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ABSTRACT. – Given a Brownian motionX, we say that a square-integrable functionalF

belongs to thenth time-space Brownian chaos ifF is contained in theL2-closed vector space
�n, generated by r.v.’s of the formf1(Xt1) · · ·fn(Xtn), andF is orthogonal to�n−1. We show
that every element of thenth time-space Brownian chaos can be represented as a multiple time-
space Wiener integral of thenth order, thus proving a new chaotic representation property for
Brownian motion. 2001 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Soit X un mouvement Brownien réel : on dit qu’une fonctionnelleF , de
carré intégrable, appartient aun-ième chaos Brownien d’espace-temps, siF est dans l’espace
vectoriel fermé�n, engendré par les variables aléatoires de la formef1(Xt1) · · ·fn(Xtn), et
F est orthogonale à�n−1. Nous montrons que chaque élément dun-ième chaos Brownien
d’espace-temps peut être représenté comme une intégrale de Wiener multiple dans l’espace-
temps, prouvant ainsi une nouvelle propriété de représentation chaotique pour le mouvement
Brownien. 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Consider the spaceL2(P) := L2(C[0,T ],C,P), whereT ∈ (0,+∞),C[0,T ] is the vector
space of continuous functions on[0, T ], endowed with its Borelσ -field, andP is the law
of a standard Brownian motion started from zero (throughout the following,X represents
the canonical process).

The aim of this paper is essentially to find, and completely describe, a new orthogonal
decomposition ofL2(P).

E-mail address:gpeccati@proba.jussieu.fr (G. Peccati).
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Indeed, define, for every integerk,

�k :=
{

k∏
i=1

fi(Xti ): t1< · · ·< tk � T ; fi is bounded, Borel measurable

}
.

According to the analysis of Föllmer, Wu and Yor [1], for everyk, �k is not total in
L2(P): nonetheless, if one defines�k to be the smallest, closed vector space containing
�k, then clearlyL2(P) coincides with the vector space generated by the union of the
�k ’s. More to the point, we can set

K0 :=�0 = �, Kn+1 :=�n+1 ∩�⊥
n , (1)

where⊥ denotes orthogonality relation inL2(P), and then obtain that

L2(P)=
∞⊕
n=0

Kn,

i.e. every element ofL2(P) can be expressed as an infinite orthogonal sum, with thenth
addend an element ofKn.

The rest of the paper is devoted to the explicit characterization, in terms of stochastic
integrals, of the generic element ofKn. Since such a characterization suggests an evident
parallelism with the classical description ofWiener chaoses(Wiener [4]), we will call
the setKn thenth time-space Brownian chaos(this terminology will become clear after
the exposition of the main theorem).

In the next section we will state our main result (Theorem 1) and introduce some
of the notation which is used throughout the paper; the third section contains a proof
of Theorem 1 in the case ofK1; in Section 4 some results about Brownian bridges
are presented, whereas the extension to higher orders is achieved in the subsequent
paragraph.

2. The main theorem

Throughout the sequel, we will denote byFt the natural filtration of the processX.
SinceX is a standard Brownian motion, it is well known (see, e.g., [5, Ch. 1]) that
for everyu� T one can enlargeFt with theσ -field generated byXu, sayσ (Xu), thus
obtaining that the process

X(u)t :=Xt −
t∫

0

Xu −Xs
u− s ds, t � u (2)

is a Brownian motion with respect to the filtrationF (u)
t := σ (Xu) ∨ Ft , hence is

independent ofXu. Moreover, one can enlargeFt with σ (Xu,Xu1, . . . ,Xun) for every
u < u1 < · · · < un � T and still obtain thatX(u) is a Brownian motion on[0, u] with
respect toF (u,u1,...,un)

t := σ (Xu,Xu1, . . . ,Xun) ∨ Ft , and thatX(u) is independent of
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Xu,Xu1, . . . ,Xun .
1 As a consequence, we can and do write without ambiguity the

stochastic integral

t∫
0

g(Xu,Xu1, . . . ,Xun; s;Xh,h� s)dX(u)s , t � u < u1< · · ·< un � T , (3)

whenever
t∫

0

E
[
g2(Xu,Xu1, . . . ,Xun; s;Xh,h� s)

]
ds <+∞

by regardingX(u) as anF (u,u1,...,un)
t -Brownian motion on[0, u]. In particular we have,

for g measurable and bounded andh ∈L2(dP⊗ds),
t∫

0

g(Xu,Xu1, . . . ,Xun)h(s;Xw,w� s)dX(u)s

= g(Xu,Xu1, . . . ,Xun)

t∫
0

h(s;Xw,w� s)dX(u)s .

Such a convention will be tacitly assumed throughout the paper, and especially in the
statement of the following result – whose proof is the subject of the next three sections
– and in the subsequent remark. As usual, we will adopt the symbol�n for the simplex
contained in[0, T ]n, i.e.

�n := {
(t1, . . . , tn): 0� tn < tn−1< · · ·< t1 � T

}
.

THEOREM 1. –LetKn (n � 1) be defined as in(1). Then, a r.v.H is an element of
Kn if, and only if, there exists a measurable, deterministic functionh(u1, x1; . . . ;un, xn),
defined on�n × �n, such that

T∫
0

u1∫
0

· · ·
un−1∫
0

E
(
h2(u1,Xu1; . . . ;un,Xun)

)
dun dun−1 · · · du1<+∞ (4)

and

H =
T∫

0

u1∫
0

· · ·
un−1∫
0

h(u1,Xu1; . . . ;un,Xun)dX(un−1)
un

dX(un−2)
un−1

· · · dXu1 (5)

where the processes{X(uk−1)
uk

, 0� uk � uk−1} are defined as in(2).

Now define, fors1> · · ·> sn, Ps1,...,sn(dx1, . . . ,dxn) to be the measure on�n induced
by the vector(Xs1, . . . ,Xsn) and introduce the measure on�n × �n

µn(ds1, . . . ,dsn;dx1, . . . ,dxn) := Leb�n(ds1, . . . ,dsn)Ps1,...,sn(dx1, . . . ,dxn),

1 As a matter of fact,X(u) is aFt ∨ σ {Xw, w � u} Brownian motion.
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where Leb�n indicates Lebesgue measure on�n. We set

L2(µn) := L2(�n × �n, dµn
)

so that it is straightforward to state the following

COROLLARY 2. –LetH ∈Kn, andh be the function introduced in Theorem1. Then,

‖H‖L2(P) = ‖h‖L2(µn)

Remark(On multiple time-space Wiener integrals). – Multiple stochastic integrals as
in (5) can be formally defined in the following way. Take, for a fixedn� 2, the setHn

of linear combinations of functions on�n × �n of the type

h(u1, x1; . . . ;un, xn)=
n∏
k=1

hk(uk, xk)1(tn−k,t(n−k)+1−ε(n−k)+1)(uk),

wheretn > · · ·> t1 > t0 = 0, εk ∈ (0, tk − tk−1) for everyk and thehk ’s are measurable
and bounded. Such a set is dense inL2(µn). Moreover, for a functionh as above, one
can define stochastic integrals of the type (5) in the usual sense (i.e. as iterated stochastic
integrals of progressive processes) by simply observing that, for everyFs -progressive
processfs such that

T∫
0

E
(
f 2
s

)
ds <+∞,

for everyt < T and for everyε ∈ (0, t), the application

u �→ 1(u�t )

u∧(t−ε)∫
0

fs dX(u)s

defines anFu-progressive process, which moreover satisfies

T∫
0

E

[
1(u�t )

( u∧(t−ε)∫
0

fs dX(u)s

)2]
du=

T∫
t

u∧(t−ε)∫
0

E
(
f 2
s

)
ds du <+∞.

The extension toL2(µn) is therefore achieved, by defining (5) as theL2-limit of
stochastic integrals of elements ofHn.

It is also worth noting that throughout the sequel we will use the following identity:
for a fixedt < T , and for a fixed setI (t) ⊆ [0, t],

F
(
Xs, s ∈ I (t))

T∫
0

· · ·
un−1∫
0

1A(n,t)h(u1,Xu1; . . . ;un,Xun)dX(un−1)
un

dX(un−2)
un−1

· · · dXu1
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=
T∫

0

· · ·
un−1∫
0

1A(n,t)F
(
Xs, s ∈ I (t))

× h(u1,Xu1; . . . ;un,Xun)dX(un−1)
un

dX(un−2)
un−1

· · · dXu1, (6)

whereA(n,t) := {(u1, . . . , un) ∈ �n: un > t} andF is a bounded functional. Such an
identity is straightforward in the case ofh ∈ Hn. In the general case, define the right
term of (6) to be theL2-limit of the sequence

T∫
0

· · ·
un−1∫
0

1A(n,t)Fh
(k) dX(un−1)

un
dX(un−2)

un−1
· · · dXu1,

where all dependences have been dropped andh(k) is a sequence of elements ofHn

converging toh, so that (6) follows from the boundedness ofF .
We eventually observe that one can define integrals of the type

T∫
0

· · ·
un−1∫
0

1A(n,t) (u1, . . . , un)

× φ(Xs, s ∈ I (t);u1,Xu1; . . . ;un,Xun
)

dX(un−1)
un

dX(un−2)
un−1

· · · dXu1

with

T∫
0

· · ·
un−1∫
0

1A(n,t)E
[
φ
(
Xs, s ∈ I (t);u1,Xu1; . . . ;un,Xun

)2]
dun dun−1 · · · du1<+∞

as theL2-limit of r.v.’s in the form of the right member of (6).

A last and immediate consequence of Theorem 1 is also

COROLLARY 3. –Let F be a real r.v. inL2(P), then there exists a sequence of
measurable functions

h(F,n) :�
n × �n �→ �

such that

T∫
0

u1∫
0

· · ·
un−1∫
0

E
(
h2
(F,n)(u1,Xu1; . . . ;un,Xun)

)
dun dun−1 · · · du1<+∞

and

F = E(F )+
∞∑
n=1

T∫
0

u1∫
0

· · ·
un−1∫
0

h(F,n)(u1,Xu1; . . . ;un,Xun)dX(un−1)
un

dX(un−2)
un−1

· · · dXu1,
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where the equality holds in theL2 sense. Moreover, the sequence is unique in the sense
that, if h′

(F,n) is another sequence satisfying the above relations, then

h(F,n)(u1,Xu1; . . . ;un,Xun)= h′
(F,n)(u1,Xu1; . . . ;un,Xun)

a.e. dP⊗Leb�n(du1, . . . , dun).

Remark. – Corollary 3 shows that Brownian motion enjoys a chaotic representation
property (that we namechaotic time-space representation property(CTSRP)) which
is analogous to the one described in Wiener [4]. More precisely, Wiener proves that
for every square integrable functionalF of X there exists a sequence of deterministic
functionsf(F,n) ∈ L2(�n, Leb�n) such that, inL2,

F = E(F )+
∞∑
n=1

T∫
0

· · ·
un−1∫
0

f(F,n)(u1, . . . , un)dXun · · · dXu1. (7)

As we point out in the final paragraph, the relation between the two decompositions
is not completely clear, in the sense that there does not exist (except in trivial cases)
a general formula permitting to represent a generic element of the spaceKn in the
form (7) starting from its characterization as an iterate time-space multiple integral, and
viceversa. On the other hand, for a givensmoothfunctionalF (see [2] for definitions)
the relation between the integrandsh(F,n) of Corollary 3 andf(F,n) in (7) is quite explicit.
Stroock proves indeed in [3] that, for a given smooth functionalF the integrandsf(F,n)
of Wiener’s representation satisfy

f(F,n)(u1, . . . , un)= E(Dun · · ·Du1F),

whereDu indicates the usual Malliavin’s derivative atu. This formula can be easily
proved by first applying Clark’s formula toF , and then toE(Du1F | FX

u2
), E(Du2Du1F |

FX
u2
) and so on, i.e. by regarding such random variables as functionals of(Xw, w � u).

Our point here is that a similar characterization is valid for our case. In particular, one
can show by arguments similar to Stroock’s that the form of theh(F,n)’s for a smoothF
must be

h(F,n)(u1,Xu1; . . . ;un,Xun)= E
(
D(un−1)
un

· · ·D(u1)
u2
Du1F |Xu1, . . . ,Xun

)
,

whereD(s)
u Y denotes Malliavin’s derivative atu ofa given r.v.Y , regarded as a functional

of the Brownian motion

X(s)t :=Xt −
t∧s∫
0

Xs −Xh
s − h dh, t � T .

However, the formal proof of this claim requires some careful discussion, and is
therefore deferred to a separate paper.

As anticipated, we will first prove Theorem 1 forK1.
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3. The space K1

In this section we shall concentrate on the first time-space chaos, i.e. the set of zero
mean r.v.’s contained in the subspace ofL2(P) generated by r.v.’s of the formF = f (Xt).

Throughout the sequel, we will denote with(Pt )t�0 the Brownian semigroup, whereas
pt(x, y) indicates its density, i.e.

Pt(x, dy)= pt(x, y)dy = 1√
2πt

exp
[
−(x − y)2

2t

]
dy.

We can therefore state the following

PROPOSITION 4. –A r.v. H is in K1 := �1 ∩ �
⊥
0 if, and only if, H admits a

representation of the form

H =
T∫

0

h(s,Xs)dXs, (8)

whereh(s, x) is a measurable and deterministic function, defined on[0, T ]×� and such
that

T∫
0

E
(
h2(s,Xs)

)
ds <+∞. (9)

Proof. –(i) We consider an element ofK1 of the formf (Xt), wheref is bounded
and measurable. Without loss of generality, we can also assumef ∈ C1,2

c , so that the
following particular case of Clark’s formula holds: foru < t ,

E
(
f (Xt) | Fu)=

u∫
0

Pt−sf ′(Xs)dXs

(note thatf (Xt) ∈K1 impliesE(f (Xt ))= 0) and therefore

f (Xt)=
T∫

0

1(s�t )Pt−sf ′(Xs)dXs,

so that representation (8) holds for every linear combination of functions of the form
f (Xt). That (8) is valid for every element ofK1 stems from the fact that r.v.’s of the type
H = ∫ T

0 h(s,Xs)dXs form an Hilbert space, with respect to theL2-norm, as seen from
the isometry property

E
(
H 2)= ‖h‖2

L2(µ1)
,

whereµ1(dt, dx) := dtPt (0, dx).
(ii) To prove that ifH andh satisfy (8) and (9) thenH ∈ K1, is equivalent to show

that the functions of the type

(t, x) �→ Pu−t f (x)1(t�u) (10)
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are total inL2([0, T ] × �, dt Pt(0, dx)) := L2(µ1).
To show this, consider an elementg of L2(µ1) such that, for everyf bounded and

measurable, for everyu� T

0=
u∫

0

∫
�
g(t, x)Pu−t f (x)µ1(dt,dx)

=
u∫

0

E
(
g(t,Xt )Pu−t f (Xt)

)
dt.

Then, one can choosef (x) = exp(iλx + 1
2λ

2u), and therefore obtain that, for every
u� T

u∫
0

E(g(t,Xt)exp
(
iλXt)

)
exp
(

1

2
λ2t

)
dt = 0

which implies

g
(
t,Xt (ω)

)= 0, a.e.- dP⊗dt

i.e.
T∫

0

∫
�
g2(t, x)µ1(dt, dx)=

T∫
0

E
(
g2(t,Xt )

)
dt = 0. ✷

We say that a functionh on [0, T ] × � is time-space harmonicwhenever it is inC1,2

and satisfies

∂

∂t
h(t, x)+ 1

2

∂2

∂x2
h(t, x)= 0

for everyt andx. Since functions of the form (10) obtained from a regularf are of this
kind, we can state the following

COROLLARY 5. –Time-space harmonic functions are dense inL2(µ1).

As we said, before proceeding to the proof of Theorem 1 for higher orders, we
need some result about the characterization of certain exponential transformations of
Brownian bridges.

4. An ancillary result about Brownian bridges

As will become evident in the next section, to prove Theorem 1 for anyn we shall
deal with r.v.’s of the form

E
(
F(Xs, s � u) |Xu).

Clearly, one way to handle such variables is to use the properties of Brownian bridges.
In what follows P

t
0,x denotes the law of a Brownian bridge started from zero and

conditioned to bex in t. Then, one has the following equivalent of certain ‘exponential
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martingales’ results for Brownian motion: it will permit us to use – for a genericKn –
the same line of reasoning as in the proof of Proposition 4.

PROPOSITION 6. –Let t1< t be fixed: then, for every realλ, the process

Y (λ,t1)s := exp
[
iλ
(t − t1)Xs + (t1 − s)x

t − s − 1

2
λ2(t − t1)(t1 − s)

t − s
]

is a (Pt0,x,Fs)-martingale on[0, t1].
Proof. –The result is achieved, once it is shown that

Y (λ,t1)s = E
t
0,x

(
exp(iλXt1) |Xs

)
.

To this end, we recall that, fors < t , P
t
0,x|Fs is equivalent toP|Fs , and that the Radon-

Nikodym density is given by

dP
t
0,x

dP

∣∣∣∣
Fs

= pt−s(Xs, x)
pt (0, x)

.

By using this property, one can explicitly evaluate

E
t
0,x

(
exp(iλXt1) |Xs

) = E(exp(iλXt1)pt−t1(Xt1, x) |Xs)
pt−s(Xs, x)

= EXs (exp(iλXt1−s)pt−t1(Xt1−s , x))
pt−s(Xs, x)

=: A(Xs, λ, t1)
pt−s(Xs, x)

.

Moreover, one gets from simple calculations

A(Xs, λ, t1)= (2π)−1/2
∫ [

2π(t − t1)(t1 − s)]−1/2
eiλye− 1

2(t−t1) (y−x)
2

e− 1
2(t1−s) (y−Xs)2 dy

= pt−s(Xs, x)
√
t − s

∫ [
2π(t − t1)(t1 − s)]−1/2

eiλy

× exp
(

− 1

2(t − t1)(t1 − s)
(
y
√
t − s − (t − t1)Xs + (t1 − s)x√

t − s
)2)

dy

= pt−s(Xs, x)exp
[
iλ
(t − t1)Xs + (t1 − s)x

t − s − 1

2
λ2 (t − t1)(t1 − s)

t − s
]

and the result is therefore achieved.✷
Remark. – One can alternatively prove Proposition 6 by writing

Xs =X(u,x)s +
s∫

0

x −Xh
u− h dh,

whereX(u,x) is a(Pu0,x,Fs) – Brownian motion, and then by using Itô’s formula.
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5. The extension to higher orders

We want to prove Theorem 1 in a recursive manner: to do this, we introduce the
following recursive assumption

(Hn) : Theorem 1 is true forK1, . . . ,Kn

and recall that, in the previous sections, we have verified(H1).
We start by observing that, if one defines a process{X(u)s ,0 � s � u} as in (2), one has

that, under(Hn), for everyF ∈ L2(P) and for anyk � n+ 1, there exists a measurable
application

(u1, . . . , uk;ω) �−→ φ(F,k)u1,...,uk

(
Xu1(ω), . . . ,Xuk−1(ω);Xs(ω), s � uk

)
, (11)

whereu0 := 0, such that

F = E(F )+
T∫

0

h(F,1)(u,Xu)dXu

+
T∫

0

u∫
0

h(F,2)(u,Xu; s,Xs)dX(u)s dXu + · · ·

+
T∫

0

· · ·
uk−2∫
0

h(F,k−1)(u1,Xu1; . . . ;uk−1,Xuk−1)dX
(uk−2)
uk−1

dX(uk−3)
uk−2

· · · dXu1

+
T∫

0

· · ·
uk−1∫
0

φ(F,k)u1,...,uk
(Xu1, . . . ,Xuk−1;Xs, s � uk)dX(uk−1)

uk
dX(uk−2)

uk−1
· · · dXu1, (12)

where we adopt the conventions discussed at the beginning of the second paragraph, and
the notation is the same as in Corollary 3.

Fork = 1, formula (12) corresponds to Itô’s theorem, stating that for everyF ∈L2(P)

there exists a unique progressive processfu(ω) such that

T∫
0

E
(
f 2
u

)
du <+∞

and

F = E(F )+
T∫

0

fu dXu. (13)

For k > 1, just observe that for every square integrable smooth functionalF (see e.g.
[2]) with representation (13), one has forfu (as an element ofL2(Fu)) a representation
of the type
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fu = E(fu |Xu)+
u∫

0

φu,s(Xu;Xh,h� s)dX(u)s

:= E(fu |Xu)+
u∫

0

f (u)s dX(u)s ,

where the application

(u, x) �→ E(fu |Xu = x)
is measurable, whereas forf (u)s holds

f (u)s = E
(
f (u)s |Xu,Xs)+

s∫
0

φu,s,r(Xu,Xs;Xh,h� r)dX(s)r , (14)

where

(u, s;x, y) �→ E
(
f (u)s |Xu = x,Xs = y)

defines a measurable application, and so on (to prove (14) for a generic element of
L2(F (u)

s ), consider functions of the form

g(Xu)h(Xs)F
(
X(s)w ,w� s

)
,

whereF is smooth, which are total inL2(F (u)
s )). The general result is achieved by a

density argument.
Incidentally, note that the measurable application introduced in formula (11) is

uniquely determined, for everyk, outside some du1 · · · duk ⊗ dP-null set: we will call
such an application thekth Itô integrandof F .

We now present two results which are related respectively to Proposition 3.1 and
Proposition 3.3 of Föllmer, Wu and Yor [1].

PROPOSITION 7. –Under (Hn), for a zero mean r.v.F , F ∈ �⊥
n if, and only if, for

everyi = 1, . . . , n,

E
(
φ(F,i)u1,...,ui

|Xu1, . . . ,Xui
)= 0, a.e.-Leb�i (du1, . . . ,dui), (15)

whereφ(F,i)u1,...,ui
is theith Itô integrand ofF .

Proof. –Clearly if (15) is valid then, for everyk � n+ 1,

F =
T∫

0

u1∫
0

· · ·
uk−1∫
0

φ(F,k)u1,...,uk
dX(uk−1)

uk
dX(uk−2)

uk−1
· · · dXu1

which impliesF ∈ �⊥
k−1.
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On the other hand, supposeF ∈�⊥
k (for k � n), and write, due to(Hn),

F =
T∫

0

u1∫
0

· · ·
uk−1∫
0

φ(F,k)u1,...,uk
dX(uk−1)

uk
dX(uk−2)

uk−1
· · · dXu1.

Thus,

T∫
0

· · ·
uk−1∫
0

E
[
E
(
φ(F,k)u1,...,uk

|Xu1, . . . ,Xuk

)
h(u1,Xu1; . . . ;uk,Xuk )

]
duk · · · du1 = 0

for everyh ∈ L2(µk). And the result is proved, by choosing functionsh of the kind

1A(k)(u1, . . . , uk)exp(iλ1Xu1) · · ·exp(iλkXuk)

with A(k) a generic subset of�k . ✷
The second announced result is the following

PROPOSITION 8. –Under (Hn), consider an integerm> 0. Then,F ∈�⊥
n+m if, and

only if, for everyk � n,

E
(
φ(F,k)u1,...,uk

|Xu1, . . . ,Xuk ;Xt1, . . . ,Xtn+m−k
)= 0

a.e.Leb�k (du1, . . . , duk), for everyt1< · · ·< tn+m−k < uk .

Proof. –The sufficiency of the above condition can be proved by simply mimicking
the first part of the proof of Proposition 3.3 in Föllmer, Wu and Yor [1]. One can deduce
necessity by observing that, under(Hn), a r.v. of the kind

H = f1(Xt1) · · ·fn+m−k(Xtn+m−k )Y

belongs to�n+m for everyY in Kk and for every(n+m− k)-ple of bounded functions.
As a matter of fact, sinceKk ⊂ �k, Y is theL2-limit of linear combinations of r.v.’s of
the form

g1(Xs1) · · ·gk(Xsk )
and therefore – due to the boundedness of thefi ’s – H is the L2-limit of linear
combinations of r.v.’s of the form

f1(Xt1) · · ·fn+m−k(Xtn+m−k )g1(Xs1) · · ·gk(Xsk ).
One can then choose, due to(Hn),

Y =
T∫

0

u1∫
0

· · ·
uk−1∫
0

h(u1,Xu1; . . . ;uk,Xuk )dX(uk−1)
uk

dX(uk−2)
uk−1

· · · dXu1
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with

h(u1,Xu1; . . . ;uk,Xuk )= 1A(k)(u1, . . . , uk)exp(iλ1Xu1) · · ·exp(iλkXuk),

where nowA(k) is taken to be an arbitrary subset of�k such that

∀(u1, . . . , uk) ∈A(k): uk > tn+m−k.

If one sets finally

fj(x)= exp(iγjx)

the result is easily achieved, onceF is written in the form

F =
T∫

0

u1∫
0

· · ·
uk−1∫
0

φ(F,k)u1,...,uk
dX(uk−1)

uk
dX(uk−2)

uk−1
· · · dXu1

thanks to(Hn) and Proposition 7 ✷
From Proposition 7 and Proposition 8 we deduce a useful

LEMMA 9. –Under(Hn), let{
Yu1,...,un, (u1, . . . , un) ∈�n}

be such that
T∫

0

· · ·
un−1∫
0

E(Y 2
u1,...,un

)du1 · · · dun <+∞

and

E(Yu1,...,un |Xu1, . . . ,Xun)= 0

for every(u1, . . . , un) ∈�n. Then

H(s) :=
T∫

0

u1∫
0

· · ·
un−1∫
0

E(Yu1,...,un |Xu1, . . . ,Xun;Xs)1(un>t) dX(un−1)
un

dX(un−2)
un−1

· · · dXu1

belongs toKn+1 for every(s, t) such thats < t < T .

Proof. –From Proposition 7 andE(Yu1,...,un |Xu1,...,un)= 0, one gets

H(s) ∈
∞⊕

m=n+1

Km.

More to the point, if one considersF ∈Km, for m> n+ 1, one has

E
(
H(s)F

)=
T∫

0

· · ·
un−1∫
0

E
[
φ(F,n)u1,...,un

E(Yu1,...,un |Xu1, . . . ,Xun;Xs)
]
1(un>t) dun · · · du1 = 0
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as, according to Proposition 8,

E
(
φ(F,n)u1,...,un

|Xu1, . . . ,Xun;Xs
)= 0

a.s.-Leb�n(du1 · · · dun), for everys < un. Therefore,H ∈Kn+1. ✷
We are now in a position to prove Theorem 1 in the general case: to do this, we will

show that, if(Hn) is verified, then(Hn+1) is necessarily true.
Before doing this, we observe that, throughout the sequel, we will use the following

fact, which stems straightforwardly from the Markov property ofX: consider the instants

u1> · · ·> un > t � s,
then, for every boundedf ,

E
(
f (Xt) |Xu1, . . . ,Xun,Fs

)= E
(
f (Xt) |Xun,Fs

)
so that, for instance, under the lawP(· |Xu1 = x1, . . . ,Xun = xn) the process(Xt, t � un)
is still a Brownian bridge of lengthun, from 0 toxn.

Eventually, let(Hn) be verified, and consider a r.v. of the form

H = f1(Xt1) · · ·fk(Xtk ) · · ·fn+1(Xtn+1),

where (due again to a density argument) everyfk is supposed to be such that

fk(Xtk )= exp(iλkXtk )

andt1< · · ·< tn+1. We claim that, given(Hn), the projection ofH onKn+1 must be

T∫
0

u1∫
0

· · ·
un∫

0

φ(H,n+1)
u1,...,un+1

(Xu1, . . . ,Xun,Xun+1)dX
(un)
un+1

dX(un−1)
un

· · · dXu1, (16)

where

φ(H,n+1)
u1,...,un+1

(Xu1, . . . ,Xun,Xun+1)

= 1(tn,tn+1)(u1)Ptn+1−u1f
′
n+1(Xu1)

×
n+1∏
k=2

∂

∂z
h
(uk−1,Xuk−1)

f(n+2)−k,t(n+2)−k (uk, z)

∣∣∣∣
z=Xuk

1(t(n+1)−k,t(n+2)−k)(uk)

with

h
(u,x)
fk,tk

(s, z) := exp
[
iλk
(u− tk)z+ (tk − s)x

u− s − 1

2
λ2
k

(u− tk)(tk − s)
u− s

]
andt0 = 0.

To see this, we introduce the following convention: for two r.v.’sC andB we write

C
mod(n)= B
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wheneverB ∈�n+1 andC − B ∈ �n. With such a notation, one has, forH defined as
above, then+ 1 equivalence relations

H
mod(n)=

tn+1∫
tn

Ptn+1−u1f
′
n+1(Xu1)dXu1 × fn(Xtn) · · ·f1(Xt1)

mod(n)=
tn+1∫
tn

Ptn+1−u1f
′
n+1(Xu1)

×
tn∫

tn−1

∂

∂z
h
(u1,Xu1)

fn,tn
(u2, z)

∣∣∣∣
z=Xu2

dX(u1)
u2

dXu1 × fn−1(Xtn−1) · · ·f1(Xt1)

· · ·
mod(n)=

T∫
0

u1∫
0

· · ·
un∫

0

φ(H,n+1)
u1,...,un+1

(Xu1, . . . ,Xun,Xun+1)dX
(un)
un+1

dX(un−1)
un

· · · dXu1

the simplification being justified by the following procedure.

− For the first step, we write

fn+1(Xtn+1)= Ptn+1−tnfn+1(Xtn)+
tn+1∫
tn

Ptn+1−u1f
′
n+1(Xu1)dXu1

and we eliminate the r.v.

Ptn+1−tnfn+1(Xtn)fn(Xtn) · · ·f1(Xt1) ∈�n.

− For thekth step (k = 2, . . . , n) we write

f(n+2)−k(Xt(n+2)−k )= E
(
f(n+2)−k(Xt(n+2)−k ) |Xuk−1,Xt(n+2)−k

)
= E

(
f(n+2)−k(Xt(n+2)−k ) |Xuk−1,Xt(n+1)−k

)

+
t(n+2)−k∫
t(n+1)−k

∂

∂z
h
(uk−1,Xuk−1)

f(n+2)−k,t(n+2)−k(uk, z)

∣∣∣∣
z=Xuk

dX(uk−1)
uk

thanks to Proposition 6 and Itô’s formula since, underP(· | Xuk−1 = x), X is a
Brownian bridge of lengthuk−1, from 0 tox. Then, we elide a r.v. of the form

G= f1(Xt1) · · ·f(n+1)−k(Xt(n+1)−k )

×
tn+1∫
tn

· · ·
t(n+3)−k∫
t(n+2)−k

4u1,...,uk−1(Xu1, . . . ,Xuk−1;Xt(n+1)−k )dX
(uk−2)
uk−1

· · · dXu1

since, due to Proposition 8, we have thatG is orthogonal to�n+1 ∩�⊥
n =Kn+1, and

therefore is in�n.
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− To conclude, we write

f1(Xt1)= E(f1(Xt1) |Xun)+
t1∫

0

∂

∂z
h
(un,Xun)

f1,t1
(un+1, z)

∣∣∣∣
z=Xun+1

dX(un)un+1

and we eliminate a r.v. of the form

tn+1∫
tn

· · ·
t2∫
t1

4u1,...,un(Xu1, . . . ,Xun)dX
(un−1)
un

· · · dXu1

since, thanks to(Hn), it is an element ofKn ⊂�n.

The representation of Theorem 1 is therefore true for the orthogonal projection on
Kn+1 of every linear combination of r.v.’s of the kind

exp(iλ1Xt1) · · ·exp(iλkXtk ) · · ·exp(iλn+1Xtn+1),

and the extension toKn+1 is achieved by observing that random variables of the type

T∫
0

u1∫
0

· · ·
un∫

0

h(u1,Xu1; . . . ;un+1,Xun+1)dX
(un)
un+1

dX(un−1)
un

· · · dXu1 (17)

form an Hilbert subspace ofL2(P).

To prove that representation (17) is also sufficient for a random variableF to be in
Kn+1, one can consider a r.v.F with such a representation and orthogonal toKn+1. In
particular,F will be orthogonal to every r.v.H with the form (16) and such that

φ(H,n+1)
u1,...,un+1

(Xu1, . . . ,Xun,Xun+1)=
n∏
k=1

exp(iλkXuk )1(t(n+1)−k,t(n+2)−k−ε(n+2)−k)(uk)

× ∂

∂z
h
(un,Xun)

f1,t1
(un+1, z)

∣∣∣∣
z=Xun+1

1(0,t1−ε1)(un+1), (18)

wheretn+1> tn > · · ·> t1 > t0 = 0, εk ∈ (0, tk − tk−1) for everyk and

f1(Xt1)= exp(iγXt1). (19)

Such a variableH belongs toKn+1 due to Lemma 9: as a matter of fact, Proposition 6
implies thatH can be represented in the following way

H =
tn+1−εn+1∫
tn

tn−εn∫
tn−1

· · ·
t2−ε2∫
t1

4(Xu1; . . . ;Xun)

× E(Yu1,...,un |Xu1, . . . ,Xun;Xt1−ε1)dX
(un−1)
un

dX(un−2)
un−1

· · · dXu1,

where theYu1,...,un are such that
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Yu1,...,un = f1(Xt1)− E
(
f1(Xt1) |Xu1, . . . ,Xun

)
= f1(Xt1)− E

(
f1(Xt1) |Xun

)
and therefore

E(Yu1,...,un |Xu1, . . . ,Xun)= 0.

Sincetn+1 andεk (k = 1, . . . , n+ 1) are arbitrary, orthogonality implies, a.e. Leb�n+1,

E

[
h(u1,Xu1; . . . ;un+1,Xun+1)

(
n∏
k=1

eiλkXuk

)
e

iγ
(un−t1)Xun+1+(t1−un+1)Xun

un−un+1

]
= 0

on [tn, T ] × [tn−1, tn] × · · · × [0, t1] for every (λ1, . . . , λn, γ ). Set finally, for fixed
u1, . . . , un+1

γ ′ = γ un − un+1

un − t1 , λ′
n = λn − γ t1 − un+1

un − t1
to have that, for every(λ1, . . . , λn, γ )

E

[
h(u1,Xu1; . . . ;un+1,Xun+1)

(
n∏
k=1

eiλkXuk

)
eiγXun+1

]
= 0

which implies

h
(
u1,Xu1(ω); . . . ;un+1,Xun+1(ω)

)= 0 a.e.-Leb�n+1 ⊗ dP

on [tn, T ] × · · · × [0, t1], and the result is completely proved, ast1, . . . , tn have been
arbitrarily chosen.

To conclude the section, we can drop the recursive structure from the results presented
at the beginning of this paragraph, so obtaining – as a combination of Proposition 7 and
Proposition 8 – an actual generalization of Proposition 3.1, 3.2 and 3.3 of Föllmer, Wu
and Yor [1].

PROPOSITION 10. –For a r.v. F with E(F ) = 0, the following conditions are
equivalent:

(1) F ∈�⊥
n .

(2) For everyi = 1, . . . , n

E
(
φ(F,i)u1,...,ui

|Xu1, . . . ,Xui
)= 0, a.e.-Leb�i (du1, . . . ,dui),

whereφ(F,i)u1,...,ui
is theith Itô integrand ofF .

(3) For everyk < n

E
(
φ(F,k)u1,...,uk

|Xu1, . . . ,Xuk ;Xt1, . . . ,Xtn−k
)= 0

a.e.Leb�k(du1, . . . ,duk), for everyt1< · · ·< tn−k < uk.



624 G. PECCATI / Ann. I. H. Poincaré – PR 37 (2001) 607–625

6. Conclusion

It is clear that our results are intimately related with many subjects of current study.
Consider indeed the theory of weak Brownian motions, as exposed in Föllmer, Wu

and Yor [1]. We define a weak Brownian motion (WBM) of ordern to be a stochastic
processY whose marginal laws up to thenth order coincide with the marginals of BM,
thoughY is not a BM. Of specific interest is therefore the study of those WBM laws
which are absolutely continuous with respect toP. In particular, one can show that the
proof of the existence – along with the subsequent characterization – of such laws relies
heavily on the characterization of those5 ∈L2(P) such that, for a fixedn,

E(5 |Xt1, . . . ,Xtn)= 0, ∀(t1, . . . , tn) ∈ [0, T ]n

i.e. of the elements of�
⊥
n . Theorem 1 then furnishes a complete description (in terms of

multiple time-space integrals) of such functionals, and seems to be of a certain interest
to proceed with the analysis started in the above quoted reference.

On the other hand, as already pointed out, the relation between the CTSRP and the
standardchaotic representation property(CRP) needs to be clarified, and this will be
the object of a separate paper. For now, we stress the fact that such a relation is far from
being straightforward, as shown in the following example. Consider indeed a zero mean
r.v. Y ∈ L2(P) which is also an element of the second Wiener chaos (notedC2), i.e. there
exists a measurable functionf , defined on�2 and such that

T∫
0

u∫
0

f 2(u, s)ds du <+∞

and

Y =
T∫

0

u∫
0

f (u, s)dXs dXu.

Then, from simple Hilbert space arguments, there exists a pair of measurable functions
f1 andf2, defined respectively on[0, T ] and�2, such that

T∫
0

f 2
1 (u)udu <+∞

T∫
0

u∫
0

f 2
2 (u, s)ds du <+∞,

and

Y =
T∫

0

u∫
0

f1(u)dXs dXu +
T∫

0

u∫
0

f2(u, s)dX
(u)
s dXu

=
T∫

0

f1(u)Xu dXu +
T∫

0

u∫
0

f2(u, s)dX
(u)
s dXu

= : Y1 + Y2. (20)
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It is evident that (20) corresponds to the orthogonal decomposition ofY in terms of
K1 andK2, i.e. the first and second time-space Brownian chaos. As a consequence, we
can conclude that (i) r.v.’s of the form ofY2 do notexhaustC2 and (ii) the orthogonal
of C1 (the first Wiener chaos) inK1 strictly containsthe projection ofC2 onK1, since,
e.g., for any functionh bounded and measurable, and for any odd integerk

T∫
0

h(u)Xku dXu ∈C⊥
1 ∩K1.

It is eventually natural to ask whether the CTSRP is specific of BM, or is shared
by other processes. In particular, we think about the first Azéma martingale and the
compensated Poisson process, which have been shown to possess the CRP. More
generally Föllmer, Wu and Yor [1] have shown that the non totality of the�k ’s (see the
introduction) is valid for a wide class of Markov processes, and it is therefore arguable
that such a class enjoys some analogue of the CTSRP for BM. Of course, the very
difficulty of proving the above claim relies in the construction of multiple time-space
Wiener integrals, for which a pervasive use of the theory of (initial)enlargements of
filtrations (as developed by Jeulin et al.) must be performed.
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