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ABSTRACT. – We consider a continuous gas in ad-dimensional rectangular box with a finite
range, positive pair potential, and we construct a Markov process in which particles appear and
disappear with appropriate rates so that the process is reversible w.r.t. the Gibbs measure. If the
thermodynamical paramenters are such that the Gibbs specification satisfies a certain mixing
condition, then the spectral gap of the generator is strictly positive uniformly in the volume and
boundary condition. The required mixing condition holds if, for instance, there is a convergent
cluster expansion. 2002 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Dans une boîte rectangulaire de dimensiond, on considère un gaz continu avec
un potentiel à portée finie, pair et positif, et on construit un processus de Markov dans lequel
les particules apparaissent et disparaissent avec un taux tel que ce processus soit réversible
par rapport à la mesure de Gibbs associée. Si les paramètres thermodynamiques assurent une
certaine condition de mélange pour la mesure de Gibbs, nous concluons que le trou spectral
associé au générateur est strictement positif, uniformément par rapport au volume de la boîte
et aux conditions aux bords. La condition de mélange requise a lieu par exemple lorsqu’il y a
convergence du développement viriel. 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

We consider a continuous gas in a bounded volume� ⊂ R
d , distributed according

the Gibbs probability measure associated to a finite range pair potentialϕ. The Gibbs
measure in a volume� is given by (see Section 2 for more details)
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µ
η
�(dω) := e|�|(Zη

�

)−1
zN�(ω) exp

[−βH
η
�(ω)

]
(Q� × δ�c,η)(dω),

whereβ is the inverse temperature,z the activity,H the Hamiltonian,N� the number
of particles,η the boundary condition,Q� the Poisson point process in� with intensity
1, andZη

� is the normalization. Then we introduce a Markov process in which particles
may appear and disappear everywhere in� with rates such that the process is reversible
with respect to the Gibbs measure.

These kind of processes, also calledspatial birth and death processes, have been
constructed by Preston in [12] as a particular case of jump processes, in a more general
framework than ours, i.e. without assuming reversibility w.r.t. a Gibbs measure. In [12],
and, more recently, in [3], many of their general properties are studied.

In this paper we are interested in the approach to the invariant measure in theL2 sense,
and, in particular, we show that for a positive, finite range, pair potential, ifz, β are
such that there is a convergent cluster expansion (see condition (CE) in Section 2), then
the generator of the processLη

� has a spectral gap which is strictly positive uniformly
in the volume and the boundary condition. Convergence of cluster expansion is not
actually necessary for our results and it will be only used to prove a mixing condition
for the Gibbs measures (Corollary 2.5 below) which could be assumed as a more general
hypothesis.

Uniform positivity of the spectral gap has been discussed in several papers forlattice
spin systems, for either discrete/compact spin spaces [15,16,9,10,7] and unbounded spin
spaces [18,17,4]. Within that context the general idea is that the following notions are
equivalent

(1) The spectral gap of the generator is strictly positive uniformly in the volume and
boundary condition.

(2) The logarithmic Sobolev constant is bounded uniformly in the volume and
boundary condition.

(3) The covariance w.r.t. the Gibbs measure of two local functions decays exponen-
tially fast in the distance of the “supports” of the functions, uniformly in the vol-
ume and boundary condition.

We observe that for the system we consider in this paper, there is no hope of proving
(in general) a logarithmic Sobolev inequality (LSI). Even worse such an inequality
fails even for a fixed finite volume. Consider, indeed, the trivial case ofH = 0. Then
the distribution of the number of particles in a volume� is Poissonian with mean
z|�|. It is easy to verify (see [5], Section 5.1) that the Poissonian distribution does not
satisfy a LSI. It is still possible, though, that under stronger conditions on the potential
which do not include the caseH = 0 (e.g. superstability, see [13]) a LSI is indeed
satisfied.

Our results are presented in Section 2, while most proofs are postponed to Section 3.
Section 4 contains a partial converse of our main result, i.e. that the uniform positivity of
the spectral gap implies the exponential decay of the covariance of two local functions.
Finally, Section 5 is a brief discussion on the possibility of having a logarithmic Sobolev
inequality.
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2. Notation and results

The Gibbs measures. Let B(Rd) be the Borelσ -algebra onR
d ; we denote by

Bb(R
d)⊂ B(Rd) the collection of all bounded Borel sets. ForA ∈ Bb(R

d), |A| indicates
the Lebesgue measure ofA. Let Rd ⊂ Bb(R

d) be the set of allrectangles(cartesian
products of finite closed intervals). We consider, asconfiguration space, the set� of all
locally finite subsets ofRd , i.e.

� := {
ω ⊂ R

d : card(ω ∩A) <∞ for all bounded subsetsA of R
d
}
,

where card(A) stands for the cardinality of the setA. We endow� with theσ -algebra
F generated by the counting variablesNA :ω → card(ω ∩ A), whereA ∈ Bb(R

d).
Given ω,η ∈ � we let ω�η be the symmetric difference ofω and η, i.e. ω�η :=
(ω ∪ η)\(ω ∩ η). For � ∈ Bb(R

d), we consider also the finite volume configuration
space

�� := {ω ⊂�: ω is finite}
with σ -algebraF� generated by the functionsNA, such thatA is a Borel subset of�.
We writef ∈ FA to indicate that thef is FA-measurable. The functionf is said to be
local if there existsA ∈ Bb(R

d) such thatf ∈FA.
For x, y ∈ R

d we denote byd(x, y) the Euclidean distance, while|x| stands for
d(x,0). Let ϕ :Rd �→ R be a measurable even function;ϕ is called apair potential.
We assume thatϕ hasfinite ranger , i.e. thatϕ(x)= 0 if |x| > r . GivenA⊂ R

d we let

Ā
r := {

x ∈ R
d : d(x,A) � r

}
.

The HamiltonianH� :� �→ R, is given by

H�(ω) := ∑
{x,y}⊂ω

{x,y}∩��=∅

ϕ(x − y).

Forω,η ∈� we also letHη
�(ω) :=H�(ω�η�c), whereω�η�c := (ω∩�)∪ (η∩�c),�c

stands for the complement of�, andη is called theboundary condition. We denote with
Q� the Poisson point process on� with intensity 1, and we defineQη

� := Q� × δ�c,η,
where δ�c,η is the probability measure on(��c,F�c) which gives mass 1 to the
configurationη. For � ∈ Bb(R

d), the finite volumeGibbs measurein � at inverse
temperatureβ, activity z and boundary conditionη is given by

µ
η
�(dω) := e|�|(Zη

�

)−1
zN�(ω) exp

[−βH
η
�(ω)

]
Q

η
�(dω), (2.1)

whereZη
� is the appropriate normalization factor (we omit for simplicity the dependence

of these quantities onz andβ). We denote withµη
�(f ) the expectation off with respect

to µ
η
�, while µ�(f ) denotes the functionω → µω

�(f ). Explicitly, for all measurable
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functionsf on��, we have

µ
η
�(f )= (

Z
η
�

)−1
∞∑
n=0

zn

n!
∫
�n

e−βH
η

�
(x)f (x)dx,

where we have identified the functions on�� with the symmetric functions on
⋃∞

n=0�
n.

For a setX ∈F we setµ�(X) := µ�(1X), where1X is the characteristic function onX.
We writeµ(f,g) to denote the covariance (with respect toµ) of f andg. The family of
measures (2.1) satisfies the DLR compatibility conditions

µ�

(
µV (X)

)= µ�(X) ∀X ∈ F ∀V,� ∈ Bb

(
R

d
)
, V ⊂�. (2.2)

The dynamics. For a given functionf on� we let

D−
x f (ω) := f (ω\{x})− f (ω) D+

x f (ω) := f (ω ∪ {x})− f (ω) ω ∈�, x ∈ R
d,

(2.3)
where it is understood thatD−

x f (∅)= 0. For simplicity we use the notation

(
D−

�f ·D−
�g
)
(ω) := ∑

x∈ω∩�
D−

x f (ω)D
−
x g(ω).

The stochastic dynamics we want to study is determined by the generatorsL�, � ∈
Bb(R

d), defined by

(L�f )(ω) := ∑
x∈ω∩�

D−
x f (ω)+ z

∫
�

e−βD+
x H�(ω)D+

x f (ω)dx ω ∈�. (2.4)

L
η
� stands forL� acting onL2(µ

η
�) with domainD0(L

η
�) given by

D0(L
η
�)= {

f ∈ L2(µη
�

)
: ∃M ∈ N, |f | �M andf (ω)= 0 whenN�(ω) >M

}
. (2.5)

The Dirichlet form associated withLη
� is given by

Eη
�(f, g) := 〈(−L

η
�

)
f,g

〉
L2(µ

η
�)

f, g ∈D0
(
L
η
�

)
and we letEη

�(f ) := Eη
�(f, f ). The construction of the corresponding Markov semi-

groups in the spacesLp(µ
η
�), p ∈ [1,∞], is more or less standard, and it is summarized

below

PROPOSITION 2.1. –
(1) D0(L

η
�) is dense inL2(µ

η
�).

(2) Eη
�(f, g) = µ

η
�(D

−
�f · D−

�g) = z
∫
� dxµη

�(e
−βD+

x H
η

�D+
x fD

+
x g), for all f,g ∈

D0(L
η
�).

(3) L
η
� is symmetric onD0(L

η
�).

(4) Eη
� is closable and its closure is associated with a self-adjoint extension ofL

η
�.

We maintain the same symbolsLη
� andEη

� to denote these extensions, and denote
byD(L

η
�), D(Eη

�) the respective domains.
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(5) P
�,η
t := etL

η

� is a positive preserving contraction semigroup(thus a Markov
semigroup) onLp(µ

η
�) for all p ∈ [1,∞].

Remark. – A more explicit construction for these processes can be found in [12] where
sufficient conditions are found which guarantee the uniqueness of the solution of the
Kolmogorov’s backward equations. Since we are mainly interested inLp properties, our
approach is more direct for our purposes.

Proof. –For statement (1), letf ∈L2(µ
η
�), and definefn ∈D0(L

η
�) by

fn(ω) := [
(f (ω)∧ n)∨ (−n)

] · 1N�(ω)�n,

wherea∨b (a∧b) stands for the maximum (minimum) betweena andb. The dominated
convergence theorem implies that‖f − fn‖L2(µ

η
�
) goes to 0. Statement (2) is a simple

computation, while (3) is trivially implied by (2). Statement (4) is the well known
construction of the Friedrichs extension of a non-positive symmetric operator. In order
to prove (5) it is sufficient (and actually necessary) to show that (see Theorems 1.3.2
and 1.3.3 of [2])

(a) If f ∈D(Eη
�) then|f | ∈D(Eη

�) andEη
�(|f |)� Eη

�(f ).
(b) If 0 � f ∈D(Eη

�) thenf ∧ 1∈D(Eη
�) andEη

�(f ∧ 1)� Eη
�(f ).

Properties (a) and (b) are obviously true onD0(L
η
�) thanks to the expression for the

Dirichlet form given in (2), and they can be directly extended toD(Eη
�) sinceD(Eη

�) is
the closure ofD0(L

η
�) w.r.t. the norm[‖f ‖2

L2(µ
η

�
)
+ Eη

�(f )]1/2 ✷
The spectral gap ofLη

� is defined as as

gap
(
L
η
�

) := inf spec
(−L

η
� � 1⊥),

where1⊥ is the subspace ofL2(µ
η
�) orthogonal to the constant functions.

In order to prove our main result we need some kind of mixing property of the
Gibbs measure, which we can prove under the hypothesis of a convergent cluster
expansion. An explicit condition which guarantees this convergence is the following:
let ξ(β) := e

∫
Rd (1− e−βϕ(x))dx. Then we assume

zξ(β)/
(
1− 2zξ(β)

)
< 1. (CE)

Our main result is then the following:

THEOREM 2.2. –Letϕ � 0 be a pair potential with finite ranger . If (CE)holds there
existsG =G(r, z, β) finite such that for allη ∈�, � ∈ Rd ,

µ
η
�(f,f )�GEη

�(f ), for all f ∈D
(
Eη
�

)
. (2.6)

Remark. – Poincaré inequality (2.6) is equivalent to any of the following statements:
(1) gap(Lη

�)
−1 �G.

(2) ‖P�,η
t f −µ

η
�f ‖L2(µ

η

�
) � (µ

η
�(f, f ))

1/2e−t/G, for all f ∈L2(µ
η
�).

In order to prove the theorem we need to
(1) prove a mixing condition for the Gibbs measures (Corollary 2.5 below),
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(2) show that the spectral gap is strictly positive for all rectangles contained in some
fixed cube�0 whose size depends onz, β and r (in Proposition 2.6 below we
actually show that the spectral gap is strictly positive for any bounded volume).

Given (1) and (2), there are several standard arguments (see the papers cited in the
introduction) which produce Theorem 2.2 forlattice spin systems. The easiest approach
is perhaps the one given in Theorem 4.5 in [8]. We will adapt the same strategy to our
system. The proof will follow the scheme

Lemma 2.3+ cluster expansion⇒ Corollary 2.4 ⇒ Corollary 2.5,

Corollary 2.5+ Proposition 2.6⇒ Theorem 2.2.

Our first result is a general upper bound for the covariance of two local functions.

LEMMA 2.3. –Let� ∈ Bb(R
d) and let�f ,�g be two Borel subsets of� such that

�f ∩ �g = ∅. For all z > 0, β � 0, η ∈ � and all pairs of local functionsf,g with
f ∈F�f

andg ∈F�g
, we have

∣∣µη
�(f, g)

∣∣� µ
η
�(|f |)µη

�(|g|)sup
η∈�

[
Z

η
�\(�f ∪�g)

Z
η
�

Z
η
�\�f

Z
η
�\�g

− 1
]
. (2.7)

Remark. – One may wonder how we can bound the covariance of two functions in
terms of theirL1 (rather thanL2) norm. This is possible becausef , g have disjoint
“supports”, i.e.�f ∩�g = ∅.

Using standard cluster expansion, one can estimate the logarithm of the ratio of the
partition functions appearing in (2.7) (see Lemma 4 of [14]) and obtain

COROLLARY 2.4. –Assumeϕ � 0 and letz,β be such that(CE) holds. Then there
existα = α(r, z, β) andm = m(r, z, β) such that for all�,�f ,�g ∈ Bb(R

d) such that
�f ⊂�, �g ⊂�, d(�f ,�g) > 2r , and|�̄r

f | ∧ |�̄r

g| � exp(md(�f ,�g)), we have

∣∣µη
�(f, g)

∣∣� αµ
η
�(|f |)µη

�(|g|)e−md(�f ,�g) ∀f ∈F�f
, g ∈ F�g

, ∀η ∈�. (2.8)

This result has an immediate consequence, which will be useful for our purposes.

COROLLARY 2.5. –If ϕ � 0 and (CE) holds, there existα = α(r, z, β) and m =
m(r, z, β) such that for all�,�f ∈ Bb(R

d), �f ⊂�,

∣∣µη
�(f )−µω

�(f )
∣∣� αµ

η
�(|f |)e−md(�f ,η�ω) (2.9)

for all ω,η ∈�, for all f ∈F�f
such thatd(�f , η�ω) > 3r , and|�̄r

f | � exp[m(d(�f ,

η�ω)− r)].
Remark. – As we said before, Corollary 2.5 is the only ingredient we need (together

with the positivity of the spectral gap in a given finite volume) in order to prove
Theorem 2.2. We observe here that inequality (2.9) is very strong, because of the factor
µ
η
�(|f |) in the RHS. Let for instanceη = ∅ (free boundary condition). Then (2.9) implies

that the difference|µ∅
�(f )− µω

�(f )| is boundeduniformly in ω. Thus one cannot hope
that (2.9) holds for a large class of interactions. On the other side (2.9) is stronger than
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we actually need. To be more precise what we really need is inequality (3.11) in the next
section.

Proof. –Let hω,η� be the density ofµω
� w.r.t.µη

�. Then

h
ω,η
� = exp[−β(Hω

� −H
η
�)]

µ
η
�(exp[−β(Hω

� −H
η
�)])

sohω,η� is measurable w.r.t.FA, whereA := {x ∈ �: d(x,ω�η) � r}. Therefore from
Corollary 2.4 it follows that∣∣µη

�(f )−µω
�(f )

∣∣= ∣∣µη
�[f (1− h

ω,η
� )]∣∣= ∣∣µη

�(f,h
ω,η
� )

∣∣
� αµ

η
�(|f |)µη

�

(
h
ω,η
�

)
e−md(�f ,A) � αµ

η
�(|f |)e−m[d(�f ,ω�η)−r]

and we get the result, after redefiningα. ✷
Finally we will show that the spectral gap is strictly positive in any bounded volume.

PROPOSITION 2.6. –If ϕ � 0, then

µ
η
�(f,f )� 2

(
ez|�| − 1

)
Eη
�(f ) ∀f ∈D

(
Eη
�

)
for all z > 0, β � 0, η ∈�, � ∈ Bb(R

d).

3. Proofs

3.1. Proof of Lemma 2.3

If A is a Borel subset of� andh is anFA measurable function on�, we have (see
(2.1))

µ
η
�(h)=Q

η
A(ρ�,Ah) (3.1)

where

ρ�,A(ω) := e|A|zNA(ω) exp
[−βHA(ω ∩ (A∪�c

)]Zω
�\A
Zω
�

.

Notice that the Hamiltonian does not include the interactions betweenA and�\A, since
those terms are included in the partition functionZ�\A. From (3.1), if we let

R�,f,g(ω) := ρ�,�f ∪�g
(ω)

ρ�,�f
(ω)ρ�,�g

(ω)
= Zω

�\(�f ∪�g)
Zω
�

Zω
�\�f

Zω
�\�g

(3.2)

we obtain

µ
η
�(f, g)=µ

η
�(fg)−µ

η
�(f )µ

η
�(g)

=Q
η
�f ∪�g

[
fgρ�,�f

ρ�,�g
(R�,f,g − 1)

]
.

Hence
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∣∣µη
�(f, g)

∣∣� sup|R�,f,g − 1|Qη
�f ∪�g

[|fg|ρ�,�f
ρ�,�g

]
= sup|R�,f,g − 1|µη

�(|f |)µη
�(|f |).

3.2. Proof of Proposition 2.6

By writing the covarianceµη
�(f,f ) in the product coupling, we get

µ
η
�(f,f ) = 1

2

∫
µ
η
�(dω)µ

η
�(dω̃)

[
f (ω)− f (ω̃)

]2
= 1

2

(
Z

η
�

)−2
∞∑

n,m=0
(n,m) �=(0,0)

zn

n!
zm

m!
∫

�n×�m

dx dy e−β[Hη

�
(x)+H

η

�
(y)][f (x)− f (y)

]2
.

(3.3)
LetD−

i f (x1, . . . , xn) := f (x1, . . . , x̂i, . . . , xn)−f (x1, . . . , xn), wherex̂i denotes that the
variablexi is omitted. By telescopic sums we have

f (x1, . . . , xn)− f (y1, . . . , ym)= −
n∑

k=1

D−
k f (x1, . . . , xk)+

m∑
h=1

D−
h f (y1, . . . , yh)

whence, by Schwarz inequality,

1

2

[
f (x1, . . . , xn)− f (y1, . . . , ym)

]2
� n

n∑
k=1

[
D−

k f (x1, . . . , xk)
]2 +m

m∑
h=1

[
D−

h f (y1, . . . , yh)
]2

which, plugged into (3.3), yields

µ
η
�(f,f ) � 2

(
Z

η
�

)−1(
1− e−z|�|) ∞∑

n=1

n∑
k=1

zn

(n− 1)!
×
∫
�n

dx e−βH
η

�
(x)
[
D−

k f (x1, . . . , xk)
]2
,

(3.4)

where we used

(
Z

η
�

)−1
∞∑

m=1

zm

m!
∫
�m

dy e−βH
η

�
(y) = 1− (Zη

�

)−1 � 1− e−z|�|.

Last inequality holds becauseϕ � 0 so that e−βH
η

�
(y) � 1. By the same reason, fork � n

we haveHη
�(x1, . . . , xn)�H

η
�(x1, . . . , xk); therefore, by using (3.4),

µ
η
�(f,f )� 2

(
Z

η
�

)−1(
1− e−z|�|) ∞∑

n=1

n∑
k=1

zn|�|n−k

(n− 1)!
∫
�k

dx e−βH
η

�
(x)
[
D−

k f (x)
]2

= 2
(
Z

η
�

)−1(
1− e−z|�|) ∞∑

k=1

zk

(k − 1)!
∫
�k

dx e−βH
η

�
(x)
[
D−

k f (x)
]2
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×
∞∑
n=k

zn−k|�|n−k

(n− k)!
(n− k)!(k − 1)!

(n− 1)!

� 2ez|�|(1− e−z|�|)(Zη
�

)−1
∞∑
k=1

zk

(k − 1)!
∫
�k

dx e−βH
η
�
(x)
[
D−

k f (x)
]2

= 2ez|�|(1− e−z|�|)(Zη
�

)−1
∞∑
k=1

zk

k!
∫
�k

dx e−βH
η
�(x)

k∑
j=1

[
D−

j f (x)
]2

= 2
(
ez|�| − 1

)
Eη
�(f ),

where the last identity follows fromEη
�(f ) = µ

η
�(|D−

�f |2) (see (2) of Proposition
2.1). ✷
3.3. Proof of Theorem 2.2

Notation. Throughout this proof we let, for brevity,

‖f ‖p := ‖f ‖Lp(µ
η

�
), 〈f,g〉 := 〈f,g〉L2(µ

η

�
), p ∈ [1,∞]. (3.5)

As we said earlier Theorem 2.2 is a consequence of Corollary 2.5 and Proposition 2.6.
We proceed more or less as in [8], Theorem 4.5.

Basically what we want to show is that the gap stays (almost) the same if we double
the volume. Let� ⊂ Rd and assume that the longest side of� has length∼ L and it
corresponds to the directioned in R

d . We write� = A ∪ B, whereA andB are two
rectangles of roughly the same size with a small overlap in the directioned . The overlap
is order

√
L. We then claim that Corollary 2.5 implies the existence ofc1 = c1(r, z, β),

c2 = c2(r, z, β) andL0 = L0(r, z, β) such that

µ
η
�(f,f )�

(
1+ c1e−c2m

√
L
)
µ
η
�

(
µA(f,f )+µB(f,f )

) ∀L� L0. (3.6)

We observe that this inequality holds withc1 = 0 if A andB are disjoint and non–
interacting, so thatµη

� = µ
η
A × µ

η
B . The factorc1 exp(−c2m

√
L) measures in a certain

sense the weak interaction betweenA andB. The proof of inequality (3.6) relies on the
following lemma:

LEMMA 3.1. –Let�,A,B ∈ Bb(R
d), with� =A∪B. Assume that for someη ∈�,

ε ∈ [0,√2− 1), p ∈ [1,∞], we have

∥∥µBg −µ
η
�g
∥∥
p

� ε‖g‖p ∀g ∈Lp
(
�,FAc,µ

η
�

)
,∥∥µAg −µ

η
�g
∥∥
p

� ε‖g‖p ∀g ∈Lp
(
�,FBc ,µ

η
�

)
.

(3.7)

Then

µ
η
�(f,f )�

(
1− 2ε − ε2)−1

µ
η
�

(
µA(f,f )+µB(f,f )

)
f ∈L2(µη

�

)
. (3.8)
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Remark. – A similar result was obtained in Proposition 4.4 in [1] (see also Proposi-
tion 3.5 in [8]). The proof given there is somehow more complicated and it is based on the
explicit expression for the semigroup of the “2-block dynamics”, given by et (µA+µB−2).
We present below a shorter and more direct approach.

Proof. –
Step 1. Reduction to the casep = 2. Let p ∈ [1,∞], let q−1 := 1 − p−1, and, for

r ∈ [1,∞], consider the linear operators

TB,r :Lr
(
�,FAc ,µ

η
�

) & f �→ µB(f )−µ
η
�(f ) ∈Lr

(
�,FBc,µ

η
�

)
,

TA,r :Lr
(
�,FBc,µ

η
�

) & f �→ µA(f )−µ
η
�(f ) ∈Lr

(
�,FAc,µ

η
�

)
.

Inequality (3.7) says that‖TB,p‖ � ε and ‖TA,p‖ � ε. Using (repeatedly) the DLR
conditions (2.2), we have, for allf ∈Lp(�,FAc ,µ

η
�), g ∈Lq(�,FBc,µ

η
�),

〈µBf,g〉 =µ
η
�

(
(µBf )g

)= µ
η
�

(
µB(fg)

)= µ
η
�(fg)

=µ
η
�

(
µA(fg)

)= µ
η
�

(
f (µAg)

)= 〈f,µAg〉,
thus

〈TB,pf, g〉 = 〈f,TA,qg〉 ∀f ∈Lp
(
�,FAc ,µ

η
�

)
, ∀g ∈Lq

(
�,FBc ,µ

η
�

)
.

This shows that, ifp <∞, identifying the dual ofLp with Lq , TA,q is the adjoint ofTB,p,
while if p = ∞ thenTB,p is the adjoint ofTA,q . In both cases‖TA,q‖ = ‖TB,p‖ � ε. By
the Riesz–Thorin interpolation theorem‖TA,2‖ � ε. InterchangingA andB we also find
‖TB,2‖ � ε.

Step 2. Conclusion.Letf ∈ L2(µ
η
�) and assume (without losing generality)µ

η
�f = 0.

Then, recalling (3.5),

µ
η
�(f,f )= µ

η
�

(
f 2)−µ

η
�(fµAf )+µ

η
�(fµAf )= µ

η
�

(
µA(f,f )

)+µ
η
�(f µAf ).

(3.9)
The second term can be written as

µ
η
�(fµAf )= 〈(f −µBf ),µAf

〉+ 〈µBf,µAf 〉
= 〈(f −µBf ),µAf

〉+ 〈f,µBµAf 〉
� ‖f −µBf ‖2‖µAf ‖2 + ‖f ‖2‖µBµAf ‖2 (3.10)

�
[‖f −µBf ‖2 + ε‖f ‖2

]‖µAf ‖2

= [‖f −µBf ‖2 + ε‖f ‖2
]
µ
η
�(fµAf )

1/2,

where the second and the last equalities follow from the DLR conditions (2.2), while in
the second inequality we have used (3.7) withp = 2. From (3.10) we get

µ
η
�(fµAf )� ‖f −µBf ‖2

2 + ε2‖f ‖2
2 + 2ε‖f ‖2‖f −µBf ‖2

�µ
η
�

(
µB(f,f )

)+ ‖f ‖2
2

(
2ε + ε2)

which, together with (3.9), implies (3.8)✷
In order to proceed with the proof of Theorem 2.2 we go back to the geometry of

A andB described before (3.6) and we want to show that Corollary 2.5 implies that
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inequality (3.7) holds with, say,p = ∞, for all boundary conditions. In fact, ifg ∈FAc ,
andL is large enough so that Corollary 2.5 can be applied, we have, by (2.2)

∥∥µBg −µ
η
�g
∥∥∞ = ∥∥µBg −µ

η
�µBg

∥∥∞ � sup
ω,τ∈�:ω�c=τ�c

∣∣µω
Bg −µτ

Bg
∣∣

� α‖g‖1e−md(�\A,�\B) � α‖g‖∞e−md(�\A,�\B).
(3.11)

The same bound applies to the quantity‖µAg − µ
η
�g‖∞. Therefore (3.6) follows from

Lemma 3.1 and from our choice of the geometry of the setsA andB.
The next step is to bound the quantityµη

�(µA(f,f ) + µB(f,f )) in terms of the
Dirichlet formEη

�(f ). GivenV ∈Rd , let

GV :=GV (r, z, β) := sup
η∈�
(
gap
(
L
η
V

))−1
.

We have, then

µ
η
�

(
µA(f,f )+µB(f,f )

)
� (GA ∨GB)µ

η
�

[
µA

(|D−
A(f )|2

)+µB

(|D−
B (f )|2

)]
� (GA ∨GB)µ

η
�

[|D−
A∪B(f )|2 + |D−

A∩B(f )|2
]

= (GA ∨GB)
[
Eη
�(f )+µ

η
�

(|D−
A∩B(f )|2

)]
.

(3.12)
From (3.6) and (3.12) we get

µ
η
�(f,f )�

(
1+ c1e−c2m

√
L
)
(GA ∨GB)

[
Eη
�(f )+µ

η
�

(|D−
A∩B(f )|2

)]
. (3.13)

At this point one may be tempted to discourage, because if we bound the term
µ
η
�(|D−

A∩B(f )|2) with Eη
� then we get

G� �
(
2+ c1e−c2m

√
L
)
(GA ∨GB)

which implies that if we (roughly) double the volume, the inverseG� of the spectral
gap also (roughly) doubles. But, as observed in [8], one canaverage over the location
of the overlap. Consider in fact a sequence of pairs{Ai,Bi}si=1, where, for instance,
s := 'L1/3(, where'·( is the integral part. By averaging (3.13) overi we obtain

µ
η
�(f,f )�

(
1+ c1e−c2m

√
L
)
sup
i

(GAi
∨GBi

)

[
Eη
�(f )+ 1

s
µ
η
�

(
s∑

i=1

|D−
Ai∩Bi

(f )|2
)]

.

(3.14)

If the setsAi , Bi are chosen in such a way thatAi ∩Bi ∩Aj ∩Bj = ∅ for all i �= j then
there existsL1 = L1(r, z, β)�L0 such that for allL�L1

G� �
(
1+ c1e−c2m

√
L
)(

1+ 1

s

)
sup
i

(GAi
∨GBi

)�
(

1+ 2

'L1/3(
)

sup
i

(GAi
∨GBi

).

(3.15)
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In order to conclude the proof of Theorem 2.2 all is left to do is to organize the geometric
iterative construction. Letlk := (3/2)k/d , and letRd

k be the set of all rectangles inRd

which, modulo translations and permutations of the coordinates, are contained in

[0, lk+1] × [0, lk+2] × · · · × [0, lk+d ].

Let alsoGk := supV∈Rd
k
GV . The idea behind this construction is that each rectangle in

Rd
k\Rd

k−1 can be obtained as a “slightly overlapping union” of two rectangles inRd
k−1.

More precisely we have:

PROPOSITION 3.2. –For all � ∈Rd
k\Rd

k−1 there exists a finite sequence{Ai,Bi}ski=1,

wheresk := 'l1/3k (, such that
(1) �=Ai ∪Bi andAi,Bi ∈Rd

k−1, for all i = 1, . . . , sk ,
(2) d(�\Ai,�\Bi)� 1

8

√
lk , for all i = 1, . . . , sk,

(3) Ai ∩Bi ∩Aj ∩Bj = ∅ if i �= j .

Proof. –Let � := [a1, b1] × · · · × [ad, bd] ∈ Rd
k\Rd

k−1, We can assumean = 0 and
bn � lk+n, for n = 1, . . . , d. Then necessarilybd > lk , since, otherwise,� ∈Rd

k−1. Define

Ai := [0, b1] × · · · × [0, bd−1] ×
[
0,

bd

2
+ 2i

8

√
lk

]
,

Bi := [0, b1] × · · · × [0, bd−1] ×
[
bd

2
+ 2i − 1

8

√
lk, bd

]
.

We haved(�\Ai,�\Bi)= 1
8

√
lk . Furthermore

bd

2
+ 2sk

8

√
lk � lk+d

2
+ 1

4
l
5/6
k � 3lk

4
+ 1

4
l
5/6
k � lk

which, together with the fact thatlk < bd , implies thatAi andBi are both subsets of�.
Moreover, since, for alli = 1, . . . , sk

bd

2
+ 2i

8

√
lk � lk, b1 � lk+1, . . . , bd−1 � lk−1+d

we find thatAi belongs toRd
k−1. The setsBi ’s also belong toRd

k−1, since they are smaller
than theAi ’s. ✷

Let thenk0 be the smallest integer such thatlk �L1. From (3.15) and Proposition 3.2
we obtain that for allk > k0

Gk �
(
1+ 2(3/2)−k/(3d))Gk−1 �Gk0

∞∏
k=k0+1

(
1+ 2(3/2)−k/(3d))

�Gk0 exp
[
2
(
1− (2/3)1/(3d))−1]

which, together with Proposition 2.6, yields Theorem 2.2.✷
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4. Spectral gap ⇒ decay of correlations

In this section we prove a partial converse to Theorem 2.2. More precisely, assuming
finite range positive pair potential, we get the exponential decay of correlation in a
volume� with boundary conditionη provided our Glauber-type dynamics satisfies a
Poincaré inequality in that volume with that boundary condition. Unfortunately, we are
not able to prove the exponential decay of correlation as stated in Corollary 2.4 but only
with theL1(dµη

�) norm which appears on the RHS of (2.8) replaced by a much stronger
norm; therefore we do not have equivalence in Theorem 2.2.

The argument leading to the result previously outlined is well-known in the context
of lattice (bounded or unbounded) spin systems, see e.g. [8–10,15–18]. Below we stress
the main differences in the continuous case we are dealing with.

Recalling the operatorD+
x , defined in (2.3), we introduce the following semi-norm.

Forf ∈F� we set

|||f ||| :=
∫
�

dx‖D+
x f ‖L∞(dµη

�
) (4.1)

which is the continuous analogous of Liggett’s triple norm defined in Ch.1 of [6]. We
show next that the mappingx → ‖D+

x f ‖L∞(dµη

�
) is indeed measurable. We first notice

that (x,ω) → D+
x f (ω) is measurable w.r.t. the productσ -algebraB(Rd) ⊗ F . For

this purpose it is enough to show thatt :Rd × � �→ �, defined byt (x,ω) := ω ∪ x

is measurable. SinceF is generated by the functions(NA)A∈Bb(Rd), if we show that
(t−1 ◦ N−1

A ){k} ∈ B(Rd) ⊗ F for all nonnegative integersk, the measurability oft
follows. But(
t−1 ◦N−1

A

){k} = {(x,ω): NA(ω ∪ x) = k
}

= {(x,ω): NA(ω)= k, x /∈A\ω}∪ {(x,ω): NA(ω)= k − 1, x ∈A\ω}
thus the only problem is to show that the setM := {(x,ω): x ∈ ω} ∈ B(Rd) ⊗ F . But
M can be written as{(x,ω): 0 ∈ ϑ−xω}, whereϑx is the translation byx, and, since
the mapping(x,ω) → ϑxω is measurable (see, for instance [11]), we have thatM is
measurable. We have thus shown that(x,ω)→D+

x f (ω) is measurable. By consequence
x → ‖D+

x f ‖Lp(dµη

�
) is measurable for allp ∈ [1,∞). Finally, ‖D+

x f ‖L∞(dµη

�
) =

limp→∞ ‖D+
x f ‖Lp(dµη

�
), sox → ‖D+

x f ‖L∞(dµη
�
) is also measurable.

The main result in this section is:

THEOREM 4.1. –Letϕ � 0 be of finite ranger . If there existsG<∞ such that

µ
η
�(f,f )�GEη

�(f ) ∀f ∈D
(
Eη
�

)
,

then there arem = m(G, r, z) > 0 and α = α(G, r, z) < ∞ such that the following
holds. For any�f ,�g ∈ Bb(R

d) such that�f ⊂ �, �g ⊂ �, �f ∩ �g = ∅, and
|�̄r

f | ∧ |�̄r

g| � exp(md(�f ,�g)), we have

∣∣µη
�(f, g)

∣∣� α
(‖f ‖L2(dµη

�)
‖g‖L2(dµη

�)
+ z|||f ||||||g|||)e−md(�f ,�g) ∀f ∈F�f

, g ∈F�g
.
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The key ingredient in proving the above Theorem is the followingfinite speed of
propagationlemma.

LEMMA 4.2. –Let ϕ � 0 be of finite ranger . Then there areδ = δ(r, z) > 0 and
M = M(r, z) < ∞ such that the following holds. For any�f ,�g ∈ Bb(R

d) such that
�f ⊂�, �g ⊂�, �f ∩�g = ∅, and|�̄r

f | ∧ |�̄r

g| � exp(δd(�f ,�g)), we have

∣∣µη
�

(
P�,η
t (fg)−P�,η

t f P�,η
t g

)∣∣�MzeMt−δd(�f ,�g)|||f ||||||g||| (4.2)

for anyf ∈F�f
∩L2(dµη

�) andg ∈F�g
∩L2(dµη

�).

Remark. – For compact or (suitable) unbounded spin systems, one can prove a bound
analogous to (4.2) with its LHS replaced by‖Pt(fg) − Ptf Ptg‖L∞(dµη

�
); see e.g.

Proposition 4.18, Chapter I in [6] and [17] respectively. In the continuous case we do
not get such a stronger bound; however Lemma 4.2 as stated is precisely what we need
to prove Theorem 4.1.

Proof of Theorem 4.1. –We can assumeµη
�f = µ

η
�g = 0. Sinceµη

� is the invariant
measure forP�,η

t we have∣∣µη
�(f, g)

∣∣= ∣∣µη
�

(
P�,η
t (fg)

)∣∣= ∣∣µη
�

(
P�,η
t f P�,η

t g
)+µ

η
�

(
P�,η
t (fg)−P�,η

t f P�,η
t g

)∣∣
�
∥∥P�,η

t f
∥∥
L2(dµη

�
)

∥∥P�,η
t g

∥∥
L2(dµη

�
)
+ ∣∣µη

�

(
P�,η
t (fg)− P�,η

t f P�,η
t g

)∣∣,
where we used Schwarz inequality. Forδ and M as in Lemma 4.2, chooset =
δ(2M)−1d(�f ,�g) and apply‖P�,η

t f ‖L2(dµη

�
) � e−t/G‖f ‖L2(dµη

�
) together with the

bound (4.2) to get the result.✷
Proof of Lemma 4.2. –Since the volume� and the boundary conditionη are kept

fixed we drop them from the notation. We claim for eachf,g ∈ D(E)

µ
(
Pt(fg)−Ptf Ptg

)= 2

t∫
0

ds E(Psf,Psg) (4.3)

which is a general identity for self-adjoint Markov semigroups. In order to verify it, let
us first considerf,g ∈ L∞(dµ)∩D(E) and approximate the generatorL by the bounded
(in L2(dµ)) operatorLk defined byLkf := − ∫ k0 λdEλ(f ) where{Eλ,λ ∈ [0,∞)} is the
family of spectral projectors associated to−L. We also letP k

t := exp(Lkt). SinceLk is
bounded, a straightforward computation shows

P k
t (fg)−P k

t f P
k
t g =

t∫
0

dsP k
t−s

[
Lk

(
P k
s f P

k
s g
)− P k

s f LkP
k
s g −P k

s gLkP
k
s f
]
.

Taking expectation w.r.t.µ and using self–adjointness ofLk we get (4.3) for the
approximating semigroup. Forf,g ∈ L∞(dµ) ∩ D(E) we now take the limitk → ∞
which gives (4.3); finally we extend it to anyf,g ∈D(E) by density.

We now fixf,g ∈ D0(L) (D0(L) was defined in (2.5)) and prove the bound (4.2) for
such functions. The lemma follows then by density (see the proof of Proposition 2.1
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for an analogous argument). Givenf as above we defineFt ∈ L∞(�,dx) asFt(x) :=
‖D+

x Ptf ‖L∞(dµ). We also letGt be defined in the same way withf replaced byg. Then,
recalling (2) in Proposition 2.1, the identity (4.3) implies

∣∣µ(Pt (fg)−Ptf Ptg)
∣∣ = 2z

∣∣∣∣∣
t∫

0

ds
∫
�

dxµ
(
e−βD+

x H�D+
x PsfD

+
x Psg

)∣∣∣∣∣
� 2z

t∫
0

ds
∫
�

dxFs(x)Gs(x).

(4.4)

We claim there areδ = δ(z, r) > 0 andM =M(z, r) <∞ such that

Ft(x) �MeMt

∫
�

dy e−δd(x,y)F0(y). (4.5)

Postponing its proof, let us first conclude the Lemma. SinceF0(y) = 0 if y /∈ �f , from
(4.4) and (4.5) we get

∣∣µ(Pt(fg)−Ptf Ptg)
∣∣� 2zM2e2Mt

∫
�

dyF0(y)

∫
�

dy′G0(y
′)

× sup
y∈�f

y ′∈�g

∫
�

dx e−δ[d(x,y)+d(x,y ′)]

� zCM2e2Mt |�f | ∧ |�g||||f ||||||g|||e−δd(�f ,�g)/2

for some constantC =C(δ). Redefiningδ andM , the bound (4.2) follows.
It remains to prove (4.5). We have

d

dt
D+

x Ptf = LD+
x Ptf + [D+

x ,L]Ptf

= LD+
x Ptf −D+

x Ptf + z

∫
�

dy
(
D+

x e−βD+
y H�

)
TxD

+
y Ptf,

(4.6)

where [D+
x ,L] denotes the commutator and(Txf )(ω) := f (ω ∪ {x}). The second

identity in (4.6) follows by a direct computation from (2.4). By integrating (4.6) we
get

D+
x Ptf = PtD

+
x f +

t∫
0

dsPt−s

{
−D+

x Psf + z

∫
�

dy
(
D+

x e−βD+
y H�

)
TxD

+
y Psf

}
. (4.7)

Of course we need to justify the steps leading to (4.7); as in the case of (4.3)
it is better first to approximateL by a bounded operator (inL∞(dµ)) so that
(4.6)–(4.7) hold trivially. Noticing that‖Txf ‖L∞(dµ) � ‖f ‖L∞(dµ) and (sinceϕ � 0)
‖D+

x e−βD+
y H�‖L∞(dµ) � 1 we can then remove the truncation in (4.7); we omit the details.
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SincePt is a contraction inL∞(dµ) from (4.7) we get the bound

Ft(x)� F0(x)+
t∫

0

ds
{
Fs(x)+ z

∫
�

dy 1d(y,x)�rFs(y)

}
, (4.8)

where we used again thatTx is a contraction inL∞(dµ) and‖D+
x e−βD+

y H�‖L∞(dµ) �
1d(y,x)�r which follows from the finite range assumption.

Let γ be the integral operator onL1(�,dx) with kernel γ (x, y) := z1d(y,x)�r; by
iterating (4.8) we get

Ft(x) � et
∞∑
k=0

tk

k!
(
γ kF0

)
(x).

It is now easy to show, by induction onk, the operatorγ k has an integral kernelγ k(x, y)

which can be estimated as follows

0� γ k(x, y) � zk
∣∣{y′: d(0, y′)� r}∣∣k−1

1d(x,y)�kr

by a straightforward computation we then get (4.5).✷
5. Logarithmic Sobolev inequalities?

One may wonder whether the Markov processes constructed in Section 2 satisfy a
logarithmic Sobolev inequality (LSI), i.e. if there existscs <∞ such that

µ
η
�

(
f 2 logf 2/‖f ‖2

2

)
� csEη

�(f ). (5.1)

The answer is negative as it can be easily shown. We remark that if one could prove that
(5.1) holds for a (large enough) fixed bounded volume�0 uniformly in the boundary
condition, then a uniform LSI both in the volume and the boundary condition would
follow, under a mixing assumption like (2.9), by adapting to the continuous case more or
less standard lattice spin techniques. The problem is thus the failure of (5.1) for a given
volume. To see this, we make the minimal assumption that the Hamiltonian isstable, i.e.
that there existsB > 0 such thatH ∅

�(ω) � −BN�(ω). By consequence, ifη ∈ � is an
arbitrary boundary condition,

H
η
�(ω)� −BN�(ω)+

∑
x∈ω,y∈η

ϕ(x−y) �
(−B+ inf ϕN�̄

r (η)
)
N�(ω)=: −A(η)N�(ω).

Let ρ := µ
η
� ◦N−1

� be the distribution of the number of particles in�. For a functionf
which can be written asf = g ◦ N� (i.e. f depends only on the number of particles in
�), we have

Eη
�(f )=

∞∑
k=1

ρ(k)k
[
g(k − 1)− g(k)

]2
.
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If we let g := 1[n,∞), theng2 log(g2)= 0, and (5.1) becomes

ρ[n,∞) logρ[n,∞)−1 � csρ(n)n. (5.2)

Sincex log(x−1) is increasing in(0,e−1), if n is large enough such thatρ[n,∞) < e−1,
we have

ρ[n,∞) logρ[n,∞)−1 � ρ(n) logρ(n)−1. (5.3)

On the other side, using the stability condition andZ
η
� � 1, we have

ρ(n)= (
Z

η
�

)−1z
n

n!
∫
�n

e−βH
η
�(x) dx � zn

n!e
A(η)n�n

which, together with (5.3), shows that (5.2) fails.
The only possibity is then to modify the transition rates. Our choice (2.4) can be

considered (sinceϕ � 0) as the continuous equivalent of the “Metropolis” algorithm
used in finite systems, where the transition ratei → j is equal to 1∧ e−β(H(j)−H(i)).
Another possible choice for the generator is, for instance,

(L̂�f )(ω) := ∑
x∈ω∩�

e−βD−
x H�(ω)D−

x f (ω)+ z

∫
�

D+
x f (ω)dx ω ∈�, (5.4)

which corresponds to a process where particle appear with ratez, and disappear with
rate e−βD−

x H . The associated Dirchlet form is

Êη
�(f )= z

∫
�

dx µη
�

(
(D+

x f )
2)

and, sinceÊη
� � Eη

�, the generator̂Lη
� has a spectral gap greater than or equal to the

spectral gap ofLη
�. Inequality (5.2) becomes

ρ[n,∞) logρ[n,∞)−1 � csz|�|ρ(n− 1). (5.5)

While (5.5) is equivalent to (5.2) whenϕ = 0, if for ϕ in some appropriate class of
potentials one knew that the particle distributionρ behaves like e−cn2

for largen, then
(5.5) would hold and a LSI cannot be ruled out. For superstable potentials (see [13]) it
is known thatρ(n)� e−c1n

2+c2n, so it could be interesting, in this case, to investigate the
possibility of having a LSI forL̂η

�.
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