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ABSTRACT. — Given a Brownian motiorX, we say that a square-integrable functioal
belongs to theith time-space Brownian chaosif is contained in the.2-closed vector space
11, generated by r.v.'s of the forn(X,,) - - - f,(Xy,), andF is orthogonal tol1,_1. We show
that every element of theth time-space Brownian chaos can be represented as a multiple time-
space Wiener integral of theh order, thus proving a new chaotic representation property for
Brownian motion 2001 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Soit X un mouvement Brownien réel : on dit qu'une fonctionnele de
carré intégrable, appartient atiéme chaos Brownien d’espace-tempsFsest dans I'espace
vectoriel ferméIl,, engendré par les variables aléatoires de la foye,) - -- f,(X;,), et
F est orthogonale aI,_;. Nous montrons que chaque élémentdiéme chaos Brownien
d’espace-temps peut étre représenté comme une intégrale de Wiener multiple dans I'espac
temps, prouvant ainsi une nouvelle propriété de représentation chaotique pour le mouveme
Brownien.o 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Consider the spacg?(P) := L?(Cjo.11, C, P), whereT € (0, +00), Cjo.7] iS the vector
space of continuous functions ¢ 7], endowed with its Borer -field, andP is the law
of a standard Brownian motion started from zero (throughout the followingpresents
the canonical process).

The aim of this paper is essentially to find, and completely describe, a new orthogona
decomposition of.?(P).

E-mail addressgpeccati@proba.jussieu.fr (G. Peccati).
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Indeed, define, for every integkr

k
I, .= { Hfi(th,): h<---<t <T; f;isbounded, Borel measurat}le
i=1

According to the analysis of Follmer, Wu and Yor [1], for everyIT, is not total in
L?(P): nonetheless, if one defin€g, to be the smallest, closed vector space containing
I, then clearlyL?(P) coincides with the vector space generated by the union of the
TI;’s. More to the point, we can set

Ko:=Tlo=%,  K,1:=T,1NTI,, @)

where_L denotes orthogonality relation (), and then obtain that
L*(P) =P K.
n=0

i.e. every element of.?(P) can be expressed as an infinite orthogonal sum, withthe
addend an element &, .

The rest of the paper is devoted to the explicit characterization, in terms of stochastit
integrals, of the generic element&f,. Since such a characterization suggests an evident
parallelism with the classical description fiener chaoseéWiener [4]), we will call
the setkK, thenth time-space Brownian chadthis terminology will become clear after
the exposition of the main theorem).

In the next section we will state our main result (Theorem 1) and introduce some
of the notation which is used throughout the paper; the third section contains a proo
of Theorem 1 in the case dof;; in Section 4 some results about Brownian bridges
are presented, whereas the extension to higher orders is achieved in the subsequ
paragraph.

2. Themain theorem

Throughout the sequel, we will denote By the natural filtration of the process.
Since X is a standard Brownian motion, it is well known (see, e.g., [5, Ch. 1]) that
for everyu < T one can enlarge; with the o -field generated by, , sayo (X,), thus
obtaining that the process

t

X, — X,
X :=X,—/¥ds, r<u )
u—=s
0
is a Brownian motion with respect to the filtrati W .— 5(X,) v F, hence is
independent ofX,. Moreover, one can enlargg, with o (X,, X,,, ..., X,,) for every

u<u <---<u, <T and still obtain thatY™ is a Brownian motion on0, ] with
respect toF """ = o (Xy, Xy - - .» X)) V F;, and thatX®@ is independent of
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Xus Xugs---» Xu,- 1 As a consequence, we can and do write without ambiguity the
stochastic integral

t
/g(Xu,Xul,...,Xun;s;Xh,hgs)dX‘g“), t<u<ur<---<u, <T, 3)
0

whenever

t
/E[gz(Xu,Xul,...,Xun;s;Xh,h <s)]ds < 400
0

by regardingX® as anF,““*~*")-Brownian motion on0, «]. In particular we have,
for g measurable and bounded aind L?(dP ® ds),
t
[ 80 Xags oo X (s X w0 < 5) GX
0

t
= 9 (X Xuge o2 Xu) [ 3 X w <) X
0

Such a convention will be tacitly assumed throughout the paper, and especially in the
statement of the following result — whose proof is the subject of the next three section:
—and in the subsequent remark. As usual, we will adopt the symbbr the simplex
contained inf0, 71", i.e.

A" i={(t1, ... 1) 0<ty <ty <---<ty<T}.

THEOREM 1. -Let K, (n > 1) be defined as iif1). Then, a r.v.H is an element of
K, if, and only if, there exists a measurable, deterministic fundtion, x1; .. .; u,, x,),
defined omA™ x %", such that

T uy Up—1
// / E(h?(u1, Xugs - - -3 thn, X)) Aty Qutyy g - - - dug < 400 4)
00 0
and
T uy Up—1
H://--- / h(ug, Xugs -ty Xy,) dX PV dX (2o dX, (5)
00 0

where the processd (-, 0 <u; < u;_1} are defined as if2).

Now define, forsy > --- > s,, Py, (dx1, ..., dx,) to be the measure oi" induced
by the vecton(X,,, ..., X,,) and introduce the measure & x )"

(s, ..., ds,; dxg, ..., dx,) ;=Leban(dsq, ..., ds,) Py 5, (dxq, ..., dx,),

1 As a matter of factx @ is aF; v o { Xy, w > u} Brownian motion.
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where Leh indicates Lebesgue measure af. We set
L%(iy) == L*(A" x %", du,,)

so that it is straightforward to state the following

COROLLARY 2.-LetH € K,, andk be the function introduced in TheoreinThen,

12l 2@y = A1l 2,

Remark(On multiple time-space Wiener integrals Multiple stochastic integrals as
in (5) can be formally defined in the following way. Take, for a fixed: 2, the setH,
of linear combinations of functions ot x %" of the type

n
h(ul, X155 Up, xn) = H hk (Mka xk)l(t,,_k,t(n,k)Jrl—S(n,k)Jrl) (Mk),
k=1

wheret, > --- > 11 > tg=0, g € (0, 1, — t,_1) for everyk and theh;’s are measurable
and bounded. Such a set is densé.fiiu, ). Moreover, for a functior as above, one

can define stochastic integrals of the type (5) in the usual sense (i.e. as iterated stochas
integrals of progressive processes) by simply observing that, for eieprogressive
processf; such that

T
/E(fsz) ds < +o0,
0

for everyr < T and for every € (0, 1), the application

UN(t—E€)
u — 1(142[) / fs dX‘gu)
0

defines arF, -progressive process, which moreover satisfies

2

T UN(t—¢€) T un(t—e)
/E [1(@:)( / s dXS(”)) ] du =/ / E(f2)ds du < +oo.
0

0 t 0

The extension tolL?(u,) is therefore achieved, by defining (5) as thé-limit of
stochastic integrals of elements’f,.

It is also worth noting that throughout the sequel we will use the following identity:
for a fixedt < T, and for a fixed set® C [0, t],

T Up—1
F(X,,s e1<’>)/--- / Laonh(uy, Xugs -5y, X)) X80 dXx 2o dX,
0 0
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T Up—1
=/ / Lyon F(Xs,5 € I7)
0
X h(uy, Xugs ooty Xyp,) AX 0V dX (02 dX,, (6)

where A®™ := {(uq,...,u,) € A": u, >t} and F is a bounded functional. Such an
identity is straightforward in the case bfe H,. In the general case, define the right
term of (6) to be the ?-limit of the sequence

T —1
/ / 1400 FR® dXIEI:n—l) dX;:"QZ)"' dX,,,
0

where all dependences have been dropped/dids a sequence of elements &f,
converging toz, so that (6) follows from the boundednessraf
We eventually observe that one can define integrals of the type

T Up—1
/ / oo (ua, ..., uy,)
0 0

X ¢(Xsos €1 ug, Xops s up, X)) dX 0V dX (02 dX,

with

Up—1

T
/ /1A<m>E Xg,seI(’);ul,Xul;...;un,Xun)z]dundun_l---du1<—|—oo
0

as theL?-limit of r.v.'s in the form of the right member of (6).
A last and immediate consequence of Theorem 1 is also

COROLLARY 3.—Let F be a real rv. inL?(P), then there exists a sequence of
measurable functions

h(p’n) A = 1}
such that

Up—1

T uy
//---/E(h(szn)(ul,Xul;...;un,X,,n))dundun_l---du1<+oo
0

and

T up Up—

00 1
FZE(F)+Z//--- / iy U, Xugs -5 g, Xy,) XS0 dX (2 odX,

n=19 7 0
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where the equality holds in the? sense. Moreover, the sequence is unique in the sense
that, if h( ,, is another sequence satisfying the above relations, then

Brmy (u, Xugs o5ty Xu,) = hig 1, Xougs ooty Xo,)

a.e.dP®Leba:(duq, ..., du,).

Remark— Corollary 3 shows that Brownian motion enjoys a chaotic representation
property (that we namehaotic time-space representation prope(GTSRP)) which
is analogous to the one described in Wiener [4]. More precisely, Wiener proves tha
for every square integrable function&l of X there exists a sequence of deterministic
functions f(r..) € L?(A", Leban) such that, inl?,

00 T Up—1
F=EE+Y [ [ firma, o u)dX,, - dX,,. ™
0

n=1 0

As we point out in the final paragraph, the relation between the two decompositions
is not completely clear, in the sense that there does not exist (except in trivial cases
a general formula permitting to represent a generic element of the dpade the
form (7) starting from its characterization as an iterate time-space multiple integral, anc
viceversa On the other hand, for a givesmoothfunctional F (see [2] for definitions)
the relation between the integranis ,, of Corollary 3 andfr ) in (7) is quite explicit.
Stroock proves indeed in [3] that, for a given smooth functiahahe integrandsf( s,
of Wiener’s representation satisfy

Jiem @, .. uy) =E(Dy, -+ Dy, F),

where D, indicates the usual Malliavin’s derivative at This formula can be easily
proved by first applying Clark’s formula t&, and then td&€(D,,, F | fbf‘z), E(Dy,D,, F |

]—"Lf‘z) and so on, i.e. by regarding such random variables as functionéls, ofw < u).

Our point here is that a similar characterization is valid for our case. In particular, one
can show by arguments similar to Stroock’s that the form ofithe;)’s for a smooth#

must be

heemy U1, Xugs -5ty X,) =E(DEY - DEVD F | Xy, X,
whereD®Y denotes Malliavin's derivative atofa given r.v.Y, regarded as a functional

of the Brownian motion

tAS

X, — X
X@:x—/j:fhhtgr
0

However, the formal proof of this claim requires some careful discussion, and is
therefore deferred to a separate paper.

As anticipated, we will first prove Theorem 1 ;.
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3. Thespace K;

In this section we shall concentrate on the first time-space chaos, i.e. the set of zer
mean r.v.'s contained in the subspacd.&fP) generated by r.v.'s of the forfi = f(X,).

Throughout the sequel, we will denote with,), >, the Brownian semigroup, whereas
p:(x, y) indicates its density, i.e.

1 (x —y)?
Pr(X,d)’)ZPz(X,)’)dyz\/%EXD[_ 2ty :|dy
We can therefore state the following

PROPOSITION 4. —A rv. H is in K1 :=TI; N ﬁé if, and only if, # admits a
representation of the form

T
H= /h(s, X,)dX,, ®)
0

whereh (s, x) is a measurable and deterministic function, defined®@'] x R and such
that

T
/E(hz(s, X)) ds < +o0. 9)
0

Proof. —(i) We consider an element & of the form f(X,), where f is bounded
and measurable. Without loss of generality, we can also asgumé€’2, so that the
following particular case of Clark’s formula holds: for< ¢,

E(f(X,) | F,) = / Py f'(X,) dX,
0

(note thatf (X,) € K1 impliesE( f(X,)) = 0) and therefore

T
f(Xl) :/1(s<t)Pt—sf/(Xs) dXs»
0

so that representation (8) holds for every linear combination of functions of the form
f(X;). That (8) is valid for every element @&f; stems from the fact that r.v.'s of the type
H= fOT h(s, X,) dX, form an Hilbert space, with respect to thé-norm, as seen from
the isometry property

E(H?) = |hllZ2,,)
whereu(dr, dx) := dr P; (0, dx).

(ii) To prove that if H and & satisfy (8) and (9) therH € K, is equivalent to show
that the functions of the type

(t,x) > Pyt f(0) i< (10)
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are total inL2([0, T] x N, dt P,(0, dx)) := L2(1).
To show this, consider an elemegiof L2(u1) such that, for every bounded and
measurable, for eveny < T

mi//mLMRHf@nMMnm>

0 N
u

=/E@mxomﬁﬂx»w.

0

Then, one can choosé(x) = exp(iAx + %Azu), and therefore obtain that, for every
u<sT

/E(g(t, X,) exp(irX,)) exp(%ﬁ) dr =0
0

which implies
g(t. X, (w)) =0, ae-®Pdr

T T
//gz(t,x)ul(dt, dx):/E(gz(t,X,))dtzo. m
0N 0

We say that a function on [0, 7] x ) is time-space harmoniehenever it is inC12
and satisfies
8h(t )+1 o h(t,x)=0
or T o=

for everytr andx. Since functions of the form (10) obtained from a regufaaire of this
kind, we can state the following
COROLLARY 5. —Time-space harmonic functions are densé.fiiu1).

As we said, before proceeding to the proof of Theorem 1 for higher orders, we
need some result about the characterization of certain exponential transformations ¢
Brownian bridges.

4. An ancillary result about Brownian bridges
As will become evident in the next section, to prove Theorem 1 forrame shall
deal with r.v.’s of the form
E(F(Xy,s <u)|X,).

Clearly, one way to handle such variables is to use the properties of Brownian bridges
In what follows Pf, , denotes the law of a Brownian bridge started from zero and
conditioned to be in ¢. Then, one has the following equivalent of certain ‘exponential
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martingales’ results for Brownian motion: it will permit us to use — for a genktic-
the same line of reasoning as in the proof of Proposition 4.

PROPOSITION 6. —Let#; < ¢ be fixed then, for every real, the process

YO .~ exp ik(t — )X+l —9)x }Az(t — 1)1 —s)
: t—s 2 t—s

is a (Pg ., Fs)-martingale onf0, #1].

Proof. —The result is achieved, once it is shown that
Y& =Eg (expirX,) | X,).

To this end, we recall that, for < ¢, Pg’xm is equivalent taP| £, and that the Radon-
Nikodym density is given by

d]P)E),x — pl—s(Xsax)
dP |x, p:(0,x)

By using this property, one can explicitly evaluate
. E(expir X (X, X
Eéx(exﬂlkxtl) | Xg) — ( FX tl)pl [1( 1 x)| )
’ pl—s(Xs» X)
_ Ex, (eXp(iAXy,—o) pror, (X115, X))
Pr—s(Xy, x)
. A(Xs» )\» tl)
‘ pt—s(Xs» X) )
Moreover, one gets from simple calculations

A(Xy b 1) = (2m) Y2 / 2t — 1) (1 — )] e T g T 0 gy
= pros (X, )T —5 / 270 (t — 1) (1 — 5)] /2™

1 (t — 1) X, + (11— 5)x\°
XeXp<_2(t—t1)<r1—s) (y”t_s_ Ji=s ))dy

t—t)Xs+ @ —5)x }AZ (t—1t)(t1 — S)}
t—s 2 t—s

= pl—S(XSa X) exp |:|)‘
and the result is therefore achieved:

Remark— One can alternatively prove Proposition 6 by writing
[x—X
X, = X0 ¢ / 00 g,
: " u—nh

whereXx ¥ is a(P§ ., F;) — Brownian motion, and then by using It6’s formula.
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5. Theextension to higher orders

We want to prove Theorem 1 in a recursive manner: to do this, we introduce the
following recursive assumption

(H,) : Theorem 1is true foK,, ..., K,
and recall that, in the previous sections, we have verifitd.

We start by observing that, if one defines a prodeg®, 0 < s < u} asin (2), one has
that, underH,), for every F € L2(P) and for anyk < n + 1, there exists a measurable
application

(1, ..., u @) —> ¢ (X (@), .. Xy, (@) Xs(@), s <ue), (1)

,,,,,

whereug := 0, such that

F=E(F)+ / her(, X,) dX,
+//h(pz)(u X, s, X,)dx“dx, +-
+ / / Bk (W2, Xugs -5 p-1 X ) AX -2 dX -9 dX,

n / / R (Kugs oo Xug 13 Xyo 8 Sup) dX D dX @2 o dX,,,,  (12)

where we adopt the conventions discussed at the beginning of the second paragraph, &
the notation is the same as in Corollary 3.

Fork = 1, formula (12) corresponds to Itd’s theorem, stating that for efeeyL?(P)
there exists a unique progressive procgss) such that

T
/E(ff) du < 400
0
and

F=E(F)+ / £, dX,. (13)
0

Fork > 1, just observe that for every square integrable smooth functiriate e.qg.
[2]) with representation (13), one has ffiy (as an element af?(F,)) a representation
of the type
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fu = E(fu | Xu)+/¢u,s(Xu; Xhah <s)dXs(M)
0

—E(f, | X.) + / £ dx ),
0

where the application
(u,x) > E(fu | Xu=x)

is measurable, whereas fgf* holds
£ =E(f9 | X, X,) + / Gusr (X X3 Xppo h <) dX O, (14)
0

where
(u,s;x,y) —~ E(fs(”) | X, =x,X,= y)

defines a measurable application, and so on (to prove (14) for a generic element c
L3(F™), consider functions of the form

g(Xu)h(XS)F(Xl(j)? w < S),

where F is smooth, which are total i?(F)). The general result is achieved by a
density argument.

Incidentally, note that the measurable application introduced in formula (11) is
uniquely determined, for every, outside some u - - - du;, ® dP-null set we will call
such an application thith 1té integrandof F.

We now present two results which are related respectively to Proposition 3.1 anc
Proposition 3.3 of Follmer, Wu and Yor [1].

PrRoOPOSITION 7. —Under (H,,), for a zero mean r.vF, F € ﬁj if, and only if, for
everyi=1,...,n,

E(pfD | X, ..., X,,) =0, a.e.leby(dus,...,du), (15)

ULy Ul

whereg ™" is theith Ito integrand ofF.

Proof. —Clearly if (15) is valid then, for every <n + 1,

T ujg Ug—1
Fk B .
F = // / ¢L(‘1,.4.),uk dX;:k 1) dxfﬁﬁff) o qul
00 0

which impliesF € T, ;.
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On the other hand, suppogec ﬁ,f (for k < n), and write, due tqH,,),

uy Ug—1

T
F://... / qﬁftfk)uk dXL(;;k—l) def,ﬁf]Z)“' dX,,.
00 0

Thus,

Uk—1

T
/---/E[E(qﬁ;”) | Xugsooos X JP(un, Xy o5 ey X))t -+ dug =0
0

Loenslly
0

for everyh e L?(u1;). And the result is proved, by choosing functionsf the kind
Lyw (g, ..., up) €XPiA1X,y,) - - - explireX,,)

with A® a generic subset af*. O

The second announced result is the following

ProPoOSITION 8. —Under (H,,), consider an integem > 0. Then,F e ﬁnﬂrm if, and
only if, for everyk <n,

E(¢;F’k)uk | Xugs ooy Xus Xigs oo os Xty i) =0

Lseees

a.e.Lebyi(dug, ..., duy), foreverys, < -+ <ty < uy.

Proof. —The sufficiency of the above condition can be proved by simply mimicking
the first part of the proof of Proposition 3.3 in Féllmer, Wu and Yor [1]. One can deduce
necessity by observing that, undét,), a r.v. of the kind

H = fl(Xll) o fn+m—k(Xln+m7k)Y

belongs ta,.,, for everyY in K and for every(n +m — k)-ple of bounded functions.
As a matter of fact, sinc&, c TI;, Y is the L2-limit of linear combinations of r.v.'s of
the form

gl(Xsl) e gk(Xsk)

and therefore — due to the boundedness of ffie — H is the L2-limit of linear
combinations of r.v.’s of the form

fl(Xll) e fn+m—k(th+m,k)gl(Xsl) e gk(Xsk)~

One can then choose, due(td,),

u Ug—

T 1
Y://... / h(ua, Xuys ...;uk,Xuk)dXL({Zk—l) dXLSL;]le)"' dX,,
00 0
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with
h(uy, Xugs 5w, Xug) = Lo (ua, oo ug) €XPA1Xy,,) - - - eXplireXy,),
where nowA™® is taken to be an arbitrary subsetsf such that
Y(ug,...,uy) € APy > tatm—k-

If one sets finally

fi(x) =expliy;x)
the result is easily achieved, ongeis written in the form

T uy

Fe // /¢(Fk> dx (-0 dx -2 . dX,,

thanks to(H,,) and Proposition 7 O
From Proposition 7 and Proposition 8 we deduce a useful
LEMMA 9.—-Under(H,), let

{Yur,n (U1, ... uy) € A"}

T Up—1
/---/E(Yuzl ..... w,) Qg - duy, < 400
0 0

EYuy, o un | Xugs ooy Xu,) =0
for every(uy, ..., u,) € A". Then

be such that

and

T ui Up

HY = / / / EYugsoiin | Xugs s Xuys X)Ly dX PV dX 02 dX,

belongs toK,, 1 for every(s,t) such thats <t < T.

Proof. —From Proposition 7 an&(Y,,,...u, | Xu,.....,) = 0, One gets

o0
HY e P K.
m=n+1

More to the point, if one consides € K,,,, for m > n 4+ 1, one has

,,,,,

T Up—1
B(HOF) = [ - / B BV | Xugs -+ Xs X)) Loy Gty < ity = 0
0
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as, according to Proposition 8,
E(@S ", | Xugs - Xuy: X,) =0

Loees

a.s.-Leb(duy --- du,), for everys < u,. Therefore H € K,,,1. O

We are now in a position to prove Theorem 1 in the general case: to do this, we will
show that, if(H,) is verified, then(H,,, 1) is necessarily true.

Before doing this, we observe that, throughout the sequel, we will use the following
fact, which stems straightforwardly from the Markov propertyotconsider the instants

UL > >U,>1=S,
then, for every bounded,
E(f(X) | Xugs oo os X F) =E(f (X)) | X, Fy)

so that, for instance, under the |&¢ | X,,, = x1, ..., X, = x,) the processX,, t < u,)
is still a Brownian bridge of length,,, from O tox,,.
Eventually, let(H,) be verified, and consider a r.v. of the form

H= fl(Xfl) e fk(Xlk) e fn-‘rl(Xl,H_l)v
where (due again to a density argument) eviris supposed to be such that
Je(Xy) = explirgXy,)

andy < --- < t,41. We claim that, giverfH,), the projection off on K1 must be

uq un

T
/ / / S (Ko, Xuys Xy ) OX00 dX 00 dX,,, (16)
00 0

where
H 1
¢151n-:n1—1 (Xul’ teo X"" ’ XM"+1)
= 1(ln,ln+l)(ul)an+l_le7;+l(Xul)
n+1
0 (up-1.Xu, ;)
X H a_th(n+2)—kvl(n+2)—k (g, 2) 1(t(n+1>—k,z(,,+2)—k)(btk)
P Z:Xuk
with
Lo (u—t)z+ (Mt —s)x 1 ,(u—1)(t—s)
R (s, 7) == ex [|)L _ D)2 Ak T8
fk,tk( ) Pl1AL U—s 2 k u—s
andto =0.

To see this, we introduce the following convention: for two r.&’'sind B we write

c™dn p
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wheneverB e T1,,; andC — B e II,,.. With such a notation, one has, fék defined as
above, the: + 1 equivalence relations

In+1

H " / Py oa (X)) OX oy X (X)) - f1(X)
I

Iny1

n)
m(g / Pt,,+1—M1f)':+1(Xu1)

In
In 8
( qu) u
x [ h Y e dXE X, X S (X A
-1

Z=Xu2

T uy Up

moc(n) s 1 n n—

= / / / DD Ky o s Xuys Xy ) X dX (00 d X,
00 0

the simplification being justified by the following procedure.
— For the first step, we write

Iyl

Fosr(Xo ) = Py oy fosa(Xs,) + / Porian fon(Xup) dX,

In

and we eliminate the r.v.
Pi ity o1 (X)) fu(Xy,) - f1(Xyy) € 1I,.

— Forthekth stepk=2,...,n) we write

f(n+2)—k(Xt(,,+2)_k) = E(f(n+2)—k(Xt(,,+2)_k) | Xllk—l’ Xl(,,+2)_k)
= E(f(n+2)—k(Xt(,,+2)_k) | Xllk—l’ Xl(,,+1)_k)
tn+2)—k
+
tn+1)—k

thanks to Proposition 6 and Ité’'s formula since, und&r | X,, , = x), X is a
Brownian bridge of lengtl,_;, from O tox. Then, we elide a r.v. of the form

G = fl(Xl‘l) T f(”"l‘l)—k (Xt(nJrl)fk)

Int1 (n+3)—k

X / / Doy Ky - X3 Xiagy) X022 dX

’ Up—-1° Up_1 u

(=1, Xup_q)

e (ug—1)
97 Jtd-klosd—k (ux, 2) quk

z=Xu,

In t(n+2)—k

since, due to Proposition 8, we have tigats orthogonal td1,,; N ﬁ,f =K,1,and
therefore is in,,.
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— To conclude, we write

ns Xun Un
fl(Xll) — E(fl(th) | Xu,,) +/ 8 h%[ ( n+1, Z) XmSn+)l
Z:X“n+l
and we eliminate a r.v. of the form
In+1 12
q)ul,u.,un (Xul, ey Xun) dej:n—l) . dXMl
In 11

since, thanks toH,,), it is an element oK, C T1,,.

The representation of Theorem 1 is therefore true for the orthogonal projection or
K,1 of every linear combination of r.v.’s of the kind

EXFXI)xlX[l) c eXFKI)\lek) R eX[Xi)»n+1X[n+l),

and the extension t&, ;1 is achieved by observing that random variables of the type

T uy U

//---/h(ul, Xugsooosttngs Xy yp) dxftuidan D, - dX,, an
00

form an Hilbert subspace df?(P).

To prove that representation (17) is also sufficient for a random variglite be in
K..1, One can consider a r.¥ with such a representation and orthogonakiga ;. In
particular, F will be orthogonal to every r.vH with the form (16) and such that

n
H,n+1 _ H
¢( " u,,)+1 (Xul’ SRR X“n’ Xun+1) - H exml)\'quk)l(f(nJrl)fksf(n+2)7k_8(n+2)7k)(uk)
k=1
0 (. Xuy)
X a_Zh}:ll " (un-i-lv Z) 1(0,11—81) (Mn-i-l)a (18)

Z:X“n-f—l

wheret,, 1 >t, > >t >1=0,¢ € (0,4 — t,_1) for everyk and

J1(Xsy) = expliy X,,). (19)

Such a variabled belongs toK, ;1 due to Lemma 9: as a matter of fact, Proposition 6
implies thatH can be represented in the following way

nt1—En+1tn—&n 1p—¢€2
H = / / / D(Xyy; o5 Xuy)
n -1 I
,,,,, wn | Xugs ooy Xy Xpp—ey) dX 0V dX (2o dX,
where they,, . ., are such that

.....
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Yul ,,,,, un:fl(th)_E(fl(th) |Xu1""’Xun)
= fi(Xy) —E(Ai(Xy) | Xu,)
and therefore

EYuyow, | Xugs .. Xu,) =0.

.....

Sincet,,; andg;, (k=1,...,n+ 1) are arbitrary, orthogonality implies, a.e. Lgh,

. (un 7’1)th,,+1+(’l’”n+l)XMn

E h(l/ll, Xul; ...;Mn+1,Xun+l)<Hei)‘quk)ely Un—lp41 =0
k=1

on [t,, T1 X [t,_1,t,] x --- x [0,11] for every (A1,...,A,, y). Set finally, for fixed

u19"'7un+l
U, —u
12 n n+1 12
Yy =Y— Ay =Ap—Y
U, — 11 Up — 11

to have that, for everyry, ..., Ay, ¥)

I1— Upt1

E\h(uy, Xy oo g1, Xuy i) < H ei)Lquk) ei)’Xu,,+l‘| =0
k=1

which implies
h(ug, Xuy(@); .. .5 upg1, Xu, (@) =0 ae-LeRnn @ dP

onlt,T] x --- x [0, 1], and the result is completely proved, as...,t, have been
arbitrarily chosen.

To conclude the section, we can drop the recursive structure from the results presente
at the beginning of this paragraph, so obtaining — as a combination of Proposition 7 an
Proposition 8 — an actual generalization of Proposition 3.1, 3.2 and 3.3 of Fdlimer, Wu
and Yor [1].

PrRopPOSITION 10. —For a rv. F with E(F) = 0, the following conditions are
equivalent

(1) FeTl,.
(2) Foreveryi=1,...,n

E(¢FD | Xyys ..., Xy;) =0, a.e.lebyi(dug, ..., du;),

whereg("D  is theith It6 integrand ofF.
(3) Foreveryk <n

E(p 1 Xy oo Xugs Xy oo X, ) =0

ULy

a.e.Lebyc(duy, ..., duy), foreveryr, < --- < t,_x < uy.
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6. Conclusion

It is clear that our results are intimately related with many subjects of current study.

Consider indeed the theory of weak Brownian motions, as exposed in Follmer, Wu
and Yor [1]. We define a weak Brownian motion (WBM) of ordeto be a stochastic
processY whose marginal laws up to thah order coincide with the marginals of BM,
thoughY is not a BM. Of specific interest is therefore the study of those WBM laws
which are absolutely continuous with respecttdn particular, one can show that the
proof of the existence — along with the subsequent characterization — of such laws relie
heavily on the characterization of thodee L?(P) such that, for a fixed,

EW|X,,...,X,)=0, V(t1,...,1,) €[0, T]"

i.e. of the elements (ﬁj Theorem 1 then furnishes a complete description (in terms of
multiple time-space integrals) of such functionals, and seems to be of a certain interes
to proceed with the analysis started in the above quoted reference.

On the other hand, as already pointed out, the relation between the CTSRP and tt
standardchaotic representation properfCRP) needs to be clarified, and this will be
the object of a separate paper. For now, we stress the fact that such a relation is far fro
being straightforward, as shown in the following example. Consider indeed a zero meal
r.v. Y e L?(P) which is also an element of the second Wiener chaos (roikd.e. there
exists a measurable functigh defined onA? and such that

/T/ufz(u,s) ds du < +o00

00

and

u

Y=/T/f(u,s)dXSqu.
00

Then, from simple Hilbert space arguments, there exists a pair of measurable function
f1 and f», defined respectively ofd), 7] and A2, such that

T u

T
flz(u)u du < 400 fzz(u, s)dsdu < +o0,
j i

00

and
u T

O/ fi(w)dXx, dX, + 0/ / fou, s)dX ™ dx,

h<
~ O\\]

u

= [ fwx,dx, + / / Folu, 5)dX@ dX,

o

=:Y1+Y,. (20)
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It is evident that (20) corresponds to the orthogonal decompositidghinfterms of
K, and K>, i.e. the first and second time-space Brownian chaos. As a consequence, W
can conclude that (i) r.v.'s of the form af, do notexhaustC, and (ii) the orthogonal
of C; (the first Wiener chaos) i strictly containsthe projection ofC;, on K3, since,
e.g., for any functiork bounded and measurable, and for any odd intéger

T
/h(u)xg dXx, € C; NKy.
0

It is eventually natural to ask whether the CTSRP is specific of BM, or is shared
by other processes. In particular, we think about the first Azéma martingale and the
compensated Poisson process, which have been shown to possess the CRP. M
generally Folimer, Wu and Yor [1] have shown that the non totality oflih& (see the
introduction) is valid for a wide class of Markov processes, and it is therefore arguable
that such a class enjoys some analogue of the CTSRP for BM. Of course, the ver
difficulty of proving the above claim relies in the construction of multiple time-space
Wiener integrals, for which a pervasive use of the theory of (iniggilargements of
filtrations (as developed by Jeulin et al.) must be performed.
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