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ABSTRACT. — In this article we investigate diffusions in random environment. We provide a
sufficient condition for a strong law of large numbers with non-vanishing limiting velocity and a
functional central limit theorem. In the course of this work we introduce certain regeneration
times and obtain a renewal structure. As an illustration, we apply our results to a class
of anisotropic gradient-type diffusions in random environment, where the technique of the
environment viewed from the particle does not apply well.
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RESUME. — Cet article traite des diffusions en milieu aléatoire. On donne une condition
suffisante pour la loi forte des grands nombres avec une vitesse limite non nulle et pou
un théoreme limite central fonctionnel. Certains temps de régénération sont introduits et un
sructure de renouvellement est obtenue. A titre d’illustration, nous appliquons nos technique
a une classe de diffusions anisotropes de type gradient pour lesquelles la technique ¢
I'environnement vu de la particule ne s’applique pas bien.
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1. Introduction

Random motions in random media has been a very active research area over tt
last twenty years, both in the discrete and continuous settings. The method of the
“environment viewed from the particle” has played an important role, see for instance
[13,16,19,21,23]. In the continuous setting, there has been a special emphasis c
the gradient-type or the incompressible drift situations, and most of the progress
has occurred when there is an explicit invariant measure for the process of the
environment viewed from the particle, which is absolutely continuous with respect to
the static distribution of the random medium, see [5,15,17,20,21,23], see however [14]
Nevertheless, the general setting is still poorly understood. On the other hand, progres
has been made recently in the discrete setting, see [3,4,33-36]. One appeal of tt
continuous theory is that, unlike in the discrete setting (cf. [3]), imposing independence
assumptions on the environment at the level of bonds or sites, is not relevant anymore
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Related to this feature, some arguments of the discrete theory are not applicable to tf
continuous setting.

The present article investigates diffusions in random environment in the continuous
setting, in situations where a priori no invariant measure of the process of the
environment viewed from the particle is known to exist. We provide a sufficient
condition, under which the process satisfies a strong law of large humbers with non
vanishing velocity, which can further be refined by a central limit theorem. In particular,
under this condition, the diffusion in random environment exhibits a ballistic behavior.
We use a strategy which has been successful in the discrete setting. We construct certe
regeneration times which provide a renewal structure, see [35]. As an application o
our results, we show the ballistic behavior of a concrete class of diffusion processe:
in random environment, which is a natural generalization of some discrete models
mentioned in [18], which were studied in [27].

We now describe the setting in more details. We denote @ithe7, P) a probability
space and witl; = {z,: x € R¢} a group of measure preserving transformations, acting
ergodically on€2, for details see the beginning of Section 2. We consider bounded
measurable functions(-):Q — R? ando(-):Q — R?*“, as well as two constants
b, & > 0 such that

|b(w)| < b < oo, lo(w)] <6 < o0, (1.2)
where| - | denotes Euclidean norm both for vectors ahd d-matrices. We write
b(x,w) =b(t,(w)), o(x,w) =0 (1, (w)). 1.2)
We assume thdt(-, w) ando (-, w) are Lipschitz continuous, i.e., there exists a constant

K > 0such thatfor albb € Q, x,y e R?,

| | (13)

|0(x70))—0(y,60)’ <K|x_y|

Further, we assume that'(x, w) is uniformly elliptic, that means, there is a constant
v > 0 such that for alk, y e R? andw € 2,

1 2
Iy < o' (x, @)y]” < vyl (1.4)
whereo’ stands for the transposed matrix«f For a Borel subseF c R?, we define

theo-algebra generated tiy(x, w), o (x, w), forx € F:

%Lefa{b(x,w),a(x,w): x € F}, (1.5)

and assume an independence condition, which wekcaiparation. Namely, there exists
anR > 0, such that for all Borel subsef§ F’ in R? with

d(F,F)Einf{lx —x'|: xe F,x' e F'} > R,
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A and s areP-independent (1.6)

Let us mention two examples of such random vectats, w) and random matrices
o (x, w) respectively. The convolution of a Poissonian point process with a Lipschitz
continuous vector-valued, or matrix-valued, function supported in a ball of ratids
yields after truncation a possible example, cf. [31], p. 185. Another possible example is
to use the Gaussian field, described in [1], Sections 1.6 and 2.3. After convolution an
truncation, we get another example. (The formula (2.3.4) on p. 28 in [1] need be change
to X(x) = [g(x — A)dZ()), whereg(x) is some vector- or matrix-valued Lipschitz
continuous function, compactly supported in a ball of radtyg.)

We denote by(C(R,,RR?), #,W) the canonical Wiener space, and with,),>o
the canonical Brownian motion (which is independent fr@n <7, IP)). The diffusion
process in the random environmeatis the lawP{ (which is sometimes called the
quenched law) onC (R, R?), .#) of the solution of the stochastic differential equation:

{dX,(a)):b(X,,a))dt—i-a(X,,a))th, (1.7)

Xo=x, xeR¢ weQ.

The aim of this article is to study the asymptotic propertiescofinder the “annealed
law”:

P, &P x pe. (1.8)
We provide a sufficient condition, see (3.1-i), under which the strong law of large
numbers holds, that is:

X
Po-a.s. T — v, ast— oo,

wherev is a deterministic aneghion-vanishingvelocity (cf. Theorem 3.2). Further, we
show that the stronger condition (3.1-ii) guarantees a functional central limit theorem,
namely as tends to infinity, theC (R, R?)-valued process

sdet 1

75

converges in law, under the annealed mea&gtgo a non-degenerat@-dimensional
Brownian motion with covariance matrik (cf. Theorem 3.3).

The derivation of this sufficient condition (3.1) is based on the strategy of constructing
some regeneration timeg, k > 1, similar to those defined in [35], and providing a
renewal structure, cf. Theorem 2.5. The sufficient condition is then expressed in terms ¢
the transience of the diffusiaX. in some directiorf and the finiteness of the first (or the
second) moment of; conditioned on no-backtracking, cf. (3.1). There are several ways
to construct these regeneration timgsin the spirit of [4,36], we introduce additional
Bernoulli variables. In essence, the first regeneration tifrie the first integer time, at
which the diffusion process reaches a local maximum in a given dire¢tof?—*, the
auxiliary Bernoulli variable takes value 1, and from then on the process never backtracks
The regeneration times, k > 2, are then obtained by iteration of this procedure. For
the true definition, we refer to (2.12)—(2.17), (2.22). In our construction we take special

B (Xs. —sv+),
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advantage of the diffusion structure to couple the Bernoulli variables with the diffusion
process, the resulting renewal structure, cf. Theorem 2.5, gives us a good control ove
the trajectory of the diffusion, see Remark 2.6, and we also have a convenient Marko
structure, cf. Corollary 2.2. This provides a key tool for studying asymptotic behavior
of the diffusion in a random environment. Further applications of this renewal structure
and Theorems 3.2, 3.3 will follow.

As an illustration of our results, we study a class of reversible diffusion processes,
for whicho =1 andb(x, w) = VV (x, w), whereV (-, w) has uniformly bounded and
Lipschitz continuous derivatives, and there exist a unit ve¢tarR¢, A, B > 0 and
A > 0 such that

AT L@V < et forall x e RY andw € Q. (1.9

In the case where. = 0, the diffusive behavior of the process has been extensively
investigated, cf. [5,21,22], however we do not know of any result wherD. We show

in this article that when. > 0, (no matter how small is) the sufficient condition (3.1)

is fulfilled (in fact, we prove the much stronger exponential estimates uﬁ;d,ecf.
Theorem 4.9 and Corollary 4.10, which can also be used to deduce certain large deviatic
controls, cf. [32,33]). As a result, the above mentioned law of large numbers and
functional central limit theorem holg, see Theorem 4.11. The clasg under consideratiol
includes the case whetgx, w) = VV (x, w) + AL, for some bounded € C1(R?, R),

with bounded and Lipschitz continuous derivatives. Let us mention that this situation is
closely related to some of the models studied by Lebowitz and Rost in [18], where the
existence of an effective limiting velocity is mentioned as an open question.

Let us also point out that Theorems 3.2, 3.3 have a scope which goes beyond th
above class of examples. In particular in the discussion of the above examples, w
obtain uniform controls inv and we do not even need to take advantage of the fact
that the moment conditions (3.1-i), (3.1-ii) in Theorems 3.2, 3.3 are expressed in term:
of annealed measures (i.e., integrating awgr Further applications of Theorems 3.2,
3.3 will appear elsewhere.

Let us finally describe how this article is organized. In Section 2, we enlarge the
probability space with coupled Bernoulli random variables, cf. Theorem 2.1. We then
define the regeneration times;),>1, cf. (2.12)—(2.17), and we provide the crucial
renewal structure in Theorem 2.5.

In Section 3, the sufficient condition is expressed in terms of the transience of the
diffusion in the direction¢ and the (square) integrability of; conditioned on no-
backtracking, cf. (3.1). With the help of the renewal structure constructed in Section 2,
we are able to show the ballistic behavior (&f;),~0 in Theorem 3.2, and a functional
central limit theorem in Theorem 3.3.

In Section 4, we will apply the results from the previous sections to the specific
class of models described in (1.9). An important role is played by estimates on the
exit distribution and exit time of the diffusion processes from a large cylinder with
axis parallel to¢, cf. Propositions 4.2 and 4.3. The main integrability propertieX of
andt; are derived in Theorem 4.9 and Corollary 4.10, and our main result is stated in
Theorem 4.11.
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Finally, in the appendix, we collect some results about continuous martingales anc
linear parabolic partial differential equations of second order, which are used throughou
this article.

2. Therenewal structure

In this section we will enlarge the probability spa@(R., RY), Z,P?) to (C(R,,
RY x {0, 1}V, .7 ® .7, P”’) by adding some suitable auxiliary i.i.d. Bernoulli random
variables, see (2.6) and Theorem 2.1.

On the enlarged spac¢& x C(R,,R%) x {0, 1}V, &/ ® .F ® .7, |3x), see (2.11), we
will define the regeneration timesg, k£ > 1, and discover the resulting renewal structure
under the new annealed measBge see Theorems 2.4 and 2.5.

For the random environmen(2, <7, P), we assume that for alt,y € R?, ¢, is
a mapping onQ with 1o =1 and .., = t, o t,; the mapping(x, ®) — t.(®) Is
(% ® o/, o/)-measurable, witl# denoting the Borer -algebra orR?; ¢, preserves the
P-measure; and foA € & such that, (A) = A for all x, thenP[A] € {0, 1}. We recall
that under these assumptiofrs: x € R?} is a group of strongly continuous unitary
operators orL?(2, o7, P), cf. p. 223 in [12].

2.1. Thecoupling construction

We first need to introduce further notations. et R¢ be a given unit vector, and let

U* & Ber(x +5R0), B L Br(x +9R0), (2.1)

be the two subsets shown in Fig. 1.
We also introduce for open s& C RY, u € R the (%,),>0-stopping times (Z,):>o
denotes the canonical right continuous filtration(Gi{R ,, RY), .%)):

T E'inf{t

>O XI¢G}7
T, Linf{r > 0: £ (X, — Xo) > u}, (2.2)

T, Linf{r > 0: ¢ (X, — Xo) <u},

Fig. 1. Setd/* andB*.



844 L. SHEN/Ann. I. H. Poincaré — PR 39 (2003) 839-876

and the maximal relative displacementXg the process( - X;),>o has reached within
timer,

M) E'sup{e - (X, — Xo): 0< s <1}. (2.3)
We denote by, (s, x, y) the transition density und@?, which is a continuous function
of s > 0, x,y € R? such thaP?[ X, € G] = [;dy p.(s,x, ), for all open seG C R?,
cf. [8], pp. 139-141. We also introduce the sub-transition densjty: (s, x, y), which
is a continuous function in > 0, x e R? andy € U*, fulfilling:

P[X, €G, Tyr>s] = /dy Po.ux(5,X,Y), (2.4)
G

for all open setG c U~.
Under our assumptions on the drift tedéy , ) and the diffusion matrixo’(-, w),
there exists a constantv,d, b,o, R, K) € (0, %) such that for allv € Q,

2
Do (L x,y) > ﬁ ~0, forallxeR?andy e B, (2.5)
R

where| Bg| denotes the volume df. We refer to Corollary A.5 in the appendix for the
proof of (2.5).

With the help of (2.5), we are going to use a coupling construction enlarging our
probability spacéC (R, , R?), .#, P*) to include some auxiliary i.i.d. Bernoulli random
variables(),,)) pen-

Before providing this coupling construction, let us give some other notations. We

denote byx; the canonical coordinates do, 1} (the variablesi; will turn out to

be i.i.d. Bernoulli random variables with success probabit}y Further, let.#, def

o{ro, ..., Am}, m €N, denote the canonical filtration d0, 1} generated by, )men

and.” d:efa{Um %} be the canonicab-algebra. To simplify notation let us write for

t>0:

meN

with [1] d:efinf{n e N: ¢t <n}. We also introduce the shift operatde,: m € N}, with
O (CRL,RY) x {0, )N, 2) — (C(R,4,RY) x {0, 1}V, 2), such that

em (Xv )\') = (Xm-i--v )\'n1+<)v (27)

for X. e CR,, R andx. € {0, 1},
Now we can state the coupling construction.

THEOREM 2.1 (Coupling construction). For everyw € Q and x € R? there exists
a probability measureﬁ;’ on (C(R,,RY) x {0, 1}N, 2) depending measurably an
andx, such that
(1) Under |3§3, (X1)i>0 is P¢-distributed, and the,,, m > 0, are i.i.d. Bernoulli
variables with success probability(recall (2.5)).
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(2) Under |3;’, Am (m = 1) is independent otA/O“m ® %,_1, and conditigned
on %,, X. o6, hasthe same law a&¥. underP§ , , where forr =0,1, PY,
denotes the law?[ - | 1o = A].

(3) Py, almost surelyX; € U* for s € [0, 1] (recall (2.1)).

(4) UnderPX 1» X1 is uniformly distributed orB* (recall (2.1)).

Proof. —Given a probability kerne@‘;,,\[X_ € 0],for0o e %, xeR?, A €{0,1} and
w € 2, there will be a unique probability kern@fj on Z, forx e R, w e Q, such that
underP?:
e A, is a Bernoulli random variable with success probabiktyindependent of
G Q Fu_1, Whenm > 1;
e For 0 € 7, the conditional expectatior”[6%(X. € 0) | Z,] P“-a.s. equals
P%, .2, [O].
Here is how we defin@?,[X. € O] for O € F1, x e RY, w € @ andx € {0, 1},
namely we set

1[X. € O] =

X )\,0_

/ dy PO | Ty > 1], (2.8)

| Bl

and

~ 1
PY ol X. € 01= 1—8{P‘” 0] — — /dy PUHO | Ty > 1]} (2.9)

wherePy) Lis the bridge measure fromto y in time 1 underP?; i.e. ,ijyl is the unique

probablllty measure ofC ([0, 1], RY), .%;) such that for allo, € .%,, s < 1:

1
P>l0,1= ——E“[0,, 1-—ys, X5,y
x,y[ s] pw(l,x,y) x[ K pa)( S, Ag y)]

The proof of the existence of this bridge measure can be found in [31], pp. 137-139
Although the proof in [31] is for the Brownian bridge, it can still be used for the
proof of P“’}l, with little modification. The only change one need to do is in the
proof of (A.8) on p. 138, namely one need to use the inequality, lt — s, X;, y) >

ot — 5)4/2 exp{ L5=c 3)) }, n >0, ¢ >0, which can be found in [8], p. 141.
Observe thatp,, y~(1, x, y) = p,(1, x, y)P‘;”;,'[TUx > 1] andP¢[X. € O, Ty~ > 1,
X1 € B = [y pouv(Lx,y) - P2YX. € O | Tyx > 1]dy, so in view of (2.5)P¢, is

well defined. It is then straightforward to see that the resuﬁ'@@ulfills 1)—-4). o
As a consequence, we have

COROLLARY 2.2 (Markov property). —Underﬁ;’, the joint proces$ X, An)men IS
a time homogeneous Markov chain, with respect to the filtrati#h = .%,, ® -7 men,
and in factP¢-a.s.
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PU[(X A) 0B, x| 2] =P%  [(X., 1) €. (2.10)

Finally, let us introduce the new annealed measurésrnx C(R,, RY) x {0, 1}V,
g ® %), see also (1.8):

P.EPxP” and E, E'ExE”, (2.11)

and observe that by property (1) in Theorem 2X.,)),>0 has same distribution undeg
andP,.

2.2. Theregeneration times 7

In this part, we will define the regeneration timgs k € N, and discover the resulting
renewal structure.

To define the first regeneration time, we need to introduce a sequence of integer-
valued(Z),>o-stopping timesV,, for which the conditionty, = 1 holds, and at these
times the process$( - X;),>o reaches essentially a local maximum (within a small
variation). Thenry is the firstN; 4+ 1, k > 1, such that the process - X,),>o hever
goes below - Xy, 11 — R after N, + 1.

To defineN,, we introduce the integer-valugd#, ), o-stopping timez{ﬁk),@l, which
are essentially the times whéh - X,),>o reaches local maxima (also within a small
variation). Then, we choosk¥; to be the firstv, with Ay, =1.

Here is how we precisely define them: first, we introduce dof 0O the (%#,),>0-
stopping times/i(a), k > 0: Vg is the first time(¢ - (X; — Xo))s>0 reaches:, andVj,1
is the first time(€ - X;),>0 reachesk above the local maximum it reached fiWx ], that
is (recallM (a) in (2.3) andT, in (2.2)),

def

Vo(a) =T, Vi(a) & TM(fvo(a)1)+R, Via(a) & TM(m(aﬂ)+R (2.12)

Then, we defineVy(a) to be the first[V;], k > 0, such that¢ - (X, — Xvk)| R for

all s € [V, [Vi]]; and Nk+1(a) to beNl(3R) shifted afterNk(a) (it is not Nl(a) after
Ni(a), the reason for this comes from our definition/f,; later in (2.15)):

Ni(a) £ mf{ [Vi@1: k=0, sup [£-(X,—Xy)|< R}
selVi, Vi1l
Nk+1(a) Nl(3R) 005 @+ Ne(a), k=1, (2.13)

N]_(Cl) = Inf{Nk(a): k>1, )\ﬁk(a) = 1},

(by convention we seWj; = oo if N = o). We illustrate in Fig. 2 the situation, where
Ny(a) is [Vo(3R)1 after N1(a).

Observe thalV,, k > 1, are integer-valued, bigger or equal to 1, &fleh.s. sup_ 3,
(Xs—X5) <R, i.e., within a variation oRR, ¢ - X3, reaches a local maximum. Now we
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M([Vi])+£Xo
0%
| R |
Xsi
Fig. 2. Vi(a) andN,, (a).
Xs, M(Ry)+£-Xo

% N
\7 :

N
< : >
< '

Mo0g,

Fig. 3.

can define th&.Z;),>o-stopping times (recall (2.2)):

SENGBR+L BT+ T robs;
» (2.14)

Ry =1[J1]=81+ Dobs,;

. def -4
with D = [T_g].

Now we shall define the integer-valugd;),>o-stopping timeN,1, k > 1, which
is bigger thanr, such thatiy,,, =1, and the procesf - X),>o does not go above

£ - Xy, + R until time N,;. More precisely:

Ness B R+ Na(ap) 0 0r,  with ap ' M(Ry) — £ (Xg, — Xo) + R, (2.15)

(the shiftdg, is not applied tay, in the above definition, cf. Fig. 3).
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The quantitya, in (2.15) is used to make sure thét, ;1 is an integer bigger thaRy,
such that sup € X; <{- Xy,,, + R (here is why we defined the stopping times
(Vk(a))r>o for a generak).

Asin (2.14), we define theZ)),>o-stopping times:

» (2.16)

def def ~
Sii1 = Nepr + 1 Ji41 = St + Tog 005,15
Riv1 = [Jkt1l = Skr1+ Doy, .

Observe that for alt € N, the (Z7),>0-stopping timesV;, S; and R are integer-valued,
possibly equal to infinity. Of course we havelIN; < S1 < J1 <K RIS N <S5 < b <
Ry < < o0.

With the help of these stopping times, the fiexjeneration timés defined, as in [35],
by

T1 d=efinf{Sk: Sy <00, Ry = OO} < o0. (217)

Again, r; is integer-valued, and, > 2, becausev; > 1. R
With this definition, we see that on the evént < oo}, P,-a.s.,0 - X, <€ X; 1+
R<{¢-X, —7R,fors <11—1, seealso Theorem 2.1 and Fig. 1, {%,);<,,—1 remains

in the half spac&(¢ - X, — 7R), with L(a) d:ef{z eR?: z-¢ < a)fora € R. Onthe other

hand, because the procégs X,),>o never goes below - X, — R afterty, i.e. (X;);>n,
belongs to the half spad@ (¢ - X;, — R), where fora € R, R(a) def {zeR%: z-£>a).
This will turn out to be an important issue in the proof of Theorem 2.4.

We will see in Proposition 2.7 below that thi almost sure finiteness of; is
equivalent taPg-a.s., lim_ ., £ - X; = oo. For the time being we begin with

LEMMA 2.3.— Suppose thag-a.s.7; < 00, thenPo[D = oo] > 0.

Proof. —~We prove this by contradiction. IPo[D = oo] = 0, it follows from the
stationarity ofP-measure thaf dx P,[D = oo] = 0. Thereafter, by Fubini’s theorem,
there exists @-null-set T C 2, such that for alkw ¢ Y, outside a Lebesgue-null-set
N(w) CR?, P?[D = 00] = P?[T_g = co] =0 holds.

Because by our assumptions (1.1), (1.3) and (1.4), the transition dengityx, y)
exists for allw € 2 andt > 0, it follows from the Markov property ofX,),>o underP¥

that forw ¢ Y and for allx € R, P*[N4eq T-r 06, < oo] = 1.
q>0

Therefore, forw outside théP-null-setY and allx € R¢, P‘;[T_R/z < oo] =1, which
implies by the strong Markov property theg-a.s. liminf X, - £ = —oo. This contradicts
the assumptioPg[t; <oco]l=1. O

Let us define on the spa¢g x C(R,, R?Y) x {0, 1}V, o7 ® &) theo -algebra?, which
is generated by the sets of the form:

{t1=m}NO0,_1N{X,_1-£L>a}N{X,,eGINF,, m=2 aeck, (2.18)

with O0,,_1 € Z,,_1, G C R? open, andF, € H#7 k) (recall 5# in (1.5) and £
below (2.17)). The situation is shown in Fig. 4.
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6R
BXm—l

NN
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N\
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7
4+R

Fig. 4.

o

Essentially, ther-algebra® describes the history of the Bernoulli variables the
path of the procesgX;),>o, and the random environmedstpossibly contributing before
timer; — 1.

The key step in the study of the renewal structure mentioned in the introduction is
now:

THEOREM 2.4. — Assume thaPg-a.s.7; < co. Letx € R?, and f, g, h be bounded
functions, which are respectivelyf’ — (recall (2.6)), 7% &, — (recall 7 in (1.5) and
R below(2.17)) and¥-measurable. Then

Eol[f Xepp. — Xopy Ay )g o tx, h] =Bo[f (X, 2)g | D=00] -E[h],  (2.19)

wherer,, y € RY, is the shift operator from the beginning of Sectibn

Proof. -By Lemma 2.3, we know thato[D = oo] = Po[D = oo] > 0, and the right-
hand side of (2.19) is well-defined.

Since theo-algebra¥ is generated by sets of the form in (2.18), which form a
m-system, it is sufficient to prove (2.19) for= 1;;,—; - 1ix,, 1.¢5a} - 15, - 10,1 - Ixnec:
with 0,,_1 € Z;,_1, G CRY open, andF, € #7(,r)-

For this speciak, the left-hand side of (2.19) is now:

EX [f(X11+~ - Xl’17 )\11+-)g o tXrlh]
= Ex [f(Xm+ — Xom» )\m+)g olx,; T1=m, On-1, Xm1->a, F,, X, € G]

Observe thatf{ty = m} N Op1 = 01 N{D 0 6, = 00} N {A,_1 = 1}, for some
Opn1€Z_1N{Xu1-L+R>X,- L, VYVt <m — 1}, therefore the last expression
is now:

E{E®[E®[f (Xmy. — Xm> Amr) €0 tx,; Xm €G, Dob,=00| 2, 1];
Fu, On1, Xpo1-€>a, hp1=1]}. (2.20)
By the Markov property, cf. (2.10), we observe tRgta.s. on the ever{t,,_1 = 1},
E°[f (Xms. — X, Amy) g 01x,; Xm €G, Dob,, =00 | %, 4]



850 L. SHEN/ Ann. . H. Poincaré — PR 39 (2003) 839-876
=EY [f(X11. — X1, A1) g0tx,; X1€G, Dofy=o]
=E% 1[E$ . [f(X.— X0, A)goty,: D=00], X1€G].

Note that, by Theorem 2.1, is independent ofX; under the measuré;”l, for all
y € R4; and using property (4) of Theorem 2.1, the last expression is:

/ dyE‘”[f(X y,A)got,, D=o0].
|BR|
B¥m-1nG

Plugging this formula into (2.20) and using Fubini's theorem, the left-hand side of (2.19)
now equals

/dyE{E‘”[E‘“[f(X —y,A)goty,, D=o0l;

F,, Om—la me1-€>a, Ay_1=1, {y € BXm_l N G}] }

|Br|

def

SetV E{F,, Op-1, Xm1-L>a, Ap1=1, y € BX»-1N G}, the last expression equals

v |/dyE{P“’[V [f(X. =y, 1), D=00] - got}. (2.21)

Observe that {;eme,l} is zero fory - £ — 8R < X,,_1 - £, see also Fig. 4. Therefore,
in the above integral we only need to considesuch thata < y - ¢ — 8R, and thus
F, € A7 .c-7r). Also observe that for the,,_; introduced above (2.20), we have
Om_1C {(X,_1-£+R > X;-£, Vt <m—1}. Therefore, we see tha;’[V IS AL (y.e—7R)"
measurable.

On the other hand, singeis 7% g )-measurable and due to the restrictibn= oo,
we observe tha@‘;’[f(X. — ¥, 1), D=00]-got, IS xR .c—r)-measurable.

As a result ofR-separation, cf. (1.6), we see tR{t[V] andE2[ f(X. — y, 1), D =
oo] - g oty are independent under tifemeasure. Using this observation, (2.21) equals

Tl 7 -
/dyEx{—]-Ey[f(X.—y,)\,)got,,D:oo]
| Brl

—([are [Ulgvl]) Bolf(X..h)g D=0,

where we used the stationarity of tifemeasure in the last step. By takifg=g =1,
we get from the above calculation that{z] = Po[ D = o] - [ dy E.[1y /| Br|], therefore
the left-hand side of (2.19) is now

E,[h A N
Eolf(X..2) g, D =o0]- %ﬂomx.,x.)gwﬂo]-Ex[h].

This finishes the proof. O
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We now define inductively on the evefit; < oo} a non-decreasing sequence of
random variables, by viewing,, k > 1, as a function of X, 1.):

Tern (X 20) B () + 1 (X eps. — Xopa heyy)), k=1, (2.22)

and set by conventiom,,; = co on {r; = oo}. We observe that for eadh t; is either
infinite or a positive integer. Of course,;1 = % ((X., 1)) + 11 (X4 — Xops A1),

but we prefer the definition (2.22) in view of the proof of the renewal structure promised
in the introduction (in the next theorem, we setgce= 0):

THEOREM 2.5 (Renewal structure). Assume thaPg-a.s.,7; < co. Then under the
measuré®, the random variableg, def (Xmtn@aa—0 — X Xgp — Xo Ty — ™),
k > 0, are independent. Furthermore,, ic > 1, under Py, have the distribution of
Zo= (X.A(r;-1) — Xo; Xv, — Xo: 71) UnderPol - | D = o0].

Proof. —Let us define on the spa¢® x C (R, RY) x {0, 1}, &7 ® &) theo -algebra
%,+1, which is generated b§Z;)o<<.- It suffices to show that fok bounded and, ..1-
measurabley > 0,

Eolh, Zys1 € %] = Eolh] - Po[Zo € % | D = o0]. (2.23)

We prove this by induction. The case= 0 follows from Theorem 2.4, because
¢ C ¢, with ¢ defined in (2.18). For the step— n + 1, we observe that because
%,.1 is generated by, and 9,‘11(%), without loss of generality we can assume that
h=hy-h, o0, with h, € 4, andhi € 4. It follows from Theorem 2.4 that the left-
hand side of (2.23) equals

Eolh1]

Eo[(hnliz cx) 00y, - h1] = Eolhnliz exy; D =00]+ ——————.
0[(hn1(z,ex)) 0Oy, - 1] olhn iz, e oo] PolD = oo]

Observe thafD = oo} = {T_g = o0} = {T_z > 11} = {D > 71} (the equalities hold
Po-a.s.). Indeed, we only need to show the last equality: from the definitial, of

is obviogs that{T_r > 11} C {D > 14}; to the opposite direction, we see that> t;
implies 7_g > 73 — 1, and in addition becaus€Xy, — Xo) - £ > 3R for all j > 1,

cf. (2.14), andT_¢ o ,, = 0o, T_g = oo follows. Then, we observe that up-to a
Po-null-set, {D > 11} lies in ¢ (indeedﬁo-a.s. (D>t =m}={D>m-1}nN

{r1 = m}, thus by (2.18), the claim follows), therefatg- 15—, € ¥,. Hence, it follows

by the induction assumption that the right-hand side of the previous expression equals

~ Eolha]
Po[D = 00]
=Po[Zo € * | D = 00] - Eg[h1h, 0 0,].

This finishes the proof. O

PolZo € * | D = oc] - Egl[h,; D = o0]

Remark2.6. — In the above theorem, the renewal structure is proved for the trajectory
between times; andz; .1 — 1, unlike in [35]. Nevertheless, we have very good control
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over the trajectory between timegandr; 1, because by our construction, 1 =1,
hencepPo-a.s.X, € BX%+1-1 forall s € [tie1 — 1, Txyal. le., the path between 1 — 1
andr,,; remains in a ball of radius, see also Fig. 4.

PROPOSITION 2.7. — Pg-a.5.71 < oo if and only ifPg-a.s.lim,_, « X; - £ = 0.

Proof. —If Py-a.s.7; < 0o, then it follows from Theorem 2.5 th&y-a.s.1,, < 00,
for all m > 1, and by definition oft,, that Po-a.s. lim,_ oo X, - £ = oo. Therefore,
lim; o0 X, - £ = 00.

To show the opposite direction, we first claim tRgta.s.N; < 0o, and hences; < co.
Let us define

R
Z‘j=6fsup|Xs —Xo| and A d=ef{Z > —}, (2.24)

s<1 2
and observe that because of the assumption (1.1) and (1.4) it follows from the
Support Theorem of Stroock—Varadhan, cf. [2], p. 25, that there exists a constan

co(K,b,5,v, R,d) > 0 such that for alk € R andw € Q:
PY[A] > ¢o> 0. (2.25)

Since lim_ « X, - £ = 00, Pg-a.s., we see that there exist®aull-setY c Q such that
forallw ¢ T, P§-a.s.Vy(3R) < oo for all k € N, cf. (2.12) for the definition oV,. Let
us define

Ay d:e*{ sup |£- (X, — Xy)| > 5}, k>0, (2.26)
SElVi Vi) 2

then it follows from induction and the strong Markov property that foe N and

o ¢ Y, PelNockcn Akl < (L= co)". As a result, for allw ¢ Y, PGIN1(3R) = oo] <

P5[MNi=0 Ax]l = 0. By the stationarity of*-measure, we see that-a.s. N < oo, for

all x € R4, Therefore, [ dx P.[N; = 0o] = 0, so it follows from Fubini's theorem
that there is @-null-setW C 2, such that for alkw ¢ W, outside a Lebesgue-null-set
N(w) C R4, P?[N; = oo] = 0. Using the positivity ofp,,(n, y, z), with a somewhat
similar argument as in the last two paragraphs of the proof of Lemma 2.3, we see b
induction thatPg[N,, = c0] =0, form > 1.

Clearly, for arbitraryn > 1, Po[N1(3R) = 00] < Po[A
holds. As a resultPy-a.s.N; < 0c.

We now can prove thaPg-a.s. 7, < co. To show this we note that by similar
computations as in the proof of Theorem 2.4 (see (2.20), (2.21)):

e =0 Ym<nl<(1-e)

PolR; < 00] = E[P[N; < 00, D o6y, 41 < 00]]

=Y E[P§[Ny=m—1, Dob, <oo]]
m>=2

=Y E[P§[Ne=m—1, Py [P} ;. [D<odl]]]

m>=2

1 ~ ~
=3 o Ay B[RS 2ua=1, v e B BD <ol
R

m>2
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for somel” € %,,_1 ® .%,,_» such that{N, =m — 1} =T N {A,,_1 = 1}. We observe
thatI' c {X,,_1- £+ R > X, - £, Vt <m — 1}, hence as in the proof of Theorem 2.4,
Pe[l,y € B¥n1, A, 1 =1] and |3§?[D < o0] are P-independent, therefore the last
expression equals

mz>2 | Br|
= Po[ Sk < 0] - Po[D < 00] < Po[Ry_1 < 00] - Po[ D < 00],

(it is not hard to see that the last inequality above is indeed an equality) so by inductior
we obtain that

/dyPo [T, Am_1=1, y € B¥1] . Pg[D < o0]

PolRx < 00] < Po[D < oolr. (2.27)

On the other hand, as in the proof of Lemma 2ga.s. lim X, - £ = oo impliesPo[D =
oo] > 0. Therefore, from (2.27) andp-a.s. S; < oo, Sk+1 < 00 ON {Ry < oo} we see
thatPg-a.s. infk > 1: S, < 0o, Ry = oo} < 0o, which provesPo asti <oo. O

3. Law of large numbersand central limit theorem

In this section we will provide a sufficient condition to derive a strong law of large
numbers and a functional central limit theorem. Some parts of the proofs presente
in this section are similar to the proofs of Theorem 2.3 on p. 1864 in [35], and of
Theorem 4.1 on pp. 130-131 in [32]. We will also use some classical results abou
continuous martingales, which are presented in the appendix.

We begin with
LEMMA 3.1. - Under(3.1-), (3.2-i)holds
Pg-a.s. I|m ¢ -X,=o0c0 and Eo[fl | D =o00] < 00, (3.1-i)
Eo[|Xy| | D= o0] < oo. (3.2-i)
Analogously, undef3.1-ii), (3.2-ii) holds
Po-a.s.  lim £-X, =00 and Eo[t? | D =00] < o0 (3.1-ii)
Eo[IX41? | D =o0] < oc. (3.2-ii)

Proof. —First, we prove the implication (3.1-ig> (3.2-ii). From Lemma 2.3 and
Proposition 2.7 we see thBg[ D = co] > 0, and hencEx[rf | D = o0] is well-defined.
Further, because, only takes integer value bigger or equal to 2, we can write

Eol| Xy |?| D=00] =) Eo[|X,*, m=n|D=00]. (3.3)
2

Observe thaP¢-a.s. (and thereforeg-a.s.)

2
< 2b%n% + 2’

2
|Xn| =

n

/b(Xs,a))ds—{—/cr(Xs,a))cﬂ/VY
0 0




854 L. SHEN/Ann. I. H. Poincaré — PR 39 (2003) 839-876

whereW, is some suitableZ, Brownian motion) appears in (1.1), and
t
V)= [o(X.w)aW, (3.4)
0

is an(.#,),>o local martingale undepy. Thus, the right-hand side of (3.3) is

o0
< 20%Eo[tf | D =00] +2) Eo[|V,%, 1 =n|D=oc].
n=2

By Hélder’s inequality withp, ¢ > 1 such that% + % =1, each term in the summation
of the last display can be estimated by

Bo[lYal% ti=n|D=00] <Eo[|¥,|? | D=00]"" - Polry =n | D = ool
1

= Ur 5 1
<— BNy, 12217 . Bolti =n | D = 0o]Y4.
S BolD = coUr o[ IVal™ 77+ Polzy =n | D = 00]

From the assumption (1.4), we see thit(w)), < vt forallwe Q, i =1,...,d, sowe
can apply (A.1) in the appendix and obtain that the rightmost side of the above expressio
is smaller than

c(p,d,v)

W . I’lﬁo[fl =n | D= OO]l/q. (35)
0 =

Coming back to (3.3), we see that in order to slﬁaMXHF | D = o] < o0, it suffices
to proveY >, nPo[ry =n | D = 00]Y? < oo, for someg > 1.

To this end, observe that by assumption (3.18pjz? | D = oo] = Y°°, n?Po[1) =
n | D = oo] < oo, and hence with Holder’s inequality:

> nPolri=n|D=00]"" =Y "n*"?n?1Pg[ry=n | D = 0ol
n n

1/q

1/p
< (Zn(l_z/‘”p> : (Z n®Polty=n| D= oo]) < 00, (3.6)

providedq close to 1, i.ep close tooco.
For the implication (3.1-ix (3.2-i), we proceed similarly as above. Instead of (3.6),
we use

> VnPolty=n|D = ool

n

1/q

1/p
< (Zn(l/z—l/q)p> . (ano[fl =n|D= oo]) < 00,
n n

for ¢ close to 1. This completes the proofO

Now we are ready to prove the strong law of large numbers:
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THEOREM 3.2 (Strong law of large numbers). Assumg3.1-i), then

X, 1o Eo[X,, | D = 00
Pr-as, iz, derEolXy | I (3.7)
t Eo[t1| D = <]

and{ - v > 0.

Proof. —BecauseX. has same distribution undeg andPy, it is sufficient to show that
Po-a.s. X T,

Further, from our construction oy andry, see (2.14), (2.16) and (2.17), it is clear
thatPg-a.5.X,, - £ > 0, thus¢ - v > 0 is immediate.

By Theorem 2.5, the strong law of large numbers applied on the i.i.d. random variable:
(Tupr — Tn» Xz, — X¢, ), n > 1, shows thaPy-a.s.

Tn+1

Xr n— ~ Th n— s
T R EolXy, | D = o], — = Eolt1| D = 00]. (3.8)

For eactr > 0, we define a non-decreasing integer-valued funation which tends to
infinity Po-a.s., such that

Ty St < Try+1  (With the conventiong = 0). (3.9)
Dividing the above inequality by(s) and using (3.8), we find th&y-a.s.

k() 1o 1

. S (3.10)
t Eo[t1 | D = <]

Further we observe that, becauseofr = X, ,, /t +(X; — X,,,)/t, and in view of (3.8)
and (3.10)Po-a.5.X+,,,, /t = (Eo[ Xy | D = 00l)/(Eolt1 | D = ocl), we can show (3.7)

—>0o0

by provingPe-a.s.(X; — Xy,,)/t — O.
To prove this, we ogserve that singe is the solution of the stochastic differential
equation (1.7), we haveg-a.s.

r—T 2
= mol | 2gu0y,),

s<t

1 -
?lXt - X‘[k(t)l < b

with the (%;) >0 local martingaleY; (w) defined in (3.4). In view of (3.9) and (3.10), the
first term in the last expression tends to z&pa.s. Applying (A.2), the second term
Pg-a.s. tends to zero, agends to infinity. O

We are now able to state and prove the promised functional central limit theorem:
THEOREM 3.3 (Functional central limit theorem). et us assumé€3.1-ii). Define
for eachs > 0 the process3*: (2 x CR,,RY), o7 @ .F) — (C(R,4,R?), .ZF), with

B — Xy — stv

= t>0. (3.11)
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Then, under théo-measure, theC (R, , RY)-valued random variable3® converges in
law, ass — o0, to ad-dimensional Brownian motioR., which has the non-degenerated
covariance matrix

 der Bl (Xyy —v)(Xyy —vm)' | D =09
Eolt1 | D = 00]

(3.12)

Before proving this theorem, let us recall some classical facts about weak convergenc
on C(R,,R%), which will be used throughout the proof. (For a detailed treatment, we
refer to Chapter 3 in [7], and Section 3.1 in [28].)

On the spaceéC (R, RY) we define the metric

o
1
p(Y;Z) €Y o SUP (1% = ZIAD) <1 ¥.Z eC(Ry.RY). (3.13)
o<s<m

m=1
which induces the topology of uniform convergence on compact interval®, oflf
on some probability space, s&g, A,P), Y" and Z" are sequences of continuous
R‘-valued stochastic processes, and the laws of the proc&dsesnverges weakly
to some probability measur@ on C(R,,R?), further if p(Y", Z") converges in
probability P to 0, then the sequence of laws of the procesgésonverges weakly
to Q.

Proof of Theorem 3.3. }t suffices to prove thaB* "> B. in law underPy, because.
has the same distribution undes andPg. The proof is divided in 5 steps. In steps 1-3,
we prove that for integer-valued B =3 B. in law underP,. In step 4, we generalize
this to non-integes. And in the last step, step 5, the non-degeneracy of the covariance
matrix K is proved.

Stepl. Define

def ;
Z;E Xepyy — X)) —0(tima— 1), j21,

def

n
Sn = Z Zj = Xr,,Jrl - Xrl - U(Trz+l - Tl)v
j=1

and letS, be the linear interpolation o,, with the conventiorsy = 0.

In view of Theorem 2.5 and the definition of in (3.7), the random variables
Zj, j =1, are ii.d., centered undeé, and, thanks to our assumption (3.1-ii) and
Lemma 3.1, square integrable.

The Wiener & Donsker’s Invariance Principle, cf. p. 172 in [28], implies that under
the Po-measure

n—-oo ¥

1
—S,. — B. inlaw, 3.14
NG (3.14)
whereB. is ad-dimensional Brownian motion with covariance matAx= Eo[t; | D=
oo] - K. (The theorem stated in [28] is for the case with covariance matrix equdis
get our result, we observe that, as we will show below in step 5, the mais)positive
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definite, henced~ 1/2(1/\/_ S,.) converges unde®, in law to a Brownian motion with
covariance matriq[(A~Y2Z,)(A~Y2Z,)'] = 1. Thereafter, (3.14) follows.)

Step 2. For eachn € N, define a non-decreasing sequenig@) € N (with the
convention; (0) = 0), which tends to infinityPo-a.s., such that

Tjtn) SN < Tjm)+ls (3.15)

and letj (z) be its linear interpolation. R
The goal of this step is to show that undgy

1 =00 .
ﬁs(j(n.)_l)ﬁ' —> B. In |aW, (316)
whereB. is ad-dimensional Brownian motion with the covariance makfix

n—oo

As aresult of (3.14), we hav% S JglriD=co] —> B.INlaw underPg, so in view of
the comments after Theorem 3.3, it suffices to show

Eo {,0 (%S(j(n-)—lh; %Séo[q"bw]ﬂ =0 (3.17)
To prove this, we picks > 0 arbitrarily small, and choos& € N large such that
Zm>T 5 < 0. BecausefS "% B.in law underPy, the laws of 1 =S, 0N (C(R4, RY)
are tight, so there is a compact sk C C(]R+,]Rd) for the topology of uniform
convergence on compact intervals, such that, S*dp—S ¢ Ks] < 8, and by the
Arzela—Ascoli Theorem, cf. p. 369 in [26], there eX|sts sof® > 0 such that

supPo| sup
n [t—t'|<n \/_

t,t'<T

|Snt nt’l 28 <5 (318)

On the other hand, we observe thatr) — j([t])| <1, t € R, ([¢] denotes the integer
part oft), and

jm)<m, forallmeN. (3.19)

From (3.9), we also see thdin) = k(n) for all n € N, hence (3.10) implie®,-a.s.
j(n)/n" =3 1/Eo[t1 | D = 0o]. Applying Dini’s second lemma, we obtain that

—~ j(tn) — 1 t n—00
Po-a.s., forallU >0, sup G =Dy 0
0<t<U n Eolt1 | D = 0]
Hence, fom large enough we get
~ i (tn) — 1 t
Pol sup [L =2 _ =00 <o,
0<t<T n Eo[rl | D = o0]

Coming back to (3.18), we obtain



858 L. SHEN/Ann. I. H. Poincaré — PR 39 (2003) 839-876

~ 1
Eo| SUp —|S¢iem-1. — S, = _ A1l <38,
0<I<T «/ﬁ| JEn)-D4 tn/Eo[rllDfoo]| X

for sufficiently largen. The claim (3.17), and hence (3.16) follow.
Step3. We show in this step that undeg

1 n—0oo .
—B"— B. inlaw. (3.20)

Jn
As stated in the comments after Theorem 3.3, it suffices to show that
Eo [,0 (B ! =S m)} —=o. (3.21)
Jn

To this end, choos& > 0. Then we have

su#B” 1 S
— —=S¢um-1
'<T t \/ﬁ (J@n)=1)4

" 1
< sup[]S(J(,n) 1, = SGamy-1. | + 334& - ﬁs(j([tn])—ln . (822

IS

Observe that the first term on the right-hand side of (3.22) is bounded from above by

[v]
= Sup (Tm+1 - Tm) + Sup _|Xr,,,+1
N 0<m<j(ITn]) /1

which, as we will see, converges to ORg-probability. Indeed, in view of Theorem 2.5
and (3.19), for any: > O:

- Xfm |’ (323)

~

SUp (Tm—i-l - Tm) >u
1 o<m< )

< Polty > /nu] + [nT1Po[ty > v/nu | D = oc]
P = n—
<Polt > /nul + n 2E0[rf,rl>ﬁu | D=o00] =30,
nu

by assumption (3.1-ii). Similar result holds for the second term in (3.23), by (3.2-ii) we
have:

~ 71
Po|— sup |X

X, |>u
VI o<m<j (7))

T+l

-~ nT/\ n—
< Po[| Xyl > nu] + WEOHXHF, |Xy| > /nu| D=o0] =30.

Let us now consider the second term on the right-hand side of (3.22). We claim thai
it also converges iPo-probability to 0. To show this, we start with the easy fact that
Po-a.s., the second term on r.h.s. of (3.22) is smaller than

nt

1 /
Sup—n{ / (|v|+|b<Xs,w>|>ds+/<lvl+|b<Xs,w>!>dS}
0

t<T
Tj(ne])
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+ su
,<Pf{'

with Y; defined in (3.4). The first term in (3.24) is bounded from above by

Ynt - Y‘L’j([m])l + |YT]_|}’ (324)

b+ v| 2(b+ v))
SUFII’I[ — Tj([nt]) + ‘E]_) < 7(

NI N

sup (Tm+l - Tm))a
0<m<j([nT])

which converges to 0 iRo-probability, as shown above.
The last term in (3.24) is smaller thaﬁHYﬂ + %supg |Yar = Yz, |, Which, we

claim, converges also to O iy-probability. Indeed, for all; > 0:

Po[supmt — Yo, | > \/Eu}
t<T

PO|:Sup|Ynt f/([nt])| > \/Eu’ Sup (Tm+1 - Tm) < \/;i|

t<T o<m<j([nT])

+ Igo{ SUp  |Tpa1 — Tl > \/ﬂ (3.25)
0<m< j(InT1)
We know already from above that the second term on the r.h.s. of (3.25) converges to (
asn — oo. For the first term on the r.h.s. in (3.25), we observe that it can be further
estimated from above by

Po| SUP U [Ysy — Yul > Vinu
m<[nT] 0<s</n

[nT]

<Y Po| SUp Yo, — Yul > Viul. (3.26)

m=0 0

Applying the Bernstein’s inequality, cf. pp. 153-154 in [25], we obtain that for any
m € N:

Py [ SUP [¥,ys — Yol > Vitu] < 2 &V,
s</n
thus the right-hand side of (3.26) tends to 0. This completes the proof of (3.20).
Step4. In this step we studyp® for s € R, tending to infinity, and extends (3.20).
The proof is very similar the one given in step 2. We consiger> co. For§ > 0
arbitrarily small, we defing € N such thafy,,_ 2 < 6.
From (3.21) we know that undé, with B. as in (3.16),

X[s,,]- - U[Sn]'
[5x]

X[Sn]' B U[Sn]'

Vo

, and hence (3.27)

converges in law ta®., asn — oo.
Therefore, the laws o\f/—ls_n(X[Sn]. —v[s,]-) are tight, and for any" > 0 ands > 0, one
can findn(8) > 0 such that:
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[~ Xs - nlt) — Xs I n t
SupPo{ sup (X1t — vIsnlt) — (Xpg,0 — visnlt) 28} <.
n L v
t,'<T
Since supc; |t — (s,/[s,])t| = 0, we obtain that for large

Po| sup ! (X [5,1f) — (X z)]>8]<6

0 salt — UlSn - sut — USp = X 0,
0<I<T +/Sn Lol '

and from (3.27) we deduce our claim.
Stepb. In this final step we will prove the non-degeneracy of the covariance niatrix

First, we letH def {zeR?: 14R < 7 - < 15R} be a strip inR¢. We claim that for any
n>3andx € H,

ﬁo[Xfl €Br(x); n=581=1; D= oo]
= Po[ Xy € By(x): n=51 < D] -PolD = 00] > 0. (328)

To show this, we prove in the first step that for ang H

Po[X, € Br(x); n=S1 < D] >0. (3.29)
To see this, we observe that for alle Q, x € H, with B def {ze R |B*N Br(x)| >
|Br|/2} (recall (2.1)), we have (see (2.13), (2.14) and Theorem 2.1):

~ 1 ~ ~
P§[X, € Br(x); n=S1<D] > EPE)“[Xn_l €B; Nu=n—1 T_g>n-1]
> ng’ [X,-1€B; Ni3R)=[Vi(3R)| =n—1; T_g >n —1]. (3.30)

Because the path in Fig. 5 belongs to the event on the right-hand side of (3.30), with th:
Support Theorem of Stroock—Varadhan, cf. p. 25 in [2], the right-hand side in (3.30) is
positive, for allw € Q2. This proves (3.29).

To finish the proof of (3.28), we only need to prove the first equality in (3.28). To do
this, we proceed as in the proof of Theorem 2.4:

3R | M(n—2)

n—lEB

XvpaRN=Xn-2

=y

Fig. 5.
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Po[Xy, € Br(x); n=S1=11; D=00]
=§0[XHEBR(X)§ n=351<D; D09n=00]
—E{P§[X, 1€ B; hy1=1 T X106, 1€ Be(x); Dob, =00},

with B €' (z € R?: B N Br(x) £ 0} and somel” € .%,_1 ® .7,_». By the Markov
property, cf. Corollary 2.2, and similar calculations as in the proof of Theorem 2.4, see
p. 11, the last expression equals

10 [Y0) i D . _
B |/dyE{P [V]-PSID = oo]} = R|(/dyPo[V]> Po[D = <],

with v &' {X,_1 € B:T; Ap1=1 y € B¥-1 N Br(x)}, where, as in the proof of

Theorem 2.4, we have used thﬁ;[V] and PY[D = o0] are P-independent, and the
P-measure is translation invariant. On the other hand we observe that by the identice
calculation Po[X,, € Br(x); n =81 < D] = [dy 7= 3 EO[V] holds, the first equality

in (3.28) follows immediately.

With the help of (3.28) we can now prove the non-degeneracy of the covariance
matrix K. Clearly, for anyw € R?, w'Kw > 0, i.e.K is positive semi-definite. We prove
the non-degeneracy by contradiction.ulfK w = 0 for some unit vectow € R¢, then
Polw - (X;, — 11v) =0| D = 00] = 1.

Combine this with (3.28), we obtain that for any givere H, and for alln > 3:
ﬁo[w-x—Rén(w-v)éww—l—R; 71 =n| D = o0] > 0, which impliesw - v =0.
Coming back to the above inequality, we see that x| < R for x € H, by taking
limits of points in H, we obtain thatw - z = 0, for all z such thatz - £ = 0. Since
v- £ >0, it follows thatw = 0. This, combined wittEg[t; | D = o0] < 00, proves the
non-degeneracy of the matrik, and hence finish the proof of Theorem 3.31

4. Application to an anisotropic gradient-type diffusion

In this section we will apply the results from the previous sections to a class of
anisotropic diffusion processes in a random medium, which is reversible when the
environment is fixed. The class under consideration is a specialization of (1.7) with
o =1 and b(x,w) = VV(x,w), where for eachw € Q, V(-,w) € C}R? R) has
bounded and Lipschitz-continuous derivatives; in addition we assume that for some
e St A, B>0andr>0,

APty Vo) < Bt forx eRY, we Q. (4.1)

We will prove the existence of an effective, non-vanishing velocity, and a functional
central limit theorem in Theorem 4.11.

Let us mention that in this sectianc, ¢ andC always denote some positive constants,
which do not depend om € RY and w € Q. They need not to be the same in each
occurrence.
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4.1. Key estimates

We will now derive estimates on the exit distribution and exit time of the diffusion
process from a large cylinder with axis parallel&ocf. Propositions 4.1 and 4.2. We
will then derive the transience of the process in directipaf. Corollary 4.6.

Let us introduce

def

mw(dx) de def

exp{2V (x, w) } dx, m(dx) = exp{2\L - x} dx, (4.2)
and the corresponding scalar prodgct.),,, on L?(m,,), respectively-; -),, on L2(m).
Observe that due to (4.1), the normis |I,2(,,, and || - Il 2., are equivalent, hence
L?(m,) = L?(m) for all w € Q.

Further, let us denote byP!),~o the semi-group corresponding to the solution of
this stochastic differential equation, that (®, /) (x) = E¥[ f(X,)] for f bounded and
Borel-measurable. Observe that for each Q2 the differential operator

1
Lw=§A+VV(x,a))V

is the generator of the semi-grodp)),>o, cf. page 251 in [6], One can easily check
that (f; Log)m, = (8 Lo fIm, for f,g € CX(RY,R). From (2.3) in [10] we observe
thatm,(dx) is the reversible measure ®), i.e. (f; P.g)m, = (g; P f)m,, fOr f. g €
L'(m,) and bounded (the operatdr, has the form of (3.4) in [10], therefore the
assumption for (2.3) in [10] is fulfilled).

Let us now introduce the Dirichlet for@,, corresponding to the operatag,, or the
semi-grouppP;,

o (f, g)“—efnm (1= P))18),,. (4.3)

with its definition domaing,,, £'{f € L2(m,): lim, ;o 2((L — P!) f; f)m, < 0o}. It

follows from Remark (2.12) and the proof of Theorem (2.3) in [10] #igt(R¢, R) is a
core ofé,,, . Further, from (4.1), we have

@mw:@:{feL(m) feL(m) i=1,. d},

1& /9 9
@(amw(fug):_z:(afa_g) > f,geﬁ,

‘ 0Xx;

i=1 ! !
Aén(f. ) < En,(f. )< BE(L ), feD,
with &,(f, 8) = 301G /3 55 8)m-

For eachw €  and open subsédf of R?, we introduce the bottom of the Dirichlet
spectrum of operatorL,, in U:

(4.4)

Em, (f, )

A, (U) = inf
(L)=1n { s Do

D feC), f ;AO} (4.5)



L. SHEN/Ann. I. H. Poincaré — PR 39 (2003) 839-876 863

PROPOSITION 4.1. —
Jinf Au(U) >0, (4.6)

whereU varies over the collection of non-empty open subseR’ofThe bounded self-

adjoint operatorP; on L?(m,), which is defined byP; v hH& )d_ewa[f(Xt) Ty > t],

forr>0and f e L2(m,,), satisfies

suq| UHm exp{—VTt}, t >0, 4.7)

for somey > 0, with || - ||,,, denoting the operator norm ih?(m,,).

Proof. —Observe that because of (4.1) the inequa%tyf; Pm, < (f5 f)m holds
for all f € L?(m) = L?(m,,); and similarly 26, (f, f) > &.(f, f) holds for all f €
C>(U). Therefore, fortU open subset oR?, A, (U) > gA(U), for all w € 2, where
A(U) is defined, analogously t,,(U) in (4.5), with&;, instead oft&),, and with(-; -),,
instead of(; )y, -

It thus suffices to find a lower bound for jnfA (U). Further, becauseé (R?) =
infy4 A(U) and (4.5) also holds fak (U), we can assume that is open and bounded.

Observe that the measure(dx) = €?**dx is (up to a multiplication factor) the
reversible measure for Brownian motion with constant drift and &;, is just the
corresponding Dirichlet form. Let us denote the canonical law of this diffusion process
starting inx by Q, and its expectation value by9E Then exp—s¢ - X, + at} is a
Q,-martingale, providedr = 81 — §2/2. Choosings > 0 small enough, we can make
a > 0. The stopping theorem implies that for any bounded opetvsetR“ containing
X, E;?[exp{—az.(XT,,—x)+aTU}]_1 Wuthpd_efsup{w (z—2)|: 2.2 € U}, we have
—8¢- (X1, —x) = —8p, hence sup.,, EQ[explaTy}] < €”.

Now, let us introduce the bounded self-adjoint operatér @ L2(m), which is
defined by(Q., f)(x) = def EQ[f(X,), Ty > t], with t > 0 and f € L2(m). We claim that
forall > O:

—ott/2

SUp HQI Hm =
U;é(/i
with || - ||, denoting the operator norm ih?(m). To show this, we observe that for
f € L%(m):

Jensen
Q0 £ 12 = / (@0 (@ )70 (10 Q, 1),

= (Qului %), = [ m@nQITy > %) <€ f Iz,

where Chebychev's inequality @y > ¢] < Eg?[e“(TU‘”] < et js ysed in the
last step. Hence| Q|2 < e *"*% pn e N. Taking thenth root, it follows from
Theorem V1.6 on p. 192 in [24], thatQ} |, < e*/2, and our claim follows. This
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implies thatA (U) > 5 > 0, and (4.6) follows. Finally, (4.7) is just an easy consequence
of (4.6), cf. Theorem 4.4.2in [9]. O

Let U (L) now be a cylinder centered atwith height 4. in the direction¢ and radius
4L? > 0 in the directions normal té, that is,

UL)E {zeR” |(z—x) - £| <2L; |(z —x) -¢| <4L? Vell, le|=1}. (4.8)

PROPOSITION 4.2. — There exist two constants > 0 and ¢; > 0 such that for all
L>0

4
SUpP;U |:TU(L) > —L:| < 51 e_clL. (49)
Xx,w Y
Proof. —Observe that for > 1,
P(;[TU(L) > l] < P? [Xl S BL()C), TU(L) e} 91 >1— 1] + P? [Xl ¢ BL()C)]

By (A.5), there exist constants> 0 andc > 0 such that the second term on the right-
hand side above is smaller thae<L* for all x € R? andw € £, hence it suffices to
study the first term in the above expression.

By the Markov property, the first term above is

P;) [Xl € BL(X), TU(L) 091 >1 — 1] = E;) [X]_ € BL()C), P%l[TU >1 — 1]]
= (18,00 () Po(L, x, ) €72 (PIF1) (),

< HlBL(X)(')pw(L X, ) e_ZV(.’w)HLZ(mw) X HPat)_l}

my 11y ”Lz(mw)'

Because there exists a constant 0 such thatp,, (1, x,y) <cforallw e Q, x e R?
andy € B, (x), cf. (A.9), we obtain for the first term on the rightmost side in the above
expression that

2V |2 2 —2V(y, ~rd o—200-x 2AL
HlBL(x)Pw(l,X,')e Hmm<C /dy13L<x>(y)e o) L LT e e

for somec > 0, where we used (4.1) in the last step. Similarly, we can estiffiate,,
by:

11y ||,2nm = /dy 1y (y) V0@ B/dy 1y (y) @) L cLHA-1gHtx ghil
Putting them with (4.7) together, we obtain fop 47L v 1 that

PO[Ty > t] < LW et eri—D Lgeh,

for all x € R? andw € Q. Therefore, we can finéy, > 0 andc; > 0 such thaP{ [Ty ) =
gL] <Gqeal, g
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Let us divide the boundary df (L), cf. (4.8), intodU(L) =3, U(L) Ua_U(L)U
dU (L), with
9, UL %

{zedU(L): - (z—x)>2L},
9_UL)E <

{z€dUL): - (z—x) < —2L}, (4.10)
3oU (L) E'9U (L)\(3,.U (L) Ud_U(L)).
The following estimate will play an important role:

PrROPOSITION 4.3. — There exist two constants > 0 and ¢; > 0 such that for all
L>0:

4L
SUpP;U |:TU(L) < 7; XTU(L) ¢ 8+U:| < 52 e_CzL_ (411)

Proof. —Without loss of generality let us assunie> y /4. Observe that, with, gt

[n,n+1), n >0, we have

4L [4L/y]_l
Po| Ty < 25 Xry 0| <PUTy € ol > PUITy €1y, Xy 0,0
14 n=1

Also observe that in the above expression, because of (A.5), we have for the the firs
term on the right-hand side

PY[Ty € Io] < Pf[suﬁXs —Xo|>2L] <éet®, forallx eRY, we Q.
s<

For the terms in the sum, we notice that foe 1:

PUTy €1, X7, ¢ 0.U]
<PY[X1€Brpix), Ty ely, Xq, ¢ 0,Ul+PY[X1 ¢ Brjo(x)],

(A5)
andP{[Xy ¢ Br 2(x)] < PY[SUR¢q | Xs — Xol > L/2] < ceel?, Hence, we only need
to prove thaEl<n<(4L/y) PY[X1€ Brjo(x), Ty € I,, X1, ¢ 0,.U] < ¢e L Tothis end,
we notice that
PY[X1 € Brjo(x), Ty € I, X, ¢ 0,.U]
<PY[X1€ Brpp(x), Ty €1y, X, € UgUU_]
L
+PY|Ty € 1,, sup|X; — Xolob, > =,

s<1 2
with Uog(L) £z e R%: 3y € U (L), |y —z| < L/2} and U_(L) ' {z e R 3y
d_U(L), |y —z| < L/2}. We see with (A.5) that the expression above is

<PY[Xy € B jo(x), Ty €1,, X, € UgUU_]+ée Y.
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Thus, it suffices to show that; ¢, -z, PY[X1 € BLja(x), X, € UpUU_] < ce .
To prove this, we observe that with fof; = Ug or U; = U_, it follows from the Markov
property andp,,(1, x, y) < c, cf. (A.9), that

PU[X; € By 2(x), Xn € U= / dz po(Lx,2) (P 1) (2)
By 2(x)
<ce e (P My 5 s, ) (4.12)

By Theorem 1.8 of [30] on p. 290, there exists a const@nt 0 such that for allv €
and any open sets, B C R?:

(P"11y; 15(x)), < V/m(B) Vm(U) exp{ 4C(n_1)}, (4.13)

where p(-, ) is a pseudo metric ofR?, which is defined for open subsét, F’ C
RY through p(F, F') = sugy (F, F'): ¢ € C®(R?,R), dT(y,¥) < dm}, with
v(F, F) Einfly (x) — v ()| x € F, y e F'}, cf. p. 290 in [30], and see p. 277
in [30] for the definition ofl"(-, -). For ouré;,, one can easily compute thér (v, ¥) =
e |Vyr|2dx for ¢ € C°(RY, R). Thereafter, we obtain that(F, F’) > inf{|x —
y|: x € F, y € F'}. (See also the second example on p. 278 in [30].) Actually, the
Dirichlet form &, plays the role of’, andé),, the role ofé; in [30]. They are symmetric
and strongly local, hence with (4.4) the condition (UP) on p. 279, and the assumptior
for & on p. 277 in [30] are fulfilled.
Through simple computation, we get that forak R andw € Q

m(Bp2(x)) < cet el
(UO(L)) G eZ)»K X e5)\4LL2d 2 m (U_ (L)) < 5e2)»€-x e_3)\4LL2d_1.

Hence, for allr € RY andw € © we obtain from (4.13) that

. yL? L
P“[X,€ B , X, eU_|< L"(d)exp{— }g ek,
“[X1€ Bpa(x) |<eé 16CL c

becausep (B 2(x), U_(L)) > L andn < 4L/y. Similarly, sincep (B ,2(x), Uo(L)) >
412 — L, we obtain for allk e R? andw €  that

P?[X1 € Br2(x), X, € Ug| <eL"® el exp{—cL®} <ce L.

Collecting the above results, we see that (4.11) is proved.
With the help of the previous two propositions, we obtain:

COROLLARY 4.4. — There exist two constantg > 0 andcs > 0 such that form € N,

SUpP [T omp < TZWR] C3 eXp{ C32mR} (414)

whereR > 0 is the constant fronR-separation abovél.6).
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Proof. —Let 4L = 2"™'R in the definition of U(L) in (4.8), and observe that
POT_ong < Tong] < PY[Ty > 4L/y]1+ P¢[Ty <4L/y, X1, ¢ 9,.U], hence our claim
follows immediately from the previous two propositionsc

The next two corollaries will be useful when checking the assumptions of Theo-
rems 3.2 and 3.3.

COROLLARY 4.5. — There exists a constanj > 0 such that

inf PY[D = 00] > ¢4 > O, (4.15)

whereD is the first backtracking time defined bel¢2v14)

COROLLARY 4.6. — The processX,),>o is transient andP¢[lim; ., £- X, = o0] =1
for all x € R? andw € Q. Hence by PropositioR.7, P,-a.s.7; < oo.

The proof of these two corollaries is just a slight variation on the proof of
Corollaries 2.3 and 2.4 in [27], where we apply the Support Theorem of Stroock—
Varadhan, cf. p. 25 in [2], instead of ellipticity directly.

4.2. Integrability properties

In this part we use the results from the previous part to prove thggﬁgﬂecrl] <00
for somec > 0, and derive the main result of this section. The proof is divided into
several propositions.

First, let us introduce the random variable

M E'suple- (X, — Xo): 0<1 < Tz}, (4.16)

i.e. M is the maximal relative displacement a&f in the direction¢ before it goes
R below its origin. It will turn out thatM is an important variable in studying the
integrability properties of - X,. Because inf, PY[T_z = 0o] > ca > 0, cf. (4.15), we
cannot expecl < oo P¢-a.s. Nevertheless, we have the next proposition.

PROPOSITION 4.7. — There exists a constant > 0 small enough such that

SUPE® [, T_p < 00] <1— %4 (4.17)

wherec, is the constant defined {@.15)

Proof. —With the help of (4.14) the proof of this proposition is a slight variation of the
proof of Lemma 4.2 in [27](T_ plays the role of the variabl® in (4.5) of [27]). O

Now we shall prove the integrability of €= under the extended quenched
measureﬁ‘;. We recall the(Z7),>0-stopping timesVi(a))i>0, (Nk(a))k>0 and N1(a)
defined in (2.12), (2.13), and the eveqts, ), >o introduced in (2.26).

As we will see in the proof of Theorem 4.9, €xp - (X y, @) — Xo) — ca} will play a
key role in studying the integrability of exgf - (X, — Xo)} under|3;’. Let us start with:
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ProOPOSITION 4.8. — For eachcs > O there is acs > 0, such that

SUPE® [exp{cs (£ - (Xnya) — Xo) —a) }] < 14 és. (4.18)

a>0

Proof. —First, we claim that for eacls > O, there exists a > 0, which tends to 0 as
¢e tends to 0, such that

supE”’ [exp{c(€- (X5

a>0

Ni(a) — Xo) —a)}] <1+ (4.19)

To see this, we observe that because for amnd w, P¢-a.s. lim ¢ - X, = 400, cf.
Corollary 4.6, hencé/;(a) < oo, k > 0, we can show with the same proof as the one
given in the proof of Proposition 2.7 (instead at 8ve simply usex) that for allx, » and

for anya > 0, P¢-a.s.N1(a) < oo. Notice, (we drop thed” from all Vi.(a) anle(a))

E?[exp{ct - (X5, ., — Xo)}] = EY[exp{ct - (Xjvy — Xo)}, N1 = [Vo]]
+ ZE? eXp{CE . (X[Vk] — XO)}, ]\71 = I—Vk-”
k>1

Further, we notice that the first term on the right-hand side is smaller thga(exp
R/2)}, sincel - (Xy, — Xo) =a andf - (X[y,) — Xv,) < R/2 on the evgn(rv(ﬂ = Np}.
We also observe that far> 1, ¢ - (X;y,; — Xy,) < R/2 on the even{N; = [V,]}; and
- (Xy,—Xvy,_,) S R+Zoby,_,,with Z defined in (2.24). So, it follows from the strong
Markov property that fok > 1,

EC [eftXva—X0) - Ny = [V, 1] < €R/2E [exp{cl - (Xy, — X0)}; Ao, ..., Ar_1]
eCR/ZE‘;’ lexp{c(€- (Xy, , —Xo)+Zoby,_,+R)}; Ao, A1, ..., Ax_1]
eCR/ZEf lexp{ct - (Xv, , —Xo)}; Ao, ..., Ax—2; E§Vk—1 [eC(R+Z); All,

(Ao, ..., Ay_p are omitted wherk = 1). It follows from (A.7) that forc > 0 small
enough sup,, E¢[e"“TR); A] < 1— co/4, where the constart > 0 is defined in (2.25).
Therefore, by induction we observe that the last expression is smaller than

<
<

k k
eCR/2<1 - %’) E”[exp{ct - (Xy, — Xo)}] = @ k/2 (1 = %’) .

Hence, forc > 0 small enough we obtain that

k
Ni(a) 0) _Ca}] < eCR/ZZ(l_ %) =:C < o0.

k>0

supE”’ lexp{ct - (X5

a>0

To get (4.19), we observe that by Chebychev’s inequality¢ fer0, ¢),

supE”’ [exp{ce - (X5

a

o — X0 —éa}] <1+ éc/dz € e <113 (4.20)

providedc¢ is small enough. This proves (4.19).
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Now, observe that it follows from the definition &1(a) in (2.13) and the strong
Markov property, cf. Corollary 2.2, that

~ ~ cl- (X~ —Xo) ~
E2[exp{cl - Xy — Xo)}] =D _E?[e "M@ "% Ni(a) = Ny(a)]

k>1
=Ey[exp{cl - (X5, — X0} Ag, =1+ ;Ef [exp{ct - (X5, (@) — Xo) };
M = = A =0 Egu‘ﬁkmyo{e)(p{d - (XFyar) — X0 A5, ap = 1]
Using Holder's inequality, we can fings > 0 such thaﬁ‘;’,o[exp{cez . (Xﬁl(a) — Xo) —

cea}] < 1+ ce. Further, we observe that under the measﬁ;tg, for any integer-valued
(Z1)i>0-stopping timesS, Ay is independent ofs @ .#5_1, see property (2) of Theo-
rem 2.1. Therefore, we see that toe (0, cg) the previous expression is smaller than

sEY[exp{ct - (X5, — X0)}]
+ Z E? [exp{cﬁ ) (Xﬁk(ll) - XO)}; Aﬁl(a) == Aﬁk(a) = 0] GBCR(]' + 56)8’
k=1

whereg is given in (2.5). By induction we obtain that the last expression is

clt- (X~

<Eole The ™) {g + Lg Yl -e) R+ 56)]k} <€°C < o0,

X

for someC > 0O independent of, providedce > 0 andc > 0 are small enough. That
is, sup , . EY[exp{ct - (Xny) — Xo) — ca}] < C < oo. Our claim follows by a similar
computation as in (4.20). O

THEOREM 4.9. — There exists a constang > 0 such that

SUPE? [exp{cgl - (X+, — Xo)}] < oo. (4.21)

Proof. —Observe that

E¢[explct - (Xo, — Xo)}] = D E2[¢“Xs7X0) §; < 00, Do, = 0]
k>1

<Y EC[et KXo 5, < 00] £ gy, (4.22)

k=1 k=1

and because for any andw, £ - (Xs, — Xn,3r)) < 10R, |3;’-a.s. (cf. Theorem 2.1),
Proposition 4.8 implies that; < oo. So it suffices to show thdf’, -, 41 < co. To
show this, we observe that (cf. (2.15))

- (X5, — Xo) <10R + £ - (X, — Xo) + £ - (Xny(ap) — X0) 0 Ory.»

with ay = M(Ry) — £ - (Xg, — Xo) + R € Z%,, (in fact for anym > 1, a - Lig,—m) IS
Fn ® S_1-measurable, and,, is independent of#,, ® .7,,_1), see also Fig. 3. We
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recall that the shiftlg, is not applied toa,. Therefore, by the strong Markov property,
cf. Corollary 2.2, we have:

E”[exp{cl - (Xs5.,; — X0) }» Ski1 < 0]
< EUREY[exp{cl - (Xg, — Xo)}, Ri <003 B, [exp{ct - (Xnyw — X0)}]]

< e %REC[explcl - (Xg, — X0)}, Ri <o00; (1+ &) €], (4.23)

where we applied Proposition 4.8 in the last step, provigdedO, cs).
From Fig. 3 we also observe that witlh from (4.16) andZ from (2.24), the following
inequalities hold, whelR; is finite:

ar < Zobj ,obs +Mobs + 2R,
- (Xg, — Xo) =L+ (X5, — Xo) + (¢ (Xp — X)) 06,
—_———
<Zoby

Put them into the rightmost side of (4.23), apply the strong Markov property atSlime
cf. Corollary 2.2 (we use the same argument as above that ferl, exp{cl - (X5, —
Xo0)} - Liso=my IS Fm @ S—_1-measurable, ankl,, is independent of7,, ® .,,_1), then
use the strong Markov property for the proc€ss),>o at time T_x on the event it is
finite, we obtain (observé/ is .7; -measurable)

E®[expl{ct - (X5, — Xo0) }; Sks1 < 0]
<SEFREY [ NX0 5 <00, (1+C)Ey, [exp{c(2Z 007, + M)}, T-g < o0]]
SEHREY [0, 5, <00, (1+C9)ER, [€VEY, (7], T < od]].
From (A.6) we know, foic > 0 small enough, syp, E;’[ezcz] < 1+ ¢s. Hence it follows
from (4.17) that the last expression is

< e XRE® [t Xs=X0) 5 <00, (1+ 55)2E§(’Sk (e, T < ool]

< elZCR(1+ 55)2<1_ %)/E\? [ec‘ﬁ'(XS,\,—XO)’ Sy < OO]

< (L—a)E”[exp{ct - (X5, — Xo)}, Sk < o0],

for somea > 0, providedés > 0 andc € (0, cs) are small enough such that?& (1 +
¢5)%(1 — ca/2) < 1 — . By induction the last expression is:

< (1 —)'E?[exp{ct - (X5, — Xo)}, S1 < 00].
Coming back to (4.22), we obtain

SUpE? [ XY ] < supEY [¢ XX g < 00] - Y (11— ) < o0,
X,w X,w k>0

because syp, E;’[exp{cﬁ - (X5, — Xo)}, $1 < o0] < oo (cf. the statement below
(4.22)). o
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As a corollary, we obtain an exponential estimate on the tai dfet us point out that
such an estimate together with Theorem 4.9 and the renewal structure of Theorem 2
can be used to derive large deviation controls, see [32,33].

COROLLARY 4.10. — There exist constants > 0 and¢g > 0 such that foru ¢ N

SUPP[t1 > u] < G exp{—cou). (4.24)
X,
Proof. —Observe that for > 6R/y, x e R? andw € Q:
Pelry > u] <P?|1 > u, £ (Xe — Xo) < gu—SR} +§§g{z.(xfl—xo) > gu—3R .

By Chebychev’s inequality and Theorem 4.9, the last term on the right-hand side is
smaller thanc e=<*, for somec > 0 andc € (0, cg). Hence it suffices to study the first
term on the right-hand side of the above expressionZLabw be the cylinder defined

in (4.8), which is centered im, has height 4 = yu in the direction¢ and radius 42 in

the directions normal té. With the observation tha?-a.s. sup ., (X; — Xy;) < 3R,

cf. Fig. 4, we see that for all e R andw € Q:

~

PO l7y > u, £ (Xyy — Xo) < gu —3R| <P°[Ty 20 > ul

<PYTy < T p2u) + PY Ty = Ty j2yu > ul
< P?[TU 2 M] + Pf[TU <u, XTU ¢ 8+U] + P?[TU = T(y/2)u > I/l].

Observe that by Proposition 4.2 the first and the third term in the above expression ar
smaller thart e~ for suitablec > 0 andc > 0, and by Proposition 4.3 the second term
is also smaller thage=*. This finishes our proof. O

We come now to the main result of this section, namely a law of large numbers anc
functional central limit theorem under the annealed measure:

THEOREM 4.11. — Let (X,),>0 be the(unique strony solution to the stochastic
differential equationdX; = dW, + VV (X,, w) dt and X = x, where for eachw € 2,
V(-,w) e CYRY, R) has bounded and Lipschitz-continuous derivatives, aed‘* <
V(x,w) < B holds for some € -1, A, B> 0andx > 0. Then

t
Po-a.Ss. T’ —,

with a deterministi € R?, which is given in3.7), and¢ - v > 0; further the processes
(X5 — vst)/+/s)i>0 converge in law undeiPq, as s — oo, to a non-degenerate
d-dimensional Brownian motion with covariance matkixgiven in(3.12)

Proof. —It follows from (4.15) and Corollary 4.10 that the condition (3.1) is fulfilled.
Our claims follow from Theorem 3.2 and Theorem 3.3
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Appendix A
A.1. Somefacts about continuous martingales

LEMMA A.1.— On some probability spacé,.#, (%#;),;>o0,P), let (¥;);>o be a
continuous martingale satisfying, = 0 and (Y), < vt for ¢t > 0. Then forp > 1 there
is a constant(p, v) > 0 such that

E[suplY, || <e(p, w2, (A1)
s<t
and
1 t—00
P-a.s. —sup|Y;| — 0. (A.2)

s<t
Proof. —The Bernstein’s inequality, cf. pp. 153-154 in [25], shows that

i

2
sup| Y| >a] <2exp{—a—}, (A.3)

s<t 2vt

hence

o]

2
E[SuplYlp} < p/y”_lexp{—%}dy =:c(p, V)P

s<t o

For (A.2), it suffices to prove th@t—a.s.% SUR ¢, Y5l 3 0. To see this, we observe that
from (A.3) it follows that fora > 0

1 2
ZP[—SUplYJ}a] <22exp{—%}<oo, (A.4)

n>1 LI s<n n>1

and the claim follows from Borel-Cantelli's lemmag
From this lemma we easily get the next two corollaries.

COROLLARY A.2.— Let (X,),>o be the solution of the stochastic differential
equation(1.7), whose coefficients satisft.1), (1.3)and (1.4). Then there exist two
constants: > 0 and ¢ > 0 depending only ofid, v, b) such that for allx € RY, w €
and L > 0,

SupP [sup|XS — Xo| > L] <éeel, (A.5)
X, s<2
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Proof. —Observe that for alk € R andw € Q P*-a.s.X, — Xo = fé b(X,, w)ds +
Y, (w), with the P¢-local martingaleY, (w) := féo(Xs, w) dWy. Further we observe by
our assumption (1.4) that'/(w)), < vt forall j =1,...,d andw € Q. Therefore with
our assumptiotb| < b, it follows immediately from the Bernstein’s inequality (A.3) that

PY[suplX, — Xol > L| <PY[supl¥,(@)| > (L —b)| <ée’. O
s<1 s<1

COROLLARY A.3.— LetZ(w) :=sup ¢, |X; — Xol, then for alla > O there exists a
constan®(«, d, v, b) > 0 such that

SUpE®[€4] < 1+a. (A.6)

Further, letA € .7; be an event such thaup, , PY[A] <1 - 28 for someg > 0, then
there exists a constadi(g, d, v, b) > 0 such that

SUpE?[€7; A] <1-B. (A7)

Proof. —BecauseZ (o) < sup ¢4 |Ys(w)| + b, we get for O< § < 1 that
E¢[&7] <&PEY [exp{(S sup| YS'H

s<1

:e5’;<1+8/dae‘w P [supl¥,| >a}> <&’ (Lt c(b.v.d)).
s<1
0

<2d expi—a2/(2dv)}

for somec(b, v, d) > 0 and this proves (A.6). To prove (A.7) we observe by Hélder’s
inequality that forp, ¢ > O such that 1p + 1/q = 1.

EY[€7; A] <E[@77)VPPO[A1 < (1+ )P (1 28)M1 <1 B,
by choosings small andp large enough. O
A.2. Someresults about parabolic PDE

In this part we will collect some results about parabolic partial differential equations,
which we use throughout this article. For detailed treatment we refer to the article by
I'in, Kalashnikov and Oleinik, [11], Section 4.

PrROPOSITION A.4. — We consider the linear parabolic equation of second order

3 = Lu, where

82

8x,~8xj

d
L= Z a;j(x)

i,j=1

d
0
+ E bj(x)—, A.8
j=1 e dx; (A8)

with the coefficients;; and b, satisfying for allx, y € R?
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|ai; (x) — ai; ()] + b (x) = br(»)| < Clx = yIP,
lai; ()] + |be(0)| < K, a;(x) =aj;(x),

d 1 d
> a(0EE ==Y &2, EeR?,
ij=1 Vi
for someC >0, K >0, v >0 andé > 0. Then there exists a unique fundamental
solutionZ(¢, x, y) of du /9t = Lu, such that for < 1

M wlx —y|?
25| < s exe{ -4 (A.9)

for some constanté/ (v, C, K,d,8) >0andu(v,C, K, d, §) > 0.
Further, there exist two constanigv, C, K,d,$) > 0andM (v, C, K, d, §) > 0 such
that for |x — y|? < ar andt € (0, 1]

M
Z(t,x,y)}m. (AlO)

The claims (A.9) and (A.10) are just the statement (4.16) and (4.75) in [11]. The
authors of [11] did not state on which the constamts 1, « and M really depend on,
but by working through their computation, cf. pp. 63—82, one can see that these constan
only depend oniv, C, K, d, §).

As a consequence of the previous proposition we get the next corollary.

COROLLARY A.5.— Let U* and B* be the open set defined (2.1) Under the
assumption(1.1), (1.3)and (1.4), there exist two constant® (v, d, b, 5, K) > 0 and
a(v,d,b,5,K) > 0 (recall the constants, d, b, ¢ and K are defined in Sectiof),
such that for allw € Q, 1> > 0and|x — y|? < at, the transition density,,(z, x, y)
satisfies

M
Pult.x.3) > =75, (A11)

and there exists a constantv, d, b, 5, R, K) > 0 such that the sub-transition density
Pw.ux (1, x,y) (recall (2.4)) satisfies

2¢

w.ur (1, x, A.12
Do, ( y) = |BR| ( )

for all y € B*.

Proof. —With a;; = (00");; we see from (1.1), (1.3) and (1.4) that the assumptions of
Proposition A.4 are fulfilled. Hence, (A.11) follows immediately from Proposition A.4.

To prove (A.12), first we observe that because of (A.10) therg & (0, 1] such
that /afo < R/4 and for allt < 1o, M/1%/2 > (2M/18'%) exp(—1.R?/(16ip)} holds,
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in addition the functions — M/t?/?exp{—(.R?/16t)} is monotone increasing on

{t: t <to}. Now let G = Bgj2(x) and y € B ;57(x), we observe that on the event
{Te <t < 1o}, the inequalityp,,(t — Ts, X7,,y) < M/t¥?exp—(uR?/16t)} follows

from the monotonicity mentioned above. Hence, by Duhamel’s formula, cf. p. 331
in [29]:

pw,G(tvxv y) :pa)(tvxv )’) - E;U[TG <tv pw(t - TGvXT(;v )’)], xvy € Gv

there isé(v,d,b,5, R, K) > 0 so thatp,, ¢(t,x,y) > & > 0, fort <1 and|x — y| <
Jat. By iteration, it is straightforward to see thatinf s p,.v<(1,x,y) >0. O
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