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ABSTRACT. – The paper provides a recursive interpretation for the technique known as
bracketing with adaptive truncation. By way of illustration, a simple bound is derived for the
expected value of the supremum of an empirical process, thereby leading to a simpler derivation
of a functional central limit theorem due to Ossiander. The recursive method is also abstracted
into a framework that consists of only a small number of assumptions about processes and
functionals indexed by sets of functions. In particular, the details of the underlying probability
model are condensed into a single inequality involving finite sets of functions. A functional
central limit theorem of Doukhan, Massart and Rio, for empirical processes defined by absolutely
regular sequences, motivates the generalization.
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le processus empirique associé à une suite absolument régulière de variables aléatoires (dû à
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1. Introduction

In the empirical process literature, many important theorems and inequalities have
been derived by a technique known as bracketing. Some of the arguments are long
and involved, primarily because they require a delicate balancing act between several
sequences of constants. The modern refinements due to the Seattle group (Pyke,
Alexander, Bass, and Ossiander – for a discussion of their contributions see Section 6)
are the most delicate of all because they combine bracketing with ingenious truncation
arguments.

This paper presents a general method for handling bracketing arguments with
truncation. By way of illustration, I begin with the important special case of a process
constructed from independent random elementsξ1, . . . , ξn taking values in a spaceX .
For f a real-valued function onX with eachf (ξi) integrable, define the centered-sum
Snf := ∑

i�n(f (ξi)− Pg(ξi)).

Remark. – Throughout the paper I use the de Finetti notation [14, Chapter 1],
writing P for expectations as well as probabilities, and identifying sets with their
indicator functions. For example,Pg{g > c} might be written asE(g1{g > c}) or as∫
g(x)>c g(x)P(dx) in traditional notation.

Some readers might be more familiar with the standardized formνnf := Snf/
√
n, the

so-calledempirical process. Division by
√
n is natural for the derivation of some limit

theorems, particularly so for identically distributed{ξi}, but it would merely complicate
the notation for the derivation of uniform approximations to acentered-sum process
{Snf : f ∈F} indexed by a set of functionsF onX .

The approximations in the present paper are derived (via bracketing and truncation
arguments) using mapsAδ from F into finite sets of approximating functions. The
main results take the form of bounds for quantities such asP supF |Sn(f − Aδf )|. (In
fact, the theorems involve truncated functions, but the modification has only a minor
effect on applications.) The behaviour of the process indexed byF is thereby related
to the behaviour of a process{Sna: a ∈ A} with A a finite set of functions. Such an
approximation underlies functional central limit theorems (fCLTs), functional laws of
the iterated logarithm, and the stochastic equicontinuity results that are so useful for
asymptotic inference. The rederivation in Section 3 of the fCLT for iid{ξi}, due to
Ossiander [12], is typical.

A very simple form of bracketing is often used in textbooks to prove the Glivenko–
Cantelli theorem, the most basic example of a uniform law of large numbers. The
empirical distribution functionFn for a sampleξ1, . . . , ξn from a distribution function
F on the real line is defined byFn(t) := ∑

i�n{ξi � t}/n for eacht in R. That is,Fn(t)
denotes the proportion of the observations less than or equal tot . The Glivenko–Cantelli
theorem asserts that supt |Fn(t)− F(t)| converges to zero almost surely.

The strong law of large numbers ensures thatFn(t) − F(t) → 0 almost surely, for
each fixedt . The bracketing argument then leads to uniform bounds over suitably small
intervals,t1� t � t2, by means of bounds that hold throughout the interval: for sucht we
haveFn(t1)−F(t2)� Fn(t)− F(t)� Fn(t2)− F(t1). The two bounds converge almost
surely toF(t1)−F(t2) andF(t2)−F(t1). If t2 andt1 are close enough together then all
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theFn(t)− F(t) values, fort1 � t � t2, eventually get squeezed close to the origin. If
we cover the whole real line by a union of finitely many such intervals, we are able to
deduce that supt |Fn(t)−F(t)| is eventually small.

It is more fruitful to think of the incrementF(t2) − F(t1) as theL1(P ) distance
between the two indicator functions(−∞, t1] and(−∞, t2], whereP is the probability
measure corresponding to the distribution functionF . The concept of bracketing then
has an obvious extension to more general sets of functionsF on a setX . The extension
also makes sense for norms on spaces of functions more general than theL1(P ) norm.
In particular, it has proved most useful for variousL2 norms.

In what follows, #G denotes the cardinality of a setG.

DEFINITION 1. –Let U be a vector space of functions equipped with a norm‖ · ‖.
Define the bracketing numberN(δ,F) for a subsetF of U as the smallestN for
which there exists a partition ofF into subsetsF1, . . . ,FN and functionsa1, . . . , aN
andb1, . . . , bN in U for which‖b‖� δ and |f − ai |� bi pointwise whenf ∈ Fi .

The bracketing defines two maps,Aδ andBδ, from F into finite sets of functions:
Aδ(f ) := ai andBδ(f ) := bi whenf ∈ Fi . I will refer to Aδ(f ) as theapproximating
function, Rδ(f ) := f −Aδ(f ) as theremainder, andBδ(f ) as thebracketing function.
The bracketing numberN(·,F) is decreasing. It is of use only when finite-valued.
Indeed, the most useful bounds require assumptions about the rate of increase ofN(δ,F)
asδ tends to zero, as in Ossiander’s fCLT.

THEOREM 2 (Ossiander [12]). –Suppose{ξi} are independent and identically dis-
tributed random elements, each with marginal distributionP . SupposeF ⊆ L2(P ) has
an envelopeF (a measurable function such that|f (x)|� F(x) for all x and allf in F )
for whichPF 2 <∞. LetN2(·) denote the bracketing numbers forF (under theL2(P )

norm). If
∫ 1

0

√
logN2(x) dx <∞ then{νnf : f ∈F} satisfies a fCLT.

Ossiander derived her theorem from a bound on the tail probabilities for supG |νng|,
for various sets of functionsG. Close inspection of her proofs, and of proofs for related
theorems in the literature, reveals that independence is used only through a bound such
as the Bennett inequality for sums of independent random variables [14, Section 11.2].
This inequality implies, for a functiong(·) bounded in absolute value by a constantβ

with Pg2� δ2, that

P
{|νng|� λδ}� 2exp

(
−1

2
λ2ψ

(
n−1/2βλ/δ

))
, for λ� 0, (1)

whereψ(x) is a specified decreasing, nonnegative function withψ(0)= 1.
The presence of the nuisance factor,ψ(n−1/2βλ/δ), complicates the usual chaining

argument for tail probabilities. Ifβ andn stay fixed whileλ/δ increases, the nuisance
factor begins to dominate the bound. It was for this reason that Bass [3] and Ossiander
[12] needed to add an extra truncation step to the chaining argument. The truncation
keepsn−1/2βλ/δ close enough to zero that one can ignore the nuisance factor and act as
if νng has sub-gaussian tails.
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As you will see in the Section 2, under Ossiander’s assumptions, a similar truncation
scheme leads to a maximal inequality in the form of a bound forP supg∈G |Sng| for
variousG. A proof of the fCLT follows easily (see Section 3).

2. Independent summands

Supposeξ1, . . . , ξn are independent random variables. Define

‖g‖1 := ∑
i�n

P
∣∣g(ξi)∣∣ and ‖g‖2 :=

(∑
i�n

Pg(ξi)
2
)1/2

. (2)

If eachξi has distributionP then‖g‖1 = nP |g| and‖g‖2
2 = nPg2.

The argument leading to the maximal inequality makes use of independence only
through a maximal inequality for finite sets of functions. The method of proof combines
an idea of Pisier [13] with the first step in the derivation of the Bennett inequality.
It depends on the elementary fact [14, Section 11.2] that the function defined by
E(x) := 2(ex − 1 − x)/x2 for x �= 0, andE(0) = 1, is positive and increasing over the
whole real line.

LEMMA 3. –Supposeξ1, . . . , ξn are independent andG is a finite set of functions, for
each of whichsupx |g(x)|� β and‖g‖2� δ. Then

P max
g∈G

|Sng|�C0δ
√

log(2#G) if β � δ/
√

log(2#G) whereC0 ≈ 1.718.

Proof. –WriteN for #G, the cardinality ofG. For a fixed functiong with |g|� β and
‖g‖2� δ, temporarily writeWi for g(ξi) andµi for Pg(ξi). For eacht > 0,

Pet
∑

i�n Wi = ∏
i

(
1+ tPWi + P

1

2
t2W 2

i E(tWi)

)
�

∏
i

exp
(
tµi + 1

2
t2PW 2

i E(tβ)
)
,

which rearranges to the giveP exp(tSng) � exp(1
2t

2δ2E(tβ)). Applying this bound for
±g, for eachg in G, we get

exp
(
tP max

G
|Sng|

)
�P exp

(
tmax

G
|Sng|

)
by Jensen’s inequality

�
∑
g∈G

(
P exp(tSng)+ P exp

(
tSn(−g)))

� 2N exp
(

1

2
t2δ2E(tβ)

)
.

Take logarithms then putt = √
log(2N)/δ to get

P max
G

|Sng|� δ
√

log(2N)
(

1+ 1

2
E

(
β

√
log(2N)/δ

))
.

The asserted maximal inequality withC0 := 1+ 1
2E(1) follows. ✷
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The main parts of the proof will involve the calculation of bounds forP supr∈R |Snr|
for (possibly infinite) setsR, typically consisting of truncated remainder functions
derived from various bracketing approximations toF . To reduce the calculations to
finite sets of functions, we will bound eachr in absolute value by a truncated bracketing
functionb.

LEMMA 4. –Suppose a set of nonnegative functionsB dominates a set of functions
R, in the sense that for eachr ∈ R there is a b ∈ B for which |r| � b. Then
supr∈R |Snr|� supb∈B |Snb| + 2supb∈B ‖b‖1.

Proof. –If |r|� b then|Snr|�∑
i�n(|r(ξi)|+P|r(ξi)|)�∑

i�n(b(ξi)+Pb(ξi)). ✷
The successive approximations will be combined in such a way that the bounding

functionsb are not only truncated above but also below, a subtlety that will allow us to
boundL1 norms byL2 norms.

LEMMA 5. –For each functionb with finiteL2 norm,‖b{|b|� ‖b‖2/t}‖1� t‖b‖2.

Proof. –P
∑

i�n |b(ξi){|b(ξi)|� ‖b‖2/t}|� P
∑

i�n b(ξi)
2/(‖b‖2/t). ✷

The inequalities from the three lemmas capture everything we have to know about the
{ξi} and the norms in order to derive the main approximation result.

THEOREM 6. –LetN(x) denote the bracketing number of a set of functionsF under
theL2 norm from(2). For a fixedδ > 0, defineδi := δ/2i andβi := δi/H(n(δi)), with
n(y) :=N(y)N(y/2) andH(N) := √

log(2N). Define

$i := P sup
f∈F

∣∣Sn(Rδi (f ){Bδi (f )� βi})∣∣.

Then

$0�$k + 71

δ1∫
δk+2

H
(
N(y)

)
dy for eachk.

Remark. – Of course a quantity such as supg∈G |Sng| need not be measurable ifG is
uncountable. The expectation in the definition of$i should actually be interpreted as an
outer expectation. In fact, most of the inequalities needed for the proofs involve upper
bounds depending on only finite subsets ofL2(P ), for which the measurability problem
disappears.

Proof. –Construct the bracketing approximations for eachδi , for i = 0,1, . . . , k. To
simplify notation, abbreviaten(δi) to ni and defineγi := H(ni). Similarly, abbreviate
Aδi (f ) to Ai , andBδi (f ) to Bi , andRδi (f ) to Ri , with the argumentf understood.
Notice that|Ri|�Bi , which implies that‖Ri‖2� ‖Bi‖2� δi . WriteTi for the truncation
region {Bδi (f ) � βi} and mF (· · ·) for P supf∈F |Sn(· · ·)|. With this notation we have
$i = mF(RiTi). Section 4 will show that the subadditivity property of the functional
mF is really what drives the argument.

The key idea behind the Seattle method is captured by a recursive equality,

RiTi =Ri+1Ti+1 −Ri+1T
c
i Ti+1 + (Ri −Ri+1)TiTi+1 +RiTiT

c
i+1,
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which relates the truncated remainder terms for successive bracketing approximations.
Applying mF to the sets of functions on both sides of this equality, we get

$i �$i+1 + mF
(
Ri+1T

c
i Ti+1

) + mF
(
(Ri −Ri+1)TiTi+1

) + mF
(
RiTiT

c
i+1

)
. (3)

Together the three Lemmas will provide bounds for the second, third, and fourth terms
on the right-hand side.

Contribution of the third term from(3). As f ranges over the setF , the truncated
difference function(Ri − Ri+1)TiTi+1 = −(Ai − Ai+1)TiTi+1 ranges over at mostni
distinct functions. Moreover,

∥∥(Ri −Ri+1)TiTi+1
∥∥

2� ‖Ri‖2 + ‖Ri+1‖2� δi + δi+1

and

|Ri −Ri+1|TiTi+1� BiTi +Bi+1Ti+1 � βi + βi+1

� δi/γi + δi+1/γi+1� (δi + δi+1)/H(ni).

Thus the set of functions{(Ri − Ri+1)TiTi+1: f ∈ F} satisfies the conditions of
Lemma 3, which gives

mF
(
(Ri −Ri+1)TiTi+1

)
� C0(δi + δi+1)γi. (4)

Contribution of the second term from(3). The set of functions{Ri+1T
c
i Ti+1: f ∈F} is

potentially infinite, but it is dominated by the set{Bi+1T
c
i Ti+1: f ∈ F}, which contains

at mostni nonnegative functions, each bounded above byβi+1 and withL2 norm at
mostδi+1. Moreover, by splitting according to which ofBi or Bi+1 is larger, we get the
inequality∥∥Bi+1T

c
i Ti+1

∥∥
1�

∥∥Bi{Bi > βi}∥∥1 + ∥∥Bi+1{Bi+1> βi}
∥∥

1

�
∥∥Bi{Bi > ‖Bi‖2/γi}

∥∥
1 + ∥∥Bi+1{Bi+1> 2‖Bi+1‖2/γi}

∥∥
1

� δiγi + 1

2
δi+1γi by Lemma 5.

From Lemmas 4 and 3 deduce that

mF
(
Ri+1T

c
i Ti+1

)
�C0δi+1γi + 2

(
δiγi + 1

2
δi+1γi

)
. (5)

Contribution of the fourth term from(3). The argument is almost the same as for the
second term. Each of the dominating functionsBiTiT

c
i+1 is bounded above byβi , hasL2

norm at mostδi , and

∥∥BiTiT ci+1

∥∥
1�

∥∥Bi{Bi > βi+1}
∥∥

1 + ∥∥Bi+1{Bi+1> βi+1}
∥∥

1� 5δi+1γi+1.

Again from Lemmas 4 and 3 deduce that

mF
(
RiTiT

c
i+1

)
�C0δiγi + 10δi+1γi+1. (6)
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Recursive inequality. From inequalities (3), (4), (5), and (6),

$i �$i+1 + (5+ 6C0)δi+1γi+1 + 20δi+2γi+1.

Subadditivity of the square-root function gives

γi =
√

log
(
n(δi)

)
�

√
log

(
2N(δi)

) +
√

log
(
2N(δi+1)

)
� 2H

(
N(δi+1)

)
.

By repeated substitution we are then left with the inequality

$0�$k +
k−1∑
i=0

(10+ 12C0)(δi+1 − δi+2)H
(
N(δi+1)

) + 40(δi+2 − δi+3)H
(
N(δi+2)

)
.

Monotonicity of the functiony �→H(N(y)) lets us bound the summands by multiples
of integrals of the form

∫ {δj+1 < y � δj }H(N(y)) dy, from which the assertion of the
theorem follows because 50+ 12C0 ≈ 70.62. ✷

COROLLARY 7. –Under the conditions of the theorem,$0� 71
∫ δ/2

0 H(N(y)) dy.

Proof. –Note that|RkTk|� βk → 0 ask→ ∞, implying that$k → 0 for fixedn. ✷
3. Proof of Ossiander’s functional CLT

The theorem asserts convergence in distribution ofνn to a Gaussian process{νf : f ∈
F}. To prove her theorem, Ossiander [12] needed to show

(a) finite dimensional convergence:{νng: g ∈ G}� {νg: g ∈ G} for each finite subset
F ;

(b) stochastic equicontinuity: for eachη > 0 andε > 0, there exists aδ > 0 for which
P{sup‖f−g‖<δ |νnf − νng|> η} � ε for all n large enough. (The supremum runs
over all pairs of functions inF whoseL2(P ) distance is smaller thanδ.)

The assumption of identical distributions for the{ξi} is not crucial for the validity of
a fCLT. It ensures that (a) follows directly from the multivariate central limit theorem,
and it slightly simplifies the notation. Ossiander’s methods also work for more general
triangular arrays.

Square integrability ofF ensures that, for each fixedε > 0,

P

{
max
i�n

F (ξi) > ε
√
n
}
� nP {F > ε√n}� P (

F 2{F > ε√n}) → 0 asn→ ∞.

The same assertion holds withε replaced by anεn that tends to zero slowly enough. Thus
there exists a sequence of constantsMn of order o(

√
n) for which maxi�n F (ξi) �Mn

with probability tending to one. Define

H =Hn(δ) := {
(f − g){F �Mn}/

√
n: f,g ∈ F andP(f − g)2< δ2}.

If we show that lim supnP suph∈H |Snh| → 0 asδ→ 0 then (b) will follow.
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To avoid confusion between norms, writeA∗
y(f ) andB∗

y (f ) for the approximating
functions and bracketing functions forF under theL2(P ) norm. The corresponding
bracketing numbers are given by the functionN2(·). If h = (f − g){F �Mn}/√n we
may take

Ay(h) := (
A∗
y/2(f )−A∗

y/2(g)
){F �Mn}/√n,

By(h) := (
B∗
y/2(f )+B∗

y/2(g)
){F �Mn}/√n.

The bracketing numberN(y,H) for H under the‖ · ‖2 norm from (2) is then smaller
thanN2(y/2)2. For y equal toδ we can do much better by redefiningAδ(h) ≡ 0 and
Bδ(h)≡ 2F {F �Mn}/√n, which givesN(δ,H)= 1. Notice thatBδ(h)� 2Mn/

√
n→

0, which implies that{Bδ(h)� β0} is equal to the whole space whenn is large enough.
That is, we can eventually ignore the trunction factor in the definition of$0, and deduce
via Corollary 7 that

P sup
h�H

|Snh| =$0� 71

δ/2∫
0

√
log(2N2(y)2) dy for large enoughn.

The integral on the right-hand side converges to zero withδ.

Remark. – We were able to argue directly via Corollary 7 because log(2N2(y)
2)

increases like log(2N2(y)). For the analogous results in the next Section we might
not have the benefit of a logarithm to counter the squaring of the bracketing number.
We could however argue directly from Theorem 6 using the method of Ledoux and
Talagrand [10, Theorem 11.6] to avoid the problem caused by working with sets of
differences.

4. Generalization

The three lemmas in Section 2 and the method of proof suggest that the theorem really
depends only on the relationship between a functionalmF and the norms‖g‖1 and‖g‖2.
Indeed, the argument extends readily to more general functionals defined for subsetsG
of a vector space of functionsU . There are also extensions to functionals with properties
analogous to tail probabilities and to more complicated truncation schemes, as in Birgé
and Massart [5]; but, for simplicity of exposition, I describe only one generalization.

The role of theL2 norm from Section 2 will be taken over by a general norm‖ · ‖
on U . In fact, we do not need all the properties of a norm: it will suffice that‖ · ‖ is
subadditive, that is,‖g1 +g2‖� ‖g1‖+‖g2‖ for all g1, g2 ∈ U . Similarly, the role of the
L1 norm will be taken over by a second subadditive mapρ from U into R

+. In place of
mF , consider a functionalm that assigns a nonnegative numberm(G) to each subsetG
of U . Assume that the following properties hold.

(i) if g1, g2 ∈ U andc ∈ R theng1{g2� c} ∈ U andg1{g2> c} ∈ U
(ii) if |g1|� |g2| pointwise then‖g1‖� ‖g2‖ andρ(g1)� ρ(g2)

(iii) if subsetsG, G′, G′′ of U are such that eachg in G can be written as a sumg′ +g′′,
with g′ ∈ G′ andg′′ ∈ G′′, thenm(G)�m(G′)+ m(G′′)
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(iv) there exist nonnegative, increasing functionsG(N) andH(N) for which: if G is
a finite subset of functions fromU for each of which‖g‖� δ and supx |g(x)|�
β � δ/G(#G) thenm(G)� δH(#G)

(v) if H dominatesG, in the sense that for eachg in G there is anh in H for which
|g|� h, thenm(G)�m(H)+ suph∈H ρ(h)

(vi) there is an increasing, nonnegative functionD for which ρ(g{|g| > ‖g‖/t}) �
‖g‖D(t) for eacht > 0 andg ∈ U .

Assumption (iii) is the subadditivity property that will allow us to develop a recursive
inequality analogous to (3). For example, any functional defined by taking anLp norm
of supg∈G |Sng| is subadditive in the sense of (iii). Assumption (iv) corresponds to
Lemma 3, but with the dual role of the function

√
log(2N) split between two separate

functions,G andH . The extra generality is not needed for the examples discussed in
the present paper, but it does serve to clarify the two roles played by

√
log(2N) in

Theorem 6. Assumption (v) corresponds to Lemma 4, with a slight tidying of constants.
Assumption (vi) extends Lemma 5 by allowing a more subtle dependence ont , a
generalization motivated by the results of Doukhan, Massart, and Rio [7], as described
in the next section. It implies that, for all nonnegativeg1 andg2 in U ,

ρ
(
g1{g2> c})� ‖g1‖D(‖g1‖/c) + ‖g2‖D(‖g2‖/c), (7)

an inequality derived via the subadditivity ofρ by splitting according to which ofg1 or
g2 is larger, as in the argument for the second term from (3) in Section 2.

THEOREM 8. –LetN(x) denote the bracketing number of a set of functionsF ⊆ U
under the norm‖·‖. Assume that(i) through(vi) hold. For a fixedδ > 0, defineδi := δ/2i

andβi := δi/G(n(δi)), with n(y) :=N(y)N(y/2). Define

$i := m
{
Rδi (f )

{
Bδi (f )� βi

}
: f ∈F

}
.

Then for some universal constantC,

$0�$k +C

δ1∫
δk+2

H
(
n(y)

) +D
(
2G

(
n(y)

))
dy for eachk.

Outline of proof. –DefineAi , Bi , ni, Ri , andTi as in the proof of Theorem 3. From
the recursive equality for the truncated remainderRiTi , argue via (iii) that

$i �$i+1 + m
{−Ri+1T

c
i Ti+1: f ∈F

}
+ m

{
(Ri −Ri+1)TiTi+1: f ∈ F

} + m
{
(RiTiT

c
i+1: f ∈F

}
.

For the second term on the right-hand side, invoke (v) for the dominating set of functions
{Bi+1T

c
i Ti+1: f ∈F} then appeal to (7) to derive the bound

δi+1H
(
n(δi)

) + δi+1D
(
G

(
n(δi+1)/2

)) + δiD
(
G

(
n(δi)

))
.

And so on, along the same lines as the proof of Theorem 6.✷
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5. Absolute regularity

Doukhan, Massart, and Rio [7] – henceforth DMR – established a functional
central limit theorem for stationary, absolutely regular sequences{ξi} of random
elements of a Polish spaceX , each with distributionP . Their method fits into the
framework of Theorem 8 withm(F) = P supf∈F |νnf | and ρ(g) := 2

√
nP |g|. With

small modifications, their Lemma 3 gives a maximal inequality as in (iv) and their
Lemma 4 gives (vi) for an unusualD. This Section outlines the argument.

The definition of absolute regularity involves a decreasing sequence of mixing
coeficients{rq : q = 0,1,2, . . .}. We may assume thatrq = r(q), where r(·) is a
continuous, decreasing function onR

+ with r(0) = 1 andr(x) → 0 asx → ∞. The
function r has a right-continuous, decreasing “inverse” function, defined byr−1(u) :=
inf{x: r(x)� u} for 0<u < 1. Similarly, the tail quantile functionQf for a measurable
real functionf onX is defined by

Qf (u) := inf
{
x: P {|f |> x}� u} for 0< u< 1.

If U is distributed Uniform(0,1) thenQf (U) has the same distribution as|f | under
P , a representation that will be needed in Lemma 9. Following [16], DMR defined
‖f ‖2 := ∫ 1

0 r
−1(u)Qf (u)

2du for real measurable functions onX . The setU of all f
for which ‖f ‖<∞ is a vector space for which assumptions (i) and (ii) hold.

As noted by DMR, the precise definition of absolute regularity of the sequence is
unimportant. It matters only that there exists a coupling with a process constructed
from independent random vectors, as follows. For any positive integerq, break {ξi}
into a sequence ofq-vectorsY1, Y2, . . . . That is,Yi has componentsξj for j ∈ Ni :=
{1 + (i − 1)q, . . . , iq}. Then there exists a sequence ofq-vectorsY ∗

i for which: (a)Y ∗
i

has the same distribution asYi , for eachi; (b) P{Yi �= Y ∗
i }� rq ; and (c){Y ∗

2i: i = 1,2, . . .}
are independent and so are{Y ∗

2i−1: i = 1,2, . . .}.
If the integerq lies in the range 1� q � n, properties (a), (b) and (c) let us couple

the empirical processνn with a sum of two processesν∗
n + ν∗∗

n , with ν∗
n constructed from

theξ ∗
j variables from theN2i blocks andν∗∗

n constructed from the remaining variables,
leading to the inequality

P max
g∈G

|νng|� P max
g∈G

|ν∗
ng| + P max

g∈G
|ν∗∗
n g| + 2βrq

√
n if max

g∈G
|g|� β.

If G is a set of at mostN functions fromU , each bounded in absolute value by a
constantβ and with norm less thanδ, we may apply the method of Lemma 3 with
Wi equal to a sum

∑
j∈Ni

(g(ξ ∗
j ) − Pg(ξ ∗

j ))/
√
n, first for even then for odd values of

i, in order to bound bothP exp(tν∗
ng) and P exp(tν∗∗

n g) by expressions of the form
exp(ct2‖g‖2E(c′qβt/

√
n)), for constantsc andc′. We then deduce that

P max
g∈G

|νng|� c0δ6N

(
1+ E

(
c1qβ6N

δ
√
n

)
+ qβ

δ

r(q)
√
n

q6N

)
, (8)

wherec0 and c1 are constants and6N = 6(N) := √
1+ logN . (We could take6N as√

log(2N), but the slightly larger value ensures6N � 1 for all N � 1.) With a slight
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increase in the constants, inequality (8) also holds for allq in the continuous range
[1, n]. With an appropriate choice forq, the inequality will become the desired maximal
inequality (iv).

DMR established a functional central limit theorem for subsetsF of U for which∫ 1
0

√
logN(x,F) dx < ∞, for the covering numbers under their new norm, and with

envelopeF for which ‖F‖ < ∞. They assumed that
∑

q rq < ∞, which implies∫ 1
0 r

−1(u) du < ∞, thereby ensuring that the functionR(x) := ∫ r(x)
0 r−1(u) du is

continuous and decreases to zero asx tends to infinity. With these functions, we can
define a suitableD for assumption (vi).

LEMMA 9. –For eachf in U and eachx > 0 define‖f ‖2
x := ∫ r(x)

0 r−1(u)Qf (u)
2 du.

ThenP |f |{|f |> ‖f ‖x/√R(x)}� ‖f ‖x√r(x)/x.

Proof. –First note that‖f ‖2
x � R(x)Qf (r(x))

2, becauseQf is a decreasing function.
Thus the quantity on the left-hand side of the asserted inequality is less than

1∫
0

Qf (u)
{
Qf (u) >Qf

(
r(x)

)}
du�

1∫
0

Qf (u)
{
u < r(x)

}
du

�
1∫

0

√
r−1(u)/xQf (u)

{
u < r(x)

}
du,

the second inequality following from the fact thatr−1(u) > x when u < r(x). The
Cauchy–Schwarz inequality completes the proof.✷

If we replace‖f ‖x in the lemma by the larger‖f ‖, we get a weaker inequality that
suggests we should defineD indirectly by putting

D(t) := 2
√
nr(x)/x whent = √

R(x). (9)

The definition makes sense for allt in the range 0� t �
√
R(0). It will turn out that

we only need to consider such values oft . Indeed, the largestt needed for the proofs is
2G(nk). We keep this value within the required range by definingG(N) := 1

2

√
R(qN)

for a valueqN that will be determined by the requirements of the maximal inequality (iv).
These choices giveD(2G(N))= 2

√
nr(qN)/qN and 1/G(N)� 2/

√
qNr(qN), because

R(x)� xr(x) for all x � 0.
How should we chooseq = qN to balance the requirements of assumptions (iv) and

(vi)? At best we can make the right-hand side of (8) smaller than a multiple ofδ6N
by keepingβ/δ smaller than a multiple of min(

√
n/(q6N), 6N/(

√
nrq)). One term in the

minimum decreases asq gets larger, the other increases. We get the largest range forβ/δ

by balancing the terms: chooseq equal to the valueqN for which r(qN)/qN = 62
N/n, an

equality that defines a unique value in the range[1, n] when62
N � nr(1). (The upper

bound onqN comes from the fact that62
N/n� 1/n� r(n)/n.) Providedβ/δ is smaller

than 1/G(N) := 2/
√
R(qN) � 2/

√
qNr(qN), we then bound the right-hand side of (8)

for q = qN by c0δ6N(1 + E(2c1) + 2). That is, assumption (iv) holds withH(N) a
constant multiple of6N andG(N)= 1

2

√
R(qN), provided we consider only values ofN
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for which 62
N � nr(1). We also haveD(2G(N)) = 26N . An appeal to Theorem 8 then

gives the bound

$0 := m
(
R0(f )

{
B0(f )� β0

})
�$k +C ′J (δ) whereJ (δ) :=

δ∫
0

6
(
n(x)

)
dx.

The assumed finiteness of
∫ 1

0

√
logN(x,F) dx ensures thatJ (δ) converges to zero as

δ tends to zero. We have only to choosek so that$k is suitably small and6(nk)2� nr(1).
The largestk for which

√
nδk � J (δ) will suffice if δ is small enough. With that

choice we haveδk6(nk) � J (δk) = o(1) = o(
√
nδk), and, by (iv) and (vi) applied to

{(f −Ak(f )){Bk(f )� βk}: f ∈ F},
$k �mF

(
Bk{Bk � βk}) + 2

√
nmax

F
P

(
Bk{Bk � βk})� δkH(Nk)+ 2

√
nδk,

which is smaller than some constant multiple ofJ (δ).
As in Section 3, we can eliminate the effect of the indicator{B0 � β0} from $0 by

means of an initial truncation based on the finiteness of‖F‖. For each fixedC, the
sequenceMn = ‖F‖xn/

√
R(xn), wherexn is defined by the equalitiesr(xn)/xn = C/n,

has the property

PF {F >Mn}� ‖F‖xn
√
r(xn)/xn = o

(
n−1/2) by Lemma 9.

If we let C tend to infinity slowly enough withn, we get sequences{xn} and{Mn} for
whichnr(xn)/xn → ∞ and

P sup
f∈F

∣∣νn(f {F >Mn})∣∣� 2
√
nPF {F >Mn} → 0.

EventuallyMn will be smaller than the truncation levelβ0 := 2δ/
√
R(qn(δ)), no matter

how small we chooseδ. Indeed, qn(δ) is defined by the equalityr(qn(δ))/qn(δ) =
6(n(δ))/n = o(r(xn)/xn). Eventually we must haveqn(δ) > xn and henceR(qn(δ)) �
R(xn). When we also have‖F‖xn < 2δ then it follows thatMn < β0.

The rest of the argument leading to the functional central limit theorem follows the
method outlined in Section 3.

6. Some history

Bracketing arguments have long been used to prove fCLTs: for example, the original
paper of Donsker [6, near his Eq. 2.11] applied a version of the method.

Dudley [8] used the concept of metric entropy with bracketing for general classes
of sets in order to prove a fCLT for empirical processes indexed by classes of sets. He
later [9] extended the result to classes of functions with an envelope having a finitepth
moment, for somep > 2. His method involved an initial truncation at a level much
smaller than

√
n and it required an assumption on the bracketing numbers stronger than

Ossiander’s condition.
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Pyke [15] used a similar truncation to prove a CLT for processes indexed by sets. This
result was refined first by Bass and Pyke [4], and then by Alexander and Pyke [1]. The
second paper added the refinement of multiple levels of truncation (the stratification
argument on page 589), to partition a partial-sum process into a sum of bounded
processes, thereby obtaining the fCLT under the natural second moment and bracketing
conditions. They cited the preprint form of Bass [3], who also applied stratification to
prove a functional LIL for set-indexed processes. Ossiander [12, pp. 899, 903] stated that
her chaining argument was adapted from the Bass paper. In a private communication,
Ron Pyke explained to me that the history is more complicated than suggested by the
publication dates:

Ken Alexander saw the paper of Pyke [15], and realized how to improve the truncation
technique used there. He applied the improvement in a 1984 paper. With Pyke he
wrote another paper [1] – see the remarks at the end of the paper. Bass [3] applied
the truncation to set-indexed partial-sum processes (the paper was not written up
before December 1984). Bass and Pyke [4] (in a paper written around 1983, Pyke
believes) recognized the truncation problem; but they didn’t use the best form of
truncation. Mina Ossiander worked on her dissertation during the spring and summer
of 1984, producing her thesis – later published as Ossiander [12] – and a technical
report in November–December of that year. Starting from the preprint form of [1],
she developed a more general form of the truncation argument. There were many
discussions between Ossiander and Bass. The final publication dates are not indicative
of the true order in which work was carried out, because of delays in refereeing.

In view of this information, I think it is fair to spread the credit for the truncation
method between all the members of the Seattle group.

My involvement with the method began in early 1985, with a study of [3] and
Ossiander’s thesis. By mid 1987, I realized that the argument could be thought of as a
recursive procedure, an idea that I circulated in unpublished preprints. The generalization
to dependent variables by Doukhan, Massart, and Rio [7] later suggested to me the
possibility of the abstract version of the method, as presented in Section 4. The method
has also been extended by Andersen et al. [2], replacing the concept of a bracketing
number by the concept of a majorizing measure.
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