On the covering by small random intervals

Ai-Hua Fan a,b,1, Jun Wu a,b,2

a Department of Mathematics, Wuhan University, Wuhan, Hubei, 430072, PR China
b LAMFA, CNRS, UMR 6140, University of Picardie Jules Verne, 33, rue Saint Leu, 80039, Amiens, France

Received 15 May 2002; accepted 15 July 2003

Abstract

Consider the random intervals $I_n = \omega_n + (0, \ell_n)$ (modulo 1) with their left points ω_n independently and uniformly distributed over the interval $[0, 1) = \mathbb{R}/\mathbb{Z}$ and with their lengths decreasing to zero. We prove that the Hausdorff dimension of the set $\bigcup_{n=1}^{\infty} I_n$ of points covered infinitely often is almost surely equal to $1/\alpha$ when $\ell_n = a/n^\alpha$ for some $a > 0$ and $\alpha > 1$.

Résumé

Considérons des intervalles aléatoires $I_n = \omega_n + (0, \ell_n)$ (modulo 1) dont les extrémités gauches ω_n sont indépendantes et uniformément réparties sur l’intervalle $[0, 1) = \mathbb{R}/\mathbb{Z}$ et dont les longueurs décroissent vers zéro. Nous montrons que la dimension de Hausdorff de l’ensemble $\bigcup_{n=1}^{\infty} I_n$ des points infiniment recouverts est presque sûrement égale à $1/\alpha$ quand $\ell_n = a/n^\alpha$ avec $a > 0$ et $\alpha > 1$.

MSC: 60D05; 52C17; 28A80

Keywords: Random covering; Uniform sample spacing; Hausdorff dimension

1. Introduction

Let $\{\ell_n\}_{n \geq 1}$ be a sequence of positive real numbers which is decreasing to zero and let $I_n(\omega) = (\omega_n, \omega_n + \ell_n)$ (modulo 1) be a random interval where $\{\omega_n\}_{n \geq 1}$ is a sequence of independent random variables uniformly distributed over the unit interval $I = [0, 1)$ which is identified with the circle \mathbb{R}/\mathbb{Z}. We consider the set $E_\infty(\omega) = \bigcup_{n=1}^{\infty} I_n$ of those points which are covered infinitely often.

It is easy to see that $E_\infty(\omega)$ is almost surely (a.s. for short) a set of Lebesgue measure 0 or 1 according to $\sum_{n=1}^{\infty} \ell_n < \infty$ or $\sum_{n=1}^{\infty} \ell_n = \infty$. A. Dvoretzky [2] asked the question when $E_\infty(\omega) = [0, 1)$ a.s. or not. There was a series of contributions (for references and related topics see [5] for information before 1985 and [6]...
for recent information). A complete answer was obtained by L. Shepp [7]: \(E_\infty(\omega) = [0, 1) \) a.s. if and only if \(\sum_{n=1}^{\infty} \left(\frac{1}{n^2} \right) \exp(\ell_1 + \ell_2 + \cdots + \ell_n) = \infty \). It is the case for \(\ell_n = a/n \) if and only if \(a \geq 1 \).

We address the study of \(E_\infty(\omega) \) when the covering intervals \(I_n \) are small in the sense \(\sum_{n=1}^{\infty} |I_n| < \infty \). As we mentioned above, in this case the set \(E_\infty(\omega) \) is of Lebesgue measure zero. However, it is a.s. of second category in Baire sense (see [5, p. 55]). We will determine the Hausdorff dimension of \(E_\infty(\omega) \) in the case \(\ell_n = a/n^\alpha \) with \(a > 0, \alpha > 1 \).

Theorem. Suppose \(\ell_n = a/n^\alpha \) for some \(a > 0 \) and \(\alpha > 1 \). Then

\[
\dim E_\infty(\omega) = \frac{1}{\alpha} \quad \text{a.s.}
\]

As we shall see from the proof of the theorem, \(\ell_n = O(n^{-\alpha}) \) implies \(\dim E_\infty(\omega) \leq 1/\alpha \) and \(n^{-\alpha} = O(\ell_n) \) implies \(\dim E_\infty(\omega) \geq 1/\alpha \). It follows that \(\dim E_\infty(\omega) = 1/\alpha \) a.s. when the following limit exists:

\[
1 < \alpha = \lim_{n \to \infty} -\frac{\log \ell_n}{\log n}.
\]

We point out that a similar result holds for random coverings on trees [3].

Back to the theorem. The inequality \(\dim E_\infty(\omega) \leq 1/\alpha \) is easy to see. It even holds for every \(\omega \). Because \(\{I_n(\omega)\}_{n \geq N} \) is a \(\delta \)-cover of \(E_\infty(\omega) \) with \(\delta = \ell_N \) and for any \(\epsilon > 0 \)

\[
\sum_{n=N}^{\infty} |I_n|^{1/\alpha + \epsilon} = a^{1/\alpha + \epsilon} \sum_{n=N}^{\infty} n^{-1-\epsilon\alpha} < \infty.
\]

In order to prove the inverse inequality, we will construct a random Cantor subset of \(E_\infty(\omega) \) by using known results due to D.A. Darling on random spacings of uniform random samples. Before our proof of the theorem, let us give some preliminaries including Darling’s results and a construction of Cantor set.

2. Preliminaries

Let \(X_1, X_2, \ldots, X_n \) (\(n \geq 2 \)) be a set of independent random variables uniformly distributed over the unit interval \(I = [0, 1) \). We call it a random sample of size \(n \). Reordering the \(n \) points \(X_1, X_2, \ldots, X_n \) in their natural order from left to right, we get \(n \) new random variables which will be denoted by \(X(1), X(2), \ldots, X(n) \). The intervals \([X(k), X(k+1)], 0 \leq k \leq n \), are called the subspacings and their lengths are denoted by \(L_k, 0 \leq k \leq n \) (by convention, \(X(0) = 0 \) and \(X(n+1) = 1 \)). There is a vast literature on the distributions of \((L_0, L_1, \ldots, L_n) \) and related statistics. We will only need the following results among others due to D.A. Darling [1]. Suppose \(h : I \to \mathbb{R} \). Let

\[
W_n = \sum_{j=0}^{n} h(L_j).
\]

The first two moments of \(W_n \) are expressed by the following Darling formulas:

\[
\text{EW}_n = n(n+1) \int_0^1 (1-t)^{n-1} h(t) \, dt.
\]

\[
\text{EW}_n^2 = n(n+1) \int_0^1 (1-t)^{n-1} \int_0^1 (1-x-y)^{n-2} h(x)h(y) \, dx \, dy.
\]
where $D = \{(x, y) : x \geq 0, y \geq 0, x + y \leq 1\}$. We need to know how many subspacings with given length fall into a fixed subinterval. Let $J \subset I$ be a subinterval of length ℓ and let $0 < s_1 < s_2 < 1$. We denote by $M = M_n(\ell, s_1, s_2)$ the number of subspacings in J whose lengths are between s_1 and s_2. Using the Darling formulas, J. Hawkes [4] obtained explicit expressions of the first two moments of M:

\[EM = n\ell \left(\left(1 - \frac{s_1}{\ell} \right)(1-s_1)^{n-1} - \left(1 - \frac{s_2}{\ell} \right)(1-s_2)^{n-1} + (1-s_1)^n - (1-s_2)^n \right). \]

(3)

\[EM^2 = EM + S(n, \ell, s_1) + S(n, \ell, s_2) - 2S(n, \ell, (s_1 + s_2)/2) \]

(4)

where

\[S(n, \ell, s) = n(n-1)\ell^2 \left(1 - \frac{2s}{\ell} \right) (1-2s)^{n-2} + 2n\ell \left(1 - \frac{2s}{\ell} \right)(1-2s)^{n-1}. \]

Proposition 1. Suppose $0 < c_1 \leq c_2 < 1/2$, $0 < \ell < 1$ and $n \geq 3$. Let $J \subset [0, 1)$ be a subinterval of length ℓ and let n be the sample size. Denote by M the number of subspacings in J having length in $\left[\frac{c_1 \log n}{n}, \frac{c_2 \log n}{n} \right]$. Then there exist constants γ and C only depending on c_1 and c_2 (independent of ℓ and n) such that

\[P(M < \gamma n^{1-c_1}) \leq \frac{C}{n^{6-\epsilon}} \]

for all n such that $n^{1-2(c_2-c_1)} \ell \geq \log^4 n$.

Proof. We claim that

\[EM = \ell n^{1-c_1} + O(\ell n^{1-c_2}) \]

(5)

\[EM^2 = EM + \ell^2 n^{2(1-c_1)} + O(\ell^2 n^{2(1-c_2)}), \]

(6)

where, and in the sequel, the constants involved in $O(1)$ depend only on c_1 and c_2 and is independent with ℓ and n. First notice that

\[\left(1 - \frac{c \log n}{n} \right)^n = \frac{1}{n^n} \left(1 + O \left(\frac{\log^2 n}{n} \right) \right). \]

(7)

\[\frac{1 - \frac{c \log n}{n}}{1 - \frac{c \log n}{\ell n}} = 1 + O \left(\frac{\log n}{\ell n} \right), \]

(8)

\[\left(1 - \frac{c \log n}{\ell n} \right)^2 = 1 + O \left(\frac{\log n}{\ell^2 n} \right). \]

(9)

The equalities (8) and (9) hold under the condition $n\ell \geq c \log n$ which is ensured by the hypothesis made in the proposition. Let $s = \frac{c \log n}{n}$. Using (7) and (8), we get

\[\left(1 - \frac{s}{\ell} \right)(1-s)^{n-1} = \frac{1}{n^n} \left(1 + O \left(\frac{\log^2 n}{\ell n} \right) \right). \]

Then, by the formula (3), we obtain

\[EM = \ell n^{1-c_1} - \ell n^{1-c_2} + O(n^{-c_1} \log^2 n) = \ell n^{1-c_1} + O(\ell n^{1-c_2}). \]

Thus we have proved (5). Using (7) and (9), we get
\[
\left(1 - \frac{2x}{\ell}\right)^2 (1 - 2s)^n = \frac{1}{n^{2c}} \left(1 + O\left(\frac{\log^4 n}{\ell^2 n}\right)\right).
\]

Then

\[
S(n, \ell, s) = n^{2(1-c)} \ell^2 + O(\ell n^{1-2c} \log^4 n).
\]

Notice that \(\ell n^{1-2c} \log^4 n\) is dominated by \(n^{2(1-c)} \ell^2\) if \(n \ell \geq \log^4 n\). So the main term in \(S(n, \ell, s)\) is \(n^{2(1-c)} \ell^2\).

Also notice that \(\ell n^{1-2c} \log^4 n\) is dominated by \(n^{2(1-c)} \ell^2\) if \(\ell n^{1-2c} \log^4 n\) is dominated by \(n^{2(1-c)} \ell^2\) (this is the hypothesis). So we get (6).

As a consequence of (5) and (6), we have the following estimate of the variance of \(M\):

\[
\text{Var}(M) = \mathbb{E}M + O(\ell^2 n^{2-(c_1+c_2)}) = O(\ell^2 n^{2-(c_1+c_2)}).
\]

By Chebyshev inequality,

\[
P\left(M \leq \frac{\mathbb{E}M}{2}\right) \leq P\left(|M - \mathbb{E}M| > \frac{\mathbb{E}M}{2}\right) \leq \frac{4\text{Var}(M)}{(\mathbb{E}M)^2} = O\left(\frac{1}{\ell^{2c_1+c_2}}\right).
\]

Consider now a construction of generalized Cantor sets on \([0, 1]\). Let \(\{n_k\}_{k \geq 1}\) be a sequence of integers satisfying \(n_k \geq 2\). Let \(\{\rho_k\}_{k \geq 1}\) and \(\{d_k\}_{k \geq 1}\) be two sequences of positive real numbers. Assume that for any \(k \geq 1\), we have a collection \(J_k\) of closed subintervals of \([0, 1]\). Each interval in \(J_k\) is called a \(k\)-interval. Suppose

1. Each \(k\)-interval is of length \(\rho_k\) and contains \(n_{k+1}\) intervals;
2. Each \((k+1)\)-interval is contained in some \(k\)-interval;
3. The gap between any two \(k\)-intervals is at least \(d_k\).

Let \(C_n = \bigcup_{J \subseteq J_k} J\) and \(C_\infty = \bigcap_{k=1}^\infty C_n\). We call \(C_\infty\) a generalized Cantor set.

Proposition 2. Consider the generalized Cantor set \(C_\infty\) constructed above. Suppose that there is a number \(a \geq 1\) such that \(n_{k+1}d_{k+1} \geq \rho_k^a\) (\(\forall k \geq 1\)). Then we have

\[
\dim C_\infty \geq \liminf_{k \to \infty} \frac{\log(n_1n_2 \cdots n_k)}{a \log \rho_k}.
\]

Proof. Define a probability measure \(\mu\) on \([0, 1]\) (concentrated on \(C_\infty\)) by

\[
\mu(J_k) = \frac{1}{n_1n_2 \cdots n_k},
\]

where \(J_k\) represents an arbitrary \(k\)-interval contained in \(C_k\). Let \(s\) be the lim inf. Since \(n_1n_2 \cdots n_k \rho_k \leq 1\), we have \(s \leq 1/a \leq 1\). Suppose \(s > 0\). By the Frostman lemma, we have only to prove that for any \(0 < t < s\) and any open interval \(U\) we have \(\mu(U) \leq 2|U|^t\) (\(|U|\) denotes the length of \(U\)). Without loss of generality, we assume that \(n_1n_2 \cdots n_k \rho_k^a \geq 1\) for all \(k \geq 1\). Choose \(k_0\) such that \(\rho_{k_0+1} \leq |U| < \rho_{k_0}\). We distinguish two cases:

(a) The case \(|U| < d_{k_0+1}\). Then \(U\) intersects with at most one \((k_0 + 1)\)-interval. So

\[
\mu(U) \leq \frac{1}{n_1n_2 \cdots n_{k_0+1}} = \rho_{k_0+1}^a \leq |U|^a \leq |U|^t.
\]

(b) The case \(|U| \geq d_{k_0+1}\). Then \(U\) intersects with at most \(\min(n_{k_0+1}, \frac{2|U|}{d_{k_0+1}})\) \((k_0 + 1)\)-intervals. So
Thus with probability q_1 we can find a set $\mathcal{L}_1^+ \subseteq \mathcal{L}_1$ with n_1 points such that for each point in \mathcal{L}_1^+ there is on its right side a point in $\mathcal{L}_1 \setminus \mathcal{L}_1^+$. So, any two points in \mathcal{L}_1^+ has a distance at least $2d_1$. Define

$$C_1 = \bigcup_{\omega \in \mathcal{L}_1^+} [\omega, \omega + \rho_1].$$

Notice that there are n_1 (\geq 2) intervals in C_1 each of which has length ρ_1 and that these intervals are separated by a distance at least d_1.

Suppose that with probability $q_1q_2\cdots q_k$ we have successively constructed a nested sequence of sets $C_1 \supset C_2 \supset \cdots \supset C_k$ such that

(i) every C_j (\leq j < k) is a union of disjoint closed intervals and each such interval in C_j is of length ρ_j and contains n_{j+1} intervals contained in C_{j+1}, and every interval contained in C_{j+1} is a subset of C_j;

(ii) the gap between two intervals contained in C_{j+1} is at least d_{j+1}.
We now construct C_{k+1}. Consider the random sample of size $2^{m_k+1} : \omega_1 \omega_2 \omega_3 \ldots \omega_{2^{m_k+1}}$. This sample is independent of all preceding random samples in the construction of C_1, C_2, \ldots, C_k since $2^{m_k+1} - 1 < 2^{m_k+1}$. Apply Proposition 1 to each interval J contained in C_k with $n = 2^{m_k+1}$ and $\ell = \rho_k = \ell_{2^{m_k+1}}$. Notice that
\[
2^{m_k+1} (1 - 2(c_1 - c_1)) \ell_{2^{m_k+1}} = 2^{-\alpha + \Delta k (\Delta (1 - 2(c_2 - c_1)) - \alpha)} \geq \log^4 \Delta k
\]
if Δ is large enough. So we can really apply Proposition 1. Thus if $L_{k+1, J}$ denote the set of left points of subspaces contained in J having length in $[\frac{c_1 m_k + 1}{2^{m_k+1}}, \frac{c_2 m_k + 1}{2^{m_k+1}}]$, we have
\[
P(L_{k+1, J} \leq \gamma \rho_k 2^{m_k+1(1-\gamma)}) \text{ for some } J \subset C_k \leq C \cdot \prod_{j=1}^{\infty} |J|, \quad \rho_k = \frac{1}{2^{m_k+1}(c_1 - c_1)}.
\]
In other words,
\[
P(L_{k+1, J} > \gamma \rho_k 2^{m_k+1(1-\gamma)}) \text{ for all } J \subset C_k \geq q_{k+1}
\]
where J denotes a typical interval in C_k. For each J in C_k, take a set $L_{k+1, J}^*$ of n_{k+1} points from $L_{k+1, J}$ such that for each point in $L_{k+1, J}^*$ there is on its right side a point in $L_{k+1, J} \setminus L_{k+1, J}^*$. Then construct
\[
C_{k+1} = \bigcup_{J \subset C_k} \bigcup_{\omega, \omega + \rho_{k+1}} [\omega, \omega + \rho_{k+1}]
\]
where $J \subset C_k$ means that J is a component of C_k. Thus with probability $q_1 q_2 \cdots q_{k+1}$ we have constructed a nested sequence of sets $C_1 \supset C_2 \supset \cdots \supset C_{k+1}$ which have the properties described by (i) and (ii) (see above, k being replaced by $k + 1$). Thus by induction we get an infinite sequence of nested sets C_k and we can construct a Cantor set $C_\infty = \bigcap_{k=1}^{\infty} C_k$ with probability
\[
p = \prod_{k=1}^{\infty} q_k > 0.
\]
The positivity of this probability is the consequence of
\[
\sum_{k=1}^{\infty} (1 - q_k) \leq C \sum_{k=1}^{\infty} \frac{\prod_{j=1}^{k} n_j}{2^{m_k+1(c_2 - c_1)}} < \infty,
\]
because the general term of the series is bounded by
\[
\gamma^k \left(\prod_{i=1}^{k-1} \rho_i \right) 2^{(m_1 + m_2 + \cdots + m_k)(1-c_1) - m_{k+1}(c_2 - c_1)} = O \left(\gamma^k 2^{\Delta k (\frac{1}{\alpha} - (c_2 - c_1))} \right).
\]
By the construction, with probability $p > 0$ we have $C_\infty \subset E_\infty(\omega)$. Actually C_∞ is infinitely covered by those intervals I_n with $2^{m_k} \leq n < 2 \cdot 2^{m_k}$ for some $k \geq 1$.

Let us apply Proposition 2 to estimate the Hausdorff dimension of C_∞ from below. Notice that $\rho_k = 2^{-\alpha(\Delta + 1)}$ and
\[
n_{k+1} d_{k+1} \approx m_k + 2^{-\alpha} m_k + 1 - 1 \approx \Delta^{k+1} \frac{1}{2} (\alpha + 1) \Delta.
\]
For any $\alpha > 1$ and small $c_1 > 0$ so that $c_1 \Delta$ is small, the condition $n_{k+1} d_{k+1} \geq \rho_k^a$ is satisfied. Also notice that
\[
\lim_{k \to \infty} \frac{\log(n_1 n_2 \cdots n_k)}{-\log \rho_k} = \frac{1}{\alpha} (1 - c_1) \frac{\Delta}{\Delta - 1} = \frac{1}{\Delta - 1}.
\]
Thus with probability $p > 0$,
\[
\dim E_\infty(\omega) \geq \dim C_\infty \geq \frac{1}{\alpha a} (1 - c_1) \frac{\Delta}{\Delta - 1} = 1 \frac{1}{\Delta - 1}.
\]
Since $E_\infty(\omega)$ is a tail event, we have with probability one

$$\dim E_\infty(\omega) \geq \frac{1}{\alpha}(1 - c_1)\frac{\Delta}{\Delta - 1} - \frac{1}{\Delta - 1}.$$

Let $c_1 \to 0$, $\Delta \to \infty$ and then $\alpha \to 1$, we get $\dim E_\infty(\omega) \geq 1/\alpha$ a.s.

References