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ABSTRACT. — We consider a continuous gas id-aimensional rectangular box with a finite
range, positive pair potential, and we construct a Markov process in which particles appear an
disappear with appropriate rates so that the process is reversible w.r.t. the Gibbs measure. If tl
thermodynamical paramenters are such that the Gibbs specification satisfies a certain mixir
condition, then the spectral gap of the generator is strictly positive uniformly in the volume and
boundary condition. The required mixing condition holds if, for instance, there is a convergent
cluster expansiom 2002 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Dans une boite rectangulaire de dimengipon considére un gaz continu avec
un potentiel a portée finie, pair et positif, et on construit un processus de Markov dans leque
les particules apparaissent et disparaissent avec un taux tel que ce processus soit réversi
par rapport a la mesure de Gibbs associée. Si les paramétres thermodynamiques assurent
certaine condition de mélange pour la mesure de Gibbs, nous concluons que le trou spectr
associé au générateur est strictement positif, uniformément par rapport au volume de la bof
et aux conditions aux bords. La condition de mélange requise a lieu par exemple lorsqu'il y &
convergence du développement viriel2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

We consider a continuous gas in a bounded volume R¢, distributed according
the Gibbs probability measure associated to a finite range pair potentide Gibbs
measure in a voluma is given by (see Section 2 for more details)
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_1 ®
Wi (dw) :=e*(Z3) 2" @ exp[—BHL ()] (Qa X Sac ) (dw),

whereg is the inverse temperature,the activity, H the Hamiltonian,N, the number

of particles,n the boundary conditionp , the Poisson point process inwith intensity

1, andZ} is the normalization. Then we introduce a Markov process in which particles
may appear and disappear everywherd iwith rates such that the process is reversible
with respect to the Gibbs measure.

These kind of processes, also callgohtial birth and death processeksave been
constructed by Preston in [12] as a particular case of jump processes, in a more gener
framework than ours, i.e. without assuming reversibility w.r.t. a Gibbs measure. In [12],
and, more recently, in [3], many of their general properties are studied.

In this paper we are interested in the approach to the invariant measurd ihshase,
and, in particular, we show that for a positive, finite range, pair potential, & are
such that there is a convergent cluster expansion (see condition (CE) in Section 2), the
the generator of the procegs, has a spectral gap which is strictly positive uniformly
in the volume and the boundary condition. Convergence of cluster expansion is no
actually necessary for our results and it will be only used to prove a mixing condition
for the Gibbs measures (Corollary 2.5 below) which could be assumed as a more gener
hypothesis.

Uniform positivity of the spectral gap has been discussed in several papéatita
spin systems, for either discrete/compact spin spaces [15,16,9,10,7] and unbounded sj
spaces [18,17,4]. Within that context the general idea is that the following notions are
equivalent

(1) The spectral gap of the generator is strictly positive uniformly in the volume and
boundary condition.

(2) The logarithmic Sobolev constant is bounded uniformly in the volume and
boundary condition.

(3) The covariance w.r.t. the Gibbs measure of two local functions decays exponen
tially fast in the distance of the “supports” of the functions, uniformly in the vol-
ume and boundary condition.

We observe that for the system we consider in this paper, there is no hope of provin
(in general) a logarithmic Sobolev inequality (LSI). Even worse such an inequality
fails even for a fixed finite volume. Consider, indeed, the trivial cas& ef 0. Then

the distribution of the number of particles in a volumeis Poissonian with mean
z|A|. It is easy to verify (see [5], Section 5.1) that the Poissonian distribution does not
satisfy a LSI. It is still possible, though, that under stronger conditions on the potential
which do not include the casH = 0 (e.g. superstability, see [13]) a LSI is indeed
satisfied.

Our results are presented in Section 2, while most proofs are postponed to Section :
Section 4 contains a partial converse of our main result, i.e. that the uniform positivity of
the spectral gap implies the exponential decay of the covariance of two local functions
Finally, Section 5 is a brief discussion on the possibility of having a logarithmic Sobolev
inequality.
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2. Notation and results

The Gibbs measures. Let B(RY) be the Borels-algebra onRY; we denote by
B,(R%) c B(RY) the collection of all bounded Borel sets. Rbk B, (R?), |A| indicates
the Lebesgue measure af Let RY c B,(RY) be the set of allectangles(cartesian
products of finite closed intervals). We considercasfiguration spacethe setQ of all
locally finite subsets oR, i.e.

Q:={w c R’ cardw N A) < oo for all bounded subsets of R¢},

where cardA) stands for the cardinality of the sdat We endow<2 with the o -algebra
F generated by the counting variabl@s, :w — cardw N A), where A € B,(R?).
Givenw, n € Q we letw A n be the symmetric difference @ andn, i.e.wAn :=

(w U n)\(w N n). For A € B,(RY), we consider also the finite volume configuration
space

Qp :={w C A: wisfinite}

with o -algebraF, generated by the function$,, such thatA is a Borel subset of\.
We write f € F, to indicate that thef is F4-measurable. The functiofi is said to be
local if there existsA € B,(R¢) such thatf e F,.

For x,y € RY we denote byd(x, y) the Euclidean distance, while:| stands for
d(x,0). Let :RY — R be a measurable even functiap;is called apair potential
We assume that hasfinite ranger, i.e. thatp(x) = 0 if |x| > . GivenA C R we let

A = {xe R?: d(x, A) < r}.
The HamiltonianH, : Q — R, is given by

Hj(w) := E px —y).
{x,y}Co
{x,yJNAZD

Forw,n € Q we also letH} (w) := Ha(wanac), Wherewnae := (@NA)U (N AS), A
stands for the complement af, andp is called theboundary conditionWe denote with
0 the Poisson point process @nwith intensity 1, and we defin@’, := Q5 x ¢,
where §5c , is the probability measure o(2,c, Fxc) which gives mass 1 to the
configurationn. For A € B,(RY), the finite volumeGibbs measurén A at inverse
temperatures, activity z and boundary condition is given by

A (o) = & (Z3) 2 exp[— B H] ()] Q) (do), (2.1)
whereZ] is the appropriate normalization factor (we omit for simplicity the dependence

of these quantities opandpB). We denote with., ( ) the expectation of with respect
to 'k, while u,(f) denotes the functiom — 4 (f). Explicitly, for all measurable
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functions f on Q,, we have
1 ad 7" n
WA= (2S5 [t f s,
n=0 """\

where we have identified the functions @n with the symmetric functions o>, A”.
ForasetX € F we setu, (X) := ua(1y), Wherely is the characteristic function ox.
We write u( f, ) to denote the covariance (with respecitpof f andg. The family of
measures (2.1) satisfies the DLR compatibility conditions

pa(py (X)) =pa(X) VXeF VV,AeB,(RY),V CA. (2.2)
Thedynamics. For a given functionf on 2 we let

D f(®):= f(o\{x}) — f(®) D f(®):=f@U{x}) - f(®) ©0cQ, xeR’
(2.3)
where it is understood thd_ f (¥) = 0. For simplicity we use the notation

(Dyf-Dyg)@):= Y D;[f(@)D;g).
xewnNA
The stochastic dynamics we want to study is determined by the genefatora €
B, (R?%), defined by

xewnNA

(Laf)@):= Y D;f(w) +z/e—ﬂD?HA<a’>Djf(w)dx we Q. (2.4)
A

L’ stands forL , acting onL?(u}) with domainDy(L") given by
Do(L}) ={feL?u}): IM eN,|f| <M and f (w) = 0 whenN, (») > M}. (2.5)
The Dirichlet form associated with’, is given by
EXCS 8) = ((=LA) S 8) 12, S8 €Do(Ly)

and we let€] (f) := EL(f, f). The construction of the corresponding Markov semi-
groups in the spaces” (i), p € [1, oc], is more or less standard, and it is summarized
below

PROPOSITION 2.1. —

(1) Do(LY) is dense inL2(u}).

(2) EX(f,9) = WA (DL f - Dyg) =z [, deu (PP ADL FDYg), for all f.g €
Do(LL).

(3) L is symmetric orDo(L").

(4) & is closable and its closure is associated with a self-adjoint extensidi, of
We maintain the same symbdl§ and&] to denote these extensions, and denote
by D(L"), D(E}) the respective domains.
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(5) PN = glh is a positive preserving contraction semigro(ihus a Markov
semigroupon L?(uy) for all p € [1, oo].

Remark— A more explicit construction for these processes can be found in [12] where
sufficient conditions are found which guarantee the uniqueness of the solution of the
Kolmogorov's backward equations. Since we are mainly interestéd joroperties, our
approach is more direct for our purposes.

Proof. —For statement (1), lef € L?(uy), and definef,, € Do(L"}) by

fu(@) :=[(f(@) An)V (=n)] - Ly, @)<ns

wherea v b (a A b) stands for the maximum (minimum) betweeandb. The dominated
convergence theorem implies thaf — Jullzzny goes to 0. Statement (2) is a simple
computation, while (3) is trivially implied by (2). Statement (4) is the well known
construction of the Friedrichs extension of a non-positive symmetric operator. In order
to prove (5) it is sufficient (and actually necessary) to show that (see Theorems 1.3..
and 1.3.3 of [2])

(@) If f € D(EY then|f| e D(EX) andEX (| f1) < EX(S).

(b) fO< feD(E&)) thenf AleD(EY) andS"(f AD <ELS).
Properties (a) and (b) are obviously true Bg(L,) thanks to the expression for the
Dirichlet form given in (2), and they can be directly extendedi@&}) sinceD(E}) is
the closure ofDg(L,) w.r.t. the norm ||f||L2(M ,+ ELHIY? o

The spectral gap ot} is defined as as
gap(L}) :=infspeq—L} [1'),

wherel* is the subspace df?(u) orthogonal to the constant functions.

In order to prove our main result we need some kind of mixing property of the
Gibbs measure, which we can prove under the hypothesis of a convergent cluste
expansion. An explicit condition which guarantees this convergence is the following:
let&(B) := e [ra(1— e P¢™) dx. Then we assume

E(B)/(1—228(B)) < L. (CE)

Our main result is then the following:

THEOREM 2.2. —Letg > 0 be a pair potential with finite range. If (CE) holds there
existsG = G(r, z, B) finite such that for alh € Q, A € R?,

A (f, /)< GEL(S), forall feD(EY). (2.6)

Remark— Poincaré inequality (2.6) is equivalent to any of the following statements:
(1) gagL}) ' <G.

(2) 1P f = wh fllizgen) < WAL Y29 forall f e L2(u}).

In order to prove the theorem we need to

(1) prove a mixing condition for the Gibbs measures (Corollary 2.5 below),



96 L. BERTINIET AL./Ann. I. H. Poincaré — PR 38 (2002) 91-108

(2) show that the spectral gap is strictly positive for all rectangles contained in some
fixed cubeA whose size depends an 8 andr (in Proposition 2.6 below we
actually show that the spectral gap is strictly positive for any bounded volume).

Given (1) and (2), there are several standard arguments (see the papers cited in t
introduction) which produce Theorem 2.2 fattice spin systemd he easiest approach

is perhaps the one given in Theorem 4.5 in [8]. We will adapt the same strategy to ou
system. The proof will follow the scheme

Lemma 2.3+ cluster expansion= Corollary 2.4 = Corollary 2.5
Corollary 2.5+ Proposition 2.6= Theorem 2.2

Our first result is a general upper bound for the covariance of two local functions.

LEMMA 2.3.-Let A € B,(R?) and letA s, A, be two Borel subsets af such that
ArNA,=0.Forall z>0,8>0,17eQ and all pairs of local functionsf, g with
f € Fa, andg € F,,, we have

n n
ZavapungZa

lwa (fs ) < a1 fDui (gl sup -1/ (2.7)

] ]
neQ ZA\Af ZA\Ag

Remark— One may wonder how we can bound the covariance of two functions in
terms of theirL! (rather thanZ?) norm. This is possible becaugg g have disjoint
“supports”, i.e. Ay N A, =0.

Using standard cluster expansion, one can estimate the logarithm of the ratio of th
partition functions appearing in (2.7) (see Lemma 4 of [14]) and obtain

COROLLARY 2.4. —Assumep > 0 and letz, 8 be such tha(CE) holds. Then there
exista = a(r, z, B) andm = m(r, z, B) such that for allA, Ay, A, € B,(R?) such that
Ay CA, Ay CAd(As, Ay) >2r,and|A| A|A,| < expimd(Ay, Ay)), we have

(WA Cf ) SapX(fDul(ghe ™ Arhd Ve F,  geFa, VneQ. (2.8)

This result has an immediate consequence, which will be useful for our purposes.

COROLLARY 2.5.-If ¢ > 0 and (CE) holds, there existt = a(r,z,8) and m =
m(r, z, B) such that for allA, Ay € B,(RY), A; C A,

A () = n2 ()| <aph(fHemdirnae) (2.9)

forall w,n € Q,forall f € F,, suchthat{(A s, n Aw) > 3r, and|/_\}| <expm(d(Ay,
nAw)—r)l.

Remark— As we said before, Corollary 2.5 is the only ingredient we need (together
with the positivity of the spectral gap in a given finite volume) in order to prove
Theorem 2.2. We observe here that inequality (2.9) is very strong, because of the factc
wh (| f]) inthe RHS. Let for instance = ¢ (free boundary condition). Then (2.9) implies
that the differenceu (f) — 1% (f)| is boundeduniformlyin w. Thus one cannot hope
that (2.9) holds for a large class of interactions. On the other side (2.9) is stronger tha
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we actually need. To be more precise what we really need is inequality (3.11) in the nex
section.

Proof. —Let 4" be the density oft4 w.r.t. uy. Then

hw,n _ exq_ﬂ(HK) B HX)]
AT Wl (expd—B(HE — HY))

soh’y" is measurable w.r.tF,, whereA := {x € A: d(x, w An) <r}. Therefore from
Corollary 2.4 it follows that

[p (f) = (O] = | Lf @ = hXD]| = i (f X
Saph (1 fDuh (h3")e " A  aply (| fye e resn =]
and we get the result, after redefining O
Finally we will show that the spectral gap is strictly positive in any bounded volume.

PROPOSITION 2.6. —If ¢ > 0, then
WAL ) <26 =1)EX(S) VS eD(E)

forall z>0,8>0,neQ, A e B,(RY).

3. Proofs
3.1. Proof of Lemma 2.3

If A is a Borel subset o and# is anF, measurable function oft, we have (see

(2.1))
wa (h) = 0% (pa ah) (3.1)
where

w

7z
paa(w) =¥ @ expl—BHA (N (AU A°)] QQ)A -
A

Notice that the Hamiltonian does not include the interactions betwWemm A\ A, since
those terms are included in the partition functiog, 4. From (3.1), if we let

PAAfUA, (@) i ZK\(Af'UAg)Z;L\)

PAA (@) PA A, (@) B Z?\)\AfZ;L\)\Ag

Ry fe(@) = (3.2)

we obtain
i (f. ) =un(fg) — nr(fHrx(g)
= Q?\fUAg [fepn.n;PaA(RA 1. — D).
Hence



98 L. BERTINIET AL./Ann. I. H. Poincaré — PR 38 (2002) 91-108

|WA(f, &) <SUPIRA. £ — 1|Q’]AfUAg [ fgloa.a,PAA,]
=SUP|RA 1o — LA (L F DA USFD.
3.2. Proof of Proposition 2.6

By writing the covarianced, (£, f) in the product coupling, we get

1
WACE ) =5 / W) (dw) 2 (00) [f(w) ok

1 - ad n
=207 Y S5 [ dedye ORI £ — £
n,m=0 A XA™
(n,m);é(0,0)

(3.3)
LetD; f(x1, ..., xy) == f(x1, ..., Xiy ..., Xp) — f(x1, ..., x,), Wherex; denotes that the
variableyx; is omitted. By telescopic sums we have

f(xlv""xn)_f(yl""’ym):_ZDk_f(xlv"'7xk)+ZDh_f(yl="-’yh)
k=1 h=1

whence, by Schwarz inequality,

1
LG m) = fOon )]’

<nd [Dy flxa, ... xk) ZDh_f(yl,---,J’h)]z

k=1
which, plugged into (3.3), yields
n < Z|A| ”
wa(f ) < 2(Z3) 1 e z_:lk D)
" (3.4)
x/dxe_ﬂHA(x) (D7 f(xy .. x0)]

where we used

00 m
)75 [dyet o =1 (z0) - e
m!
m=1 Am

Last inequality holds becauge> 0 so that e#7:®) < 1. By the same reason, fér< n
we haveH) (x1, ..., x,) = HJ (x1, ..., x;); therefore, by using (3.4),

n—k
WA ) <2(Z)) ML - e ZZZ'A' [ dve 0y )’

= (n—l)!Ak

00 k
=27 e kzl k - D! / de e "2 (D £ ()]
- J




L. BERTINIET AL./ Ann. I. H. Poincaré — PR 38 (2002) 91-108 99

X ZKIAR (n = k)!(k — 1)!
<2 -l (-1

n=k

<2t (1—e My (Z))” 1§: /dxe‘ﬁ”' A [Dp f0)?

1 (k—D!

=2eMl(1— g0l (1) 7! Z Z—' / dr e PHR) Z (D7 f(0)]?
k=1 k'Ak j=1

=2(e"™N - 1)l (N,

where the last identity follows fron€} (f) = uk(|Dx f1?) (see (2) of Proposition
2.1). O

3.3. Proof of Theorem 2.2

Notation. Throughout this proof we let, for brevity,

1F =1 f vy (F-8) 1= (f.8)i2g). P eIl ool (3.5)

As we said earlier Theorem 2.2 is a consequence of Corollary 2.5 and Proposition 2.¢
We proceed more or less as in [8], Theorem 4.5.

Basically what we want to show is that the gap stays (almost) the same if we double
the volume. LetA ¢ R? and assume that the longest sidefohas length~ L and it
corresponds to the directiafy in RY. We write A = A U B, whereA and B are two
rectangles of roughly the same size with a small overlap in the diregiobhe overlap
is order+/L. We then claim that Corollary 2.5 implies the existence& ci(r, z, B),
cr=c(r,z,B) andLg= Lo(r, z, B) such that

WA (f ) < L+ 1€V (ualfy )+ ms(f, f)) YL>Lo.  (3.6)

We observe that this inequality holds with = 0 if A and B are disjoint and non—
interacting, so tha, = u'y x u%. The factorc; exp(—com~/L) measures in a certain
sense the weak interaction betwegmnd B. The proof of inequality (3.6) relies on the
following lemma:

LEMMA 3.1.—-LetA, A, B € B,(R?), with A = A U B. Assume that for somgee Q,
e€[0,4/2—1), p €[1, 0], we have

|usg —wagll, <elgll, VgeLl(S2 Fac, un), _—
lwag — nrgll, <elgll, YgeLP(S2 Fpe,py).

Then

W ) < (=28 — &)l (walfs )+ us(fa ) f e L2(uh). (3.8)
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Remark— A similar result was obtained in Proposition 4.4 in [1] (see also Proposi-
tion 3.5in [8]). The proof given there is somehow more complicated and it is based on the
explicit expression for the semigroup of the “2-block dynamics”, given’By €452,

We present below a shorter and more direct approach.

Proof. —
Step 1. Reduction to the cage= 2. Let p € [1, 0], letg~*:=1— p~1, and, for
r € [1, oo], consider the linear operators
TB,r:Lr(Qa fAfa /J'UA) > f = MB(f) - MnA(f) € Li’(Q’ JT'B“ NUA)y
Tar:L' (R, Fpe, h) 3 f > palf) — A (f) € L'(Q, Fae, ).
Inequality (3.7) says tha§Tg ,|| < e and [|T4 || < e. Using (repeatedly) the DLR
conditions (2.2), we have, for aff € LP(Q, Fac, u}), g € LI(Q, Fpe, u}),
(usfog)=un((us)g) = 1a(kr(f8)) = 1Hr(f8)

= A (na(f8) = ma(f(rag)) = (f mag),
thus

(TB,pfvg>= (f, TA,qg> erLp(Qva"v /’LUA)’ VgeLq(Qva”’/’LnA)'

This shows that, ip < oo, identifying the dual ofL” with L9, T, , is the adjoint ofl's ,,,
while if p = oo thenTy , is the adjoint ofT’, ,. In both casedT, ;|| = |75, ,ll < €. By
the Riesz—Thorin interpolation theorg|fi, »| < . InterchangingA and B we also find
1520l <e.

Step 2. Conclusiorn.et f € L?(xy) and assume (without losing generaliy) f = 0.
Then, recalling (3.5),

wh (o ) =y (%) = mh (Fruaf) + uh(Freaf) = wy (maCf. ) + wi (fraf)-
(3.9)
The second term can be written as

prA(fraf)={(f —usf),muaf)+{nsf naf)
=((f—usf),maf)+{firgmaf)
SWf —msflallwafllz+ 1 fll2llema fll2 (3.10)
<[Nf—=nsfllztellflzliwaflz
=[Ilf — s fllz+ell fll2) wa(freaf)Y?,

where the second and the last equalities follow from the DLR conditions (2.2), while in
the second inequality we have used (3.7) witk- 2. From (3.10) we get

WA a ) <If — s fl+ I FI5+ 26l fll2ll £ — s £l
<uWh(us(fs ) + 1 F13(28 + £2)
which, together with (3.9), implies (3.8)0

In order to proceed with the proof of Theorem 2.2 we go back to the geometry of
A and B described before (3.6) and we want to show that Corollary 2.5 implies that
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inequality (3.7) holds with, say; = oo, for all boundary conditions. In fact, i € Fe,
andL is large enough so that Corollary 2.5 can be applied, we have, by (2.2)

lresg = niglle = lnpg —winpglle < sup  |uhe —upel
W, TEQWAC=TpC (311)

< afjgllie M AEMND Lol g )| MA M),

The same bound applies to the quantify,g — 1 gll. Therefore (3.6) follows from
Lemma 3.1 and from our choice of the geometry of the deded B.

The next step is to bound the quantiy, (s (f, f) + ugs(f, f)) in terms of the
Dirichlet form £ (f). GivenV e R4, let

Gy :=Gy(r.z, B):=supgapL])) "
ne
We have, then

wh (walts /) +us(fs £)) < (GaVv Gk [ua(IDy (D) +us(1D5 ()]
< (GaV GRRA [IDAus(HIP + 1Dsnp (O]

= (GaV G[EX) + uh (1D (NP)].
(3.12)
From (3.6) and (3.12) we get

WAL ) < (L4 e V) (G v G [ELN) + 1k (IDins(HID)]. (3.13)

At this point one may be tempted to discourage, because if we bound the tern
WA (D35 (f)1?) with £] then we get

Ga < (24 c1e6?VE) (G4 vV Gp)

which implies that if we (roughly) double the volume, the invetsg of the spectral
gap also (roughly) doubles. But, as observed in [8], oneasanage over the location
of the overlap Consider in fact a sequence of pajrs;, B;};_,, where, for instance,
s := [LY3], where|-] is the integral part. By averaging (3.13) ovewe obtain

1 N
HA(f ) < (14 16 E) SUNG s, v Gig) [5X(f) + -1 (Z |D;imB,<f>|2>] :

i=1
(3.14)

If the setsA;, B; are chosen in such away thatN B; N A; N B; =@ for all i # j then
there existd., = L1(r, z, B) = Lo such that for allL. > L,

1 2
Gy < (14 Cle_czmﬁ) <l+ —) SUPG 4, VGp) < (1+ m) SURG 4, V Gp,).
N i i
(3.15)
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In order to conclude the proof of Theorem 2.2 all is left to do is to organize the geometric
iterative construction. Lek := (3/2)"/4, and letR{ be the set of all rectangles R?
which, modulo translations and permutations of the coordinates, are contained in

[0, lya] x [0, Lyl x oo % [0, lital.

Let alsoG := sup,.rs Gv. The idea behind this construction is that each rectangle in

RI\RY_, can be obtained as a “slightly overlapping union” of two rectangleBdn; .
More precisely we have:

PROPOSITION 3.2. —For all A € RI\R{_, there exists a finite sequenté;, B;}:X;,
wheres;, ;= le J, such that

(1) A=A;UB;andA;, B; e R¢_,, foralli=1,...,5

(2) d(A\A;, A\B) > 3T, foralli=1,.... 5

Proof. —Let A := [a1, b1] x -+ x [ag, bg] € RI\R{_;, We can assume, = 0 and
b, <l forn=1,...,d. Then necessarily, > I, since, otherwisel € Rf_l. Define

b 2i
m:mmw~mmm4x@i+iﬂq

b
&:mmexmmde

We haved (A\A;, A\B;) = £J/I;. Furthermore

bd 1 155 < 3 15
\— <—+ <l
\/_k 4 2 +4 k

which, together with the fact th@t < b,, implies thatA; and B; are both subsets af.
Moreover, since, forall =1, ..., s¢

b
<4 \/E< Le, bi<Ulgs1, ..., bg—1 <lx-11a

we find thatA; belongs tdR¢{_,. The setsB;’s also belong tak{_,, since they are smaller
than theA;’s. O

Let thenkq be the smallest integer such tliat> L;. From (3.15) and Proposition 3.2
we obtain that for alk > kg

o0

G < (1423/27 "GN G1 < Gy, [ (1+23/2)7H/6)
k=ko+1

< Gy exp[2(1— (2/3)Y/630) 7
which, together with Proposition 2.6, yields Theorem 2.21
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4. Spectral gap = decay of correlations

In this section we prove a partial converse to Theorem 2.2. More precisely, assuming
finite range positive pair potential, we get the exponential decay of correlation in a
volume A with boundary condition; provided our Glauber-type dynamics satisfies a
Poincaré inequality in that volume with that boundary condition. Unfortunately, we are
not able to prove the exponential decay of correlation as stated in Corollary 2.4 but only
with the L1(du’} ) norm which appears on the RHS of (2.8) replaced by a much stronger
norm; therefore we do not have equivalence in Theorem 2.2.

The argument leading to the result previously outlined is well-known in the context
of lattice (bounded or unbounded) spin systems, see e.g. [8-10,15-18]. Below we stre:
the main differences in the continuous case we are dealing with.

Recalling the operatob/, defined in (2.3), we introduce the following semi-norm.
For f € FA we set

7= [ QoD il (4.2)
A

which is the continuous analogous of Liggett’s triple norm defined in Ch.1 of [6]. We
show next that the mapping — ||Djf||Lm(dM1) is indeed measurable. We first notice
that (x, w) - D} f(w) is measurable w.r.t. the produst-algebraB(R?Y) ® F. For

this purpose it is enough to show thatR? x Q r , defined byr(x, w) := w U x

is measurable. Sinc& is generated by the function8Vy) scp,re), if we show that
(tto N;l){k} e B(RY) ® F for all nonnegative integers, the measurability of
follows. But

(tTto NyY k) = {(x,w): Na(wUx) =k}

={(x,0): Na(w)=k,x ¢ A\w} U{(x,0): Na(w)=k—1x € A\w}
thus the only problem is to show that the 8ét:= {(x, w): x € w} € B(RY) ® F. But
M can be written a$(x, w): 0 € ¥_,w}, whered, is the translation by, and, since
the mapping(x, w) — 9@ is measurable (see, for instance [11]), we have Maits
measurable. We have thus shown thatw) — D} f (w) is measurable. By consequence
x — ||Djf||L,,(dM1) is measurable for allp € [1, 00). Finally, ||Djf||Lm(dMnA) =
lim,,_, o ||l')jf||L,,(d,'LZ), SOx — ||D;f||LDC(dM7\) is also measurable.

The main result in this section is:

THEOREM 4.1. —Lety > 0 be of finite range-. If there existsG < oo such that

ua(f. £) < GEL(f) YfeD(E).
then there aren = m(G,r,z) > 0 and ¢ = «(G, r,z) < oo such that the following

holds. For anyAy, A, € B,(RY) such thatA; C A, A, C A, Ay N A, =¥, and
[N I A A, < expimd (A, Ay)), we have

WA ) <@ (I f ey I8 a@ery + 2N F g €442 Y f e Fy ) g € Fa,.
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The key ingredient in proving the above Theorem is the followfimife speed of
propagationlemma.

LEMMA 4.2.—Let ¢ > 0 be of finite ranger. Then there areS = §(r, z) > 0 and
M = M(r,z) < oo such that the following holds. For any;, A, € B, (R) such that
ApCA A CA AN A, =0, and|A| A Al <expdd(Ay, A,)), we have

| (PA(fg) — PATFPRTg) | < Mze P Ar2 | £l gl (4.2)

forany f € Fx, N L3(du}) andg € Fx, N L2(duy).

Remark— For compact or (suitable) unbounded spin systems, one can prove a boun
analogous to (4.2) with its LHS replaced Wy, (fg) — PtfP,g||Loc(dM ), see e.g.
Proposition 4.18, Chapter | in [6] and [17] respectively. In the continlious case we do
not get such a stronger bound; however Lemma 4.2 as stated is precisely what we ne
to prove Theorem 4.1.

Proof of Theorem 4.1. We can assumg, f = u,g = 0. Sinceu, is the invariant
measure fo?*"" we have

A CF ) = [a (P (F))| = [uh (P f PRg) + i (PR (f9) = P f P8
HPA fHLZ(dM gHLZ(d,ﬂ) + |V“A(PA "(fg) — P fPMg)],

where we used Schwarz mequahty Féorand M as in Lemma 4.2, choose =
5(2M)~d(A;, A,) and apply || P "f||Lz(dM y < e I/G”f”Lz(d;L , together with the
bound (4.2) to get the result.0

Proof of Lemma 4.2. Since the volumeA and the boundary condition are kept
fixed we drop them from the notation. We claim for eatly € D(E)

w(P.(fg)— P.fPg) =2 / ds E(P, f. P.g) (4.3)
0

which is a general identity for self-adjoint Markov semigroups. In order to verify it, let
us first considerf, g € L*°(du) ND(E) and approximate the generatoby the bounded

(in L2(dw)) operatorL, defined byL, f := — [5 * dE,(f) where{E,, A € [0, 00)} is the
family of spectral projectors associated-td.. We also letP* := exp(Lt). SinceL; is
bounded, a straightforward computation shows

Pr(fg) — PFfPlg /ds JLe(PEfPrg) — PEfL PFg — PrgL PF f].

Taking expectation w.r.tu and using self-adjointness df, we get (4.3) for the
approximating semigroup. Faf, g € L*(dw) N D(E) we now take the limitk — oo
which gives (4.3); finally we extend it to ang g € D(E) by density.

We now fix f, g € Do(L) (Do(L) was defined in (2.5)) and prove the bound (4.2) for
such functions. The lemma follows then by density (see the proof of Proposition 2.1
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for an analogous argument). Givghas above we defing, € L*(A, dx) asF,(x) :=
| DY P, f || =gy - We also letG, be defined in the same way withreplaced by. Then,
recalling (2) in Proposition 2.1, the identity (4.3) implies

t

/ ds/ dxu(e_ﬁDrHAD:Pst:Psg)
0 A

\(P(fg)— PifPg)| = 22

’ (4.4)
< ZZ/ ds/ dx F; (x) G, (x).
0 A
We claim there aré =4(z,r) > 0 andM = M(z, r) < oo such that
Fw) < Me" [ dye o o). (4.5)
A

Postponing its proof, let us first conclude the Lemma. SiFigge) =0 if y ¢ A, from
(4.4) and (4.5) we get

[L(P(fg) — P.f Pig)| < 2:M2E2M! / dy Fo(y) / dy'Go(y)
A A

X sup e g 814, ) +d (x,y)]
yeAf
y'eA,

Sz2CMPEM A p| A AN fIllglle MR

for some constanf’ = C(§). Redefiningd and M, the bound (4.2) follows.
It remains to prove (4.5). We have

A

d
DIPf = LD{P.f+[D} . LIPf
4.6
- LD:P,f—D:P,fﬁ—z/dy(D:e_ﬁD;HA)TxD;FP;f, (46
A

where [D, L] denotes the commutator and’, f)(w) := f(» U {x}). The second
identity in (4.6) follows by a direct computation from (2.4). By integrating (4.6) we
get

t
DjP,f:P,Djf—l—/dsP,_s{—D;Psf-i-Z/dy(Dje_ﬁD;HA)TXD;Lng}. (4.7)
0 A

Of course we need to justify the steps leading to (4.7); as in the case of (4.3)
it is better first to approximatd. by a bounded operator (iL.>°(du)) so that
(4.6)—(4.7) hold trivially. Noticing that|T f || .~ < | fllL=@w and (sincep > 0)
||Dje‘ﬂD;”A |l L (duy < 1 we can then remove the truncation in (4.7); we omit the details.



106 L. BERTINIET AL./Ann. I. H. Poincaré — PR 38 (2002) 91-108

SinceP, is a contraction in.*(du) from (4.7) we get the bound
t
F0) < Fo) + [ ds{Fs<x)+z [ 1d<y,x><rFs(y)}, (4.8)
0 A

where we used again tha} is a contraction in.*°(du) and ||D;fe—/31’3.v+"1’A Il ooy <
La(y,x)<r Which follows from the finite range assumption.

Let y be the integral operator oh'(A, dx) with kernel y (x, y) := zLa(y.v)<r; DY
iterating (4.8) we get

0 k
F,(x)<e’Zk— (v* Fo) (x).

It is now easy to show, by induction dnthe operatop* has an integral kernel* (x, y)
which can be estimated as follows

k—1
0< v (e, y) <Y dO, ) <P} Lage <

by a straightforward computation we then get (4.50

5. Logarithmic Sobolev inequalities?

One may wonder whether the Markov processes constructed in Section 2 satisfy
logarithmic Sobolev inequality (LSI), i.e. if there exisis< oo such that

wh (£2log £2/1£115) < ¢;EX (). (5.1)

The answer is negative as it can be easily shown. We remark that if one could prove the
(5.1) holds for a (large enough) fixed bounded volumguniformly in the boundary
condition, then a uniform LSI both in the volume and the boundary condition would
follow, under a mixing assumption like (2.9), by adapting to the continuous case more ol
less standard lattice spin techniques. The problem is thus the failure of (5.1) for a givel
volume. To see this, we make the minimal assumption that the Hamiltorstabig i.e.

that there exists3 > 0 such thatH? (w) > —BN, (w). By consequence, if € Q is an
arbitrary boundary condition,

H{(w)>—BNa(@)+ Y ¢x—y) > (=B+infoNz () Na(w) =: —A@)Na ().

XEw,yeN

Let p := i o N;* be the distribution of the number of particlesAn For a functionf
which can be written ag = g o N, (i.e. f depends only on the number of particles in
A), we have

ENP =D pk[gk — 1) — g (k)]

k=1
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If we let g := 1,0, theng?log(g?) = 0, and (5.1) becomes
pln, 00)log pln, 00) ™ < ¢sp(n)n. (5.2)

Sincex log(x 1) is increasing in0, e™1), if n is large enough such thafn, co) < €72,
we have

pln, 00)logpln, 00) ™t = p(n)logp(n) 2. (5.3)
On the other side, using the stability condition aii> 1, we have

17" "

pn) = (Z3) 15 [ et de < St ar
n: n:

An

which, together with (5.3), shows that (5.2) fails.

The only possibity is then to modify the transition rates. Our choice (2.4) can be
considered (since > 0) as the continuous equivalent of the “Metropolis” algorithm
used in finite systems, where the transition rate j is equal to 1a e #H=H@),
Another possible choice for the generator is, for instance,

Laf)@) = > e‘ﬁD?HA(‘”D;f(w)+z/D;f(w)dx weQ, (5.4)

xewNA A

which corresponds to a process where particle appear with; rated disappear with
rate e#Px #  The associated Dirchlet form is

El(f) =z / dv 1 ((DF 1)?)
A

and, sinceé,’( > £}, the generatorij’\ has a spectral gap greater than or equal to the
spectral gap oL}. Inequality (5.2) becomes

pln, 00)log pln, 00) ™t < ¢z Alp(n — 1). (5.5)

While (5.5) is equivalent to (5.2) whep = 0, if for ¢ in some appropriate class of
potentials one knew that the particle distributiorbehaves like & for largen, then

(5.5) would hold and a LSI cannot be ruled out. For superstable potentials (see [13]) i
is known thato (n) < e“‘l"Z*“Z”A, so it could be interesting, in this case, to investigate the
possibility of having a LS| for.’} .
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