for > m i.e.
u, € P, and there exists € P with d (u,,, u) < C exp(—28n) for everyn > m, whereC = 27 D?(1—exp(—28)) L.
(b) If there exists > 0 and m € N with § < n~LIn|A,| < %5 for n > m, then |A,U|| < (2C + 1) x
exp(—2~1sn)||U|| for arbitrary n > m andU € u.

Proof. (a) As|A,] is selfadjoint,a,jl = |l|A,|ll is an eigenvalue ofA,|. Thus, by 1= detA, = det|Ay|, the
selfadjoint| A, | has the eigenvalue;zﬁ;l anda,. As by assumption
1<expdn) < ||Ay)=a;t foralln>m. (9)

the eigenspace, is then one-dimensional. BB.5) of [14] (see [19] as well), the, converge to an elemente P
and

T e~ D?
du,,u) < — —_—. 10
( ) 2 kg 1An 112 (10)
Combining (9) and (10), we infer
d(up, u) < Cexp(—28n) (12)

with C as above.
(b) LetU € u with ||U| = 1 andn > m be given. By (11), we can fintf,, € u,, with | U, || =1 and

IU = Unll < V24 ([U], [UA]) < CV2exp—25n). (12)
By (9) we have
1A Unll = 1A |Unll = llan Uy || < €Xp(—6n). (13)

As, by assumption, IfiA, || < 3sn, we obtain
AR UN < [An(U — Ul + 1A Unll < 2C + 1) exp(—%an).
This implies (b). O
We also have the following “uniform version” of the foregoing proposition.
Proposition 4.3.Let A: 2 — SL(2, R) be continuous. For € Z andw € £2, define the selfadjoint nonnegative

operator|A(n, w)| by |A(n, w)| = (A(n, w)*A(n, w))Y/? and letu(n, w) be the eigenspace M (n, w)| associated
to the eigenvalue(n, w) = ||A(n, »)| "L = |||A(n, w)||| L.
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(a) If there exists > 0 andm € N with 8§ <n~1In|A(n, w)| for everyn > m and evenyw € £2, thenu(n, ) is
one-dimensional, i.e«(n, w) belongs taP, for n > m and the functions(n, -) converge uniformly to a continuous
functionu : 2 — P.

(b) If there exists > 0 andm € N with s <n~1In||A(n, w)| < %5, for all w € £2 andn > m, then there exists
K >0andC > 0with |A(n, w)U|| < Cexp(—«n)||U|| for everyn e N, w € 2 andU € u(w).

Proof. To prove (a) and (b), we apply parts (a) and (b) respectively of the foregoing proposition simultanuously
for all w € £2. Note that all estimates in the foregoing proposition are rather explicit and are governed by constants
not depending omw € £2. In particular, the functiong(n, -) converge uniformly. As they are obviously continuous,
their limit is also continuous. O

Proof of Theorem 3. The “only if” statement is clear. To show the other direction, we proceed as follows:

By assumption we can apply Proposition 4.3(a) and obtain a continuous functi®r> P (which is the limit
of the functionu(n, -)). By the multiplicative ergodic theorem, there exis®B-invariant set2’ c £2 of full measure
with

N | . 1
0<8< A(A) =liminf = In||A(n, w)| =limsup— In||A(n, )|
In|—c0 |n| |n|— o0 |n|
for everyw € §2’. This, of course, implies
. 1 4. 1
0< A(A) <limsup=In |A(n, ®)|| < liminf =In |A(n, w) |
n—>oo N 3 n>o n

for everyw € £2’. By (b) of Proposition 4.2, we then infer exponential decay|| ain, ®)U|| for n — oo for
arbitrary but fixedw € 2’ andU € u(w). As 2’ is invariant and the subspace®f with such exponential decay
is unique by Proposition 4.1, we conclude, éoe £,

[An, 0)U] = u(T"w) (14)

forn € Z andU € u(w) \ {0}. Now, by continuity ofw — u(w) and minimality of(£2, T'), we infer validity of
(14) for everyw € 2 andn € Z. Similarly, consideringt — —oo, we infer existence of a continuous 2 — P,
w +— v(w), such that|A(n, w) V| is exponentially decaying for — —oc for everyw € £2’ andV € v(w) and

[A(n, ) V] =v(T" ) (15)

for arbitraryw € 2, n € Z andV € v(w) \ {0}.

Now, choose, for each € 2, vectorsU (w) € u(w) andV (w) € v(w) with |U(w)| = ||V (w)| = 1. By (14)
and (15), there exist, d: 2 — R\ {0}, with A(w)U (w) = a(w)U(Tw) and A(w)V (v) = d(w) V(T w). Define
the matrix C(w) by C(w) = (U(w), V(w)). By ||U(w)|| = ||[V(®)|| = 1, U(w) and V(w) are unique up to a
multiplication by—1. Moreover, for fixedvg € §2, we can always find a neighbourhood@f on whichU andV
can be chosen continuously @sndv are continuous). Therefore, the functions

o [C)|, wrla@)], o~ |do)

are continuous (as they are invariant under the replacemeti{®f by —U (w) or V(w) by —V(w).) A short
calculation then gives

Yrtinja(T*w), n>0,
In|A(n, 0)U(w)| = 1 0, n=0,
— Y2 nja(T*w)|, n<O.
Thus, the uniform ergodic theorem for continuous functions on uniquely ergodic systems, yields

EIn HA(n,a))U(a))H — /In |a(a))‘ du(w), |n|— oo,
n
2
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uniformly in w € 2. As ||[A(n,w)U(w)| is exponentially decaying fon — oo and w € 2/, we see
fg Inja(w)| du(w) < 0. Putting this together, we infer thitA (n, w)U (w)| is exponentially decaying for — oo
and exponentially increasing for - —oo for every w € £2. Similarly, |A(n, w)V(w)|| can be seen to be
exponentially decaying for — —oo and exponentially increasing far— oo for everyw € £2. In particular,
we haveu (w) # v(w) for everyw € £2. Thus, the matriXC (w) is invertible and, by construction, we have

a(w) 0
0 d(w))'

Now, uniformity of A follows easily from continuity ofa| and|b|, as the continuous functiors— | C(w)| and
w — ||C~L(w)|| are uniformly bounded on the compagt O

C(Tw) tA(w)C(w) = < (16)

Corollary 4.4. Let (2, T) be strictly ergodic and H,),c2 as in Section3. For E € R, defineymin(E) by
Ymin(E) = iminf,co min{2 In | ME (n, 0)||: w € £2}. Then,Z = {E € R: ymin(E) = O}.

Proof. By Theorem 3, we havgmin(E) > 0 if and only if M £ is uniform withy (E) > 0. But this is equivalent to
E¢Xby(8). O

Remark 5. For the almost-Mathieu operators discussed in Section 3, it is possible to establish pure point spectrum
(provideda, A are suitable) (see references in Section 3). An important issue in the corresponding proofs is to
obtain exponentially growing lower bounds on the modulus of the matrix elemeM& 6k, w) for largen € N

(and suitablev € £2 and E € R). The corollary shows that these bounds can not hold uniformly. This contrasts
with the validity of uniform upper bounds discussed in Remark 4.

The methods developed above to treat strictly ergodic systems can be modified to characterize uniformity of
cocylces for uniquely ergodic systems. This is the content of the next theorem.

Theorem 4. Let (£2,T) be uniquely ergodic andi: 2 — SL(2, R) be continuous. Then the following are
equivalent

(i) A is uniform withA(A) > 0.

(ii) There exist constanis C > 0 and continuous functions, v : 2 — P with

[A(n, o)U|| < Cexp(—kn)|U|| and ||A(—n,0)V | < Cexp(—kn)||V|| (17)

for arbitrary w € 2,n €N, U € u(w) andV € v(w).

(iii) There exists$ > 0 andm € Nwith 0 <8 < 2In[|A(n, w)|l < 35 for everyw € £2 andn > m.

In this caseu(w) # v(w), [A(n, w)U] =u(T"w) and[A(n, w) V] = v(T"w) for arbitrary w € 2, ne€Z, U €
u(w) andV € v(w) withU, V #£0.

Remark 6. The equivalence of (i) and (ii) in some sense extends the corresponding result of Furman for strictly
ergodic systems [6]. Namely, Theorem 4 of [6] shows that uniformity @ombined withA(A) > 0 holds if and

only if A is continuously cohomologous to a diagonal matrix. Our extension to uniquely ergodic systems is made
possible through the use of Proposition 4.2 (see discussion before this proposition). Let us also mention that the
concept of hyperbolic structure studied in [9] essentially amounts to (ii) in our context (see [8] for connection to
uniformity as well). Part (iii) of Theorem 4 is new. It is inspired by arguments in [14]. It provides an analogue of
Theorem 3 for uniquely ergodic systems.

Proof of Theorem 4. (i) = (iii): This is clear.

(iii) = (ii): The construction ofu is immediate from Proposition 4.3. The constructionvois similar by
applying Proposition 4.3 to the functioh: 2 — SL(2, R), where2 = 22, A(») = A(T ~'w)~! and the action on
2 is givenbyT =71,
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(ii) = (i): Proposition 4.1 and assumption (ii) imply
[An, )U]=u(T"w) and [A(n,w)V]=v(T"w) (18)

for arbitraryw € 2, n € Z, U € u(w) andV € v(w) with U, V # 0. Let arbitraryU € u(w) andn € N be given.
By (18) and (ii), we then havéU| = ||[A(n, T ""w)A(—n, 0)U|| < Cexp(—kn)||A(—n, w)U || which implies
|A(—=n, w)U|| > C~Lexpikn)|U]||. As this holds for all: € N, we inferu(w) # v(w) from (ii). Now, (i) follows
by mimicking the last part of the proof of Theorem 3.

Note that the last statement of the theorem has been shownis (i). O

To formulate our last result, we recall that the 6€12, SL(2, R)) of continuous functiond : 2 — SL(2, R) is
a complete metric space when equiped with the metric

d(A1, A2) = sup| A1(w) — A2(w)|.
wes2

Let 2/ (£2) be the set of uniformA € C(£2, SL(2, R)) andl/(§2)+ be the set of thosd € U/ (£2) with A(A) > 0.
Then the following holds (see Theorem 5 of [6] as well).

Theorem 5. Let (2, T) be uniquely ergodic. Thed/(£2) is open inC(£2,SL2,R)) and A:U(2) — R is
continuous.

This is essentially contained in Theorem 5 of [6] and its proof. Note, however, that there is a slight gap in the
proof of that theorem in [6]: Its statement refers to arbitrary uniquely ergodic systems. But its proof makes crucial
use of Theorem 4 of [6], which assumes not only unique ergodicity but also minimality. As far as the continuity
statement goes, this gap can be bridged by restricting attentioff tmaimal subset2q of £2. However, it does
not seem to be clear that this yields the openess statement as well. Therefore, we conclude this section by noting
that, given the methods provided in [6], one can base a proof of Theorem 5 on Theorem 4 above, similarly as the
proof of Theorem 5 in [6] is based on Theorem 4 of [6].
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