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ABSTRACT. — Motivated by the stochastic quantization approach to |1argeatrix models, we
study solutions to free stochastic differential equatibkis = d S; — %f(X,) dt whereS; is a free
brownian motion. We show existence, uniqueness and Markov property of solutions. We define
arelative free entropy as well as a relative free Fisher information, and show that these quantitie
behave as in the classical case. Finally we show that, in contrast with classical diffusions, ir
general the asymptotic distribution of the free diffusion does not converge;»aso, towards
the master field (i.e., the Gibbs state)2001 Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous étudions des équations différentielles stochastiques dul¥pe d S, —
%f(Xt) dt ou S, est un mouvement brownien libre, suggérées par la quantification stochastique
des modéles matriciels de grande taille. Nous établissons I'existence et I'unicité des solutions
ainsi que leur caractére Markovien. Nous définissons une entropie libre relative et une informa
tion de Fisher relative, adaptées a ces diffusions et montrons que ces quantités se comporte
comme leurs analogues classiques. Enfin nous montrons qu’en général, contrairement a ce ¢
se passe dans le cas classique, la distribution de la diffusion ne converge pas vers I'état de Gibl
0 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

The purpose of this paper is to start the study of diffusion equations where the
driving noise is a free brownian motion. Reasons for considering such equations will
be explained in the next sections of this introduction.
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1.1. Gibbs states and diffusion theory
Let V be aC? function onR¢, with
Z= /e‘v(x)dx < 00.
Rd
The probability measure
u(dx) = %e—vm dx (1.1.1)

is called the Gibbs state associated with the potetiah well known way of obtaining

the Gibbs state (useful for example in a Monte-Carlo simulation), is to construct the
diffusion process orR“, with drift —%VV, which is the solution to the stochastic
differential equation

1
Xm:dBl_EvV(X[)dt. (1.1.2)

Here B, is a brownian motion ofR“. Then, for any initial distribution of the diffusion,
the distribution ofX, converges, as— oo to the Gibbs state. More precise statements
can be given if one introduces the following quantities. For two mutually absolutely
continuous probability measures let

Hwlw) = /I g(”(dx)))u(dx) (1.1.3)

be the relative entropy of with respect tou. Recall thatH (v | ©) > 0 with equality

only if 1 = v. If the densityp = 245 is differentiable, let

VP [
1(v|u)—ﬂ!\ .

v(dx) (1.1.4)

be the relative free Fisher information. Wheris the Gibbs state (1.1.1), amddx) =
q(x)dx, one has

H(vlu):/q(x)logq(x)dx—i-/V(x)q(x)dx+|ogZ
R

:H(v)—l—/V(x)q(x) dx +logZ, (1.1.5)
H (v) being the entropy of, and

2
I |p) = ‘ﬂ+vw) (dx). (1.1.6)
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For 1, (dx), the distribution ofX at timez, one has

aH( )= 11( | )
97 V«tﬂ—zﬂtﬂ

so that the relative entropy is nonincreasing. Furthermore one has
H(u, | mu)— 0 ast— oo.

Exponential rate of convergence to O is obtained whesatisfies a Logarithmic Sobolev
Inequality, i.e.

1
H(V|M)§2—1(V|M)
0
for some positive constamt, and for all measuressuch that the right hand side is finite,
see, e.g., [15] for a discussion.

1.2. Matrix models

In these models one considers the limitNas> oo, of the quantities

1 1
— / —try(Q(M))e NIV EAD) g g (1.2.1)
Zy N

(Hn)*

where P and Q are non-commutative polynomials innon-commuting indeterminates,
tr y denotes the trace ovéf x N matrices, the integral is over the @t y)* of k-tuples
M = (My, ..., M) of Hermitian N x N matrices and

ZN — / e—NtI’N(P(M)) dM
(Hn)*

For fixed P, if the limit exists for allQ, then it can be put (via the GNS construction) in
the form

lim Zi / %trN(Q(M))e‘N”N(P(M”dM:rp(Q(X)), (1.2.2)

where X = (X4, ..., X;) is ak-tuple of self-adjoint elements in some von Neumann
algebraA p, equipped with a normal tracial statg. Thek-tuple of operator< is called

the master field, see [7,11]. Proving its existence seems to be a difficult problem, witt
implications in the physics of quantum fields. In one dimension (i.e., for a one-matrix
model), the situation is well understood, and the master field is then characterized by it
distribution, which is the probability measure on the real line whose moments are giver
by tp(X™); n > 0. This probability measure achieves the unique global maximum of the
functional

zp(v>=//log|x—y|v(dx)v<dy> —/P(x)v(dx)
R

R
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on probability measures on R, and thus it is uniquely determined by the polynomial
P. It exists if and only if the polynomiaP is non-constant and bounded belowRn

In fact potentials more general than polynomials can be considered, see [16] where suc
maximization problems are thoroughly considered. In the multi-matrix case, very little
is known unless the polynomidl splits as a sum

P(My, ..., My) = PL(M1) + -+ - + P (M)

for some one-variable polynomial®y, ..., P,. Then the master fieldXy, ..., X;)
is known to consist of free random variables in the sense of Voiculescu [22]. The
distribution of each of the variables is obtained by resolving the corresponding one-
matrix model, while their joint distribution, i.e., the computation of all moments
p(Q(X)) is obtained by Voiculescu's freeness prescription. As soon as there is a
nontrivial interaction between the components of the matrix model, we do not know
any way to prove the existence of the master field, and no explicit formula for the joint
moments.
1.3. Free stochastic quantization

A stochastic quantization approach to the master field has been proposed in th

physical literature, see [12,6,7]. At the level of the matrix models this means looking, as
in (1.1.2), at the solution to the diffusion equation (also called Langevin equation)

1

where B denotes a brownian motion aft{y)*, normalized so thak[try (B;(t)?)] =
N?t. In terms of the componentdy, ..., M, this gives

dM;(t) =dB;(t) — %NE)iP(Mi(t)) dt, (1.3.2)

where 9; is the ith partial cyclic derivative on polynomials i®# non-commuting
indeterminate$X., ..., Xy), given by

n
darX;iapX; - ap1Xiay =Y aXipp1- - Xiapar X; - Xja_1,
k=2

whenay, ..., a, are polynomials in the other variables. Remark thai jf is the map
My, ..., M) — trN(P(Ml, ey Mn))
then the cyclic derivative satisfies
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By the finite dimensional Gibbs state result, we know that the measure
ie—NtrMP(M)) dM
Zy

is the larger limit of the distribution ofM,. As explained above, the master field should
be obtained by taking the large€ limit of this Gibbs state. Free diffusions arise when
one tries exchanging the largeand largeN limits, so that one considers first the large
N limit of (1.3.1). In taking the largeV limit, one first rescales the time by &, so that
the brownian motiorB,,y converges ad/ — oo towards the free brownian motion (see,
e.g., [1]), namely one looks at the equation

1
dM;(t)=dB;(t/N) — EaiP(M(t)) dt
and whenN — oo the equation becomes
1
dX;(t) =dSi(1) = 5% P(X,)d, (1.3.3)

where X;(¢r) are the unknown non-commutative random variables, &g are free
brownian motions. The problem is to understand the lardjenit of the solution to

Eqg. (1.3.3). One hopes that when- oo the X; () will converge to the master field.

As we shall see, in general this procedure fails to recover the master fields, but in a
interesting way. We shall give a rigourous mathematical treatment of Eq. (1.3.3), with
special emphasis on the case of the one-matrix models. In this case, we shall consid
the equation

dX(t) =dS(t) — %f(Xl)dt (1.3.4)

for some class of drifif, and prove under regularity assumptions jothat Eq. (1.3.4)

with given initial value admits a unique solution. We shall define quantities analogous
to (1.1.3) and (1.1.4) which play the same role for free diffusions. We shall then show
that in general the distribution of the solutidf) fails to converge to the master field
distribution ag — oo.

1.4. Large matrix heuristics

In this section we shall give a quick heuristic derivation, based on the large matrix
approximation, of some of the results we prove rigorously below. L8R — R be
a smooth function, and let us consider the stochastic differential equatidv vV
Hermitian matrices

1
dM; = dBt/N - éf(Mz) drt,

where f is meant to act by functional calculus for Hermitian operators. Because of the
time scaling, the brownian motioB; v is associated with the rescaled Hilbert-Schmidt
scalar product%trN(AB*). It follows from the expression of the Laplace operator in
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polar coordinates oft{y (see, e.g., [8]) that the eigenvalués,(z), ..., Ax(¢)) of the
matrix M, satisfy a stochastic differential equation

dkt—ld 1 ldlktdt
0= ﬂi<r>+ﬁlgéw_h t=5f(®)
i#]

where theg; are independent one dimensional brownian motions. The generator of the
eigenvalue diffusion process is thus the sum of the diffusive %A (whereA is the
usual Laplace operator), an entropic term

1N< 1 )a
NZK%NA ) oa;’
i#]

and the drift termzf":l %f(x,-)a%. We now argue that whel is large, the brownian
term in this equation becomes small in front of the other terms, and in finite time, the
process behaves like a dynamical system with a small random perturbation (see, e.c
[9] for the theory of such dynamical systems). In the laigémit, the trajectory of the
eigenvalue vector behaves as that of the flow of the deterministic vector field

N
1 1 1 a
Z(ﬁ > P— A_—Ef(xi)>ﬁ. (1.4.1)
i=1 1N M TN i
i#]

Assume that the empirical distributioﬁ) SN, 8.4 converges, aiV — oo, towards
some limit distribution\, (dx) = p;(x) dx, then for any smooth test functignone has

N

Ly kt k 71 1 A
ﬁ; (1) = Z ()(Zki(t)_kjm—éf( ,-<r)))

=1 i

Q.3|Q_,

and taking the large/ limit, one gets
0 , 1
E/g(X)pt(X)dx Z/g (x) (Hpt(X) - Ef(x)>pt(X)dx,
R

where
u(y) J
X—=Yy

Hu(x):=p.v.

is (up to a multiplicative constant) the Hilbert transform. The flow equation gives then
the following “free Fokker—Planck equation” for,

eto(n-b) e
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On the other hand, the vector field (1.4.158® for the function

1 N N
Sy =52 > loglhi —aj1 =3 F),
i=1

i=1i%j

whereF is a primitive of f. It follows that along the trajectories of the flow, the quantity
@y (A(2)) is increasing with derivativ§|V®N(A(t))|2. One has

i 1 | '
Jim S0y (0) = [logl = ylpp () drdy = [ FOp@dxi=Er(p)
R R

(1.4.3)
and

1 1 2
Jim vy () =4 R/ (Hp0 = 57@) pdr=1r). (L44)

We obtain from this the differential relation

e =31r(p) (145)
which, as one can check at least formally, follows from (1.4.2). The two expres-
sions (1.4.3) and (1.4.4) are closely related to the free entropy and the free Fisher ir
formation measure defined by Voiculescu [18] (which correspond to the case where
f =0). We shall prove, using the free Ito’s formula, that the distribution of the solu-

tion of the free stochastic differential equation (1.3.4) indeed satisfies, in a weak sense
the free Fokker—Planck equation (1.4.2), and that (1.4.5) holds. As we are dealing witl
gradient flows, we know that in general the trajectory of such a gradient flow converges
to a local maximum of the function, but depending on the initial distribution, and may

not converge towards the global maximum. We shall see that such a phenomenon occu
for the free stochastic differential equation, and this explains why we should not expect
in general, to get the master field as the lardjenit distribution of the free diffusion.

It should be possible to make our arguments rigourous and prove the formulas abov
for the free diffusions, starting from the matricial approximations. However such an
approach, which relies on an understanding of the eigenvalues of the approximatin
matrices is restricted to the case of one matrix models, whereas we want to deriv
methods applicable to multimatrix models. Therefore we shall follow another route and
work directly on the limiting objects, i.e., semi-circular systems.

The stationary (i.ef;—’t’ = 0) Fokker—Planck equation reads

p(Hp—%f) =0. (1.4.6)

This is the Schwinger-Dyson equation of the matrix model (cf. [7,11]). As we see, this
does only give us the equation for a local maximum of the relative free entropy (1.4.3),
and so it may have solutions which are not given by the master field.
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Although the preceding arguments give us some insight into the free diffusions, they
do not provide a complete picture. Indeed the one dimensional distributions of the free
diffusion are not enough to determine the process, in particular as we shall see the fre
diffusion is a non-commutative Markov process with probability transition functions
satisfying a linearized version of the free Fokker—Planck equation. This cannot be see
if one only looks at the behaviour of the eigenvalues of the matrix models, indeed the
Markov property really comes from the behaviour of the eigenspaces of the diffusing
matrix.

1.5.

This paper is organized as follows: in Section 2 we recall some preliminary facts from
free probability theory. In Section 3 we introduce the free diffusion equation and obtain
existence and uniqueness results, with bounds on the solutions. We also establish
Markov property of the solution. We specialize to the one-dimensional case in Section 4
where we derive the Fokker—Planck equation, and discuss more thoroughly the Marko
property of the free diffusion. An Euler scheme for the approximation of the solution
is described in Section 5, and used to prove regularity properties of the distribution of
the free diffusion. These regularity properties are then used in Section 6 to prove thi
relation between relative free entropy and free Fisher information. Finally in Section 7
we consider the asymptotic behaviour of the free diffusion.

2. Preliminaries and notations
2.1. Non-commutative probability spaces and free random variables

In this paper we will consider non-commutative probability spaces which are von
Neumann algebras with a faithful, normal tracial state. We refer to [22,20,14,3], for
further information on the basics of free probability. We shall recall some facts about
freeness with amalgamation. Led, t) be a non-commutative probability space, and let
B be a unital weakly closed subalgebragfthen we denote by(. | B) the conditional
expectation ont@. One defined-free independence of subalgebras4ofontaining,
in a similar way as free independence, using the conditional expectatiof) in place
of the stater, see, e.g., [14].

LEMMA 2.1.— Let (A, t) be a von Neumann non-commutative probability space,
let B1, B, ¢ A be free von Neumann-subalgebras, and Xet= X* € B3, then the
algebras (B, U {X})” and B; are {X}"-free, and for anyY € (3, U X)” one has
©(Y | By) = (Y | X). Furthermorez (. | X) mapsC*(B,, X) onto C*(X).

Proof. —Let by, ..., b, € Bo, then it follows from the moment cumulant formula [14],
that for anyb € B; the expression (b1 Xb,X ---b,_1Xb,b) can be expressed as a linear
combination of products of the form

(f};(f[b)) (Slijlf(xh)>f(xfb),

iel,
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where{l,...,n}=LU---Ul,n=1+1,+---+1,. We deduce that the conditional
expectation ob, X ---b,_1Xb, onto B; is of the form P(X) for some polynomialP.
The assertions in the lemma follow easily from this observatian.

2.2. Free brownian motion

Let (A, r) be a von Neumann non-commutative probability space. We shall assume
that A is filtered, so that there exists a family,),cr, of unital, weakly closedx-
subalgebras ofd, such that4, c A, for all s, ¢ with s <¢. Further we shall assume
that there exists a4,),cr, -free brownian motioriS, ), cr, , i.€., eachs; is a self adjoint
element of A with semi-circular distribution of mean zero and varian¢eone has
X, e A, for all ¢+ > 0, and for alls, ¢ with s < ¢, the elementS, — S; is free with
A,, and has semi-circular distribution of mean zero and varianees. Once this
brownian motion exists, one can define stochastic integrals of biprocesses with respe
to S, as in [5]. The main results about stochastic integrals that we shall use are the
free Burkholder—Gundy inequality (Theorem 3.2.1 of [5]), and the free It6’s formula
(Theorem 4.1.2 of [5], or the functional form, see Section 4.3).

2.3. Operator Lipschitz function

Let f:R — C be a locally bounded measurable function, it is called an operator
Lipschitz function if there exists a constakit> 0 such that

1) - fFD| <KIX -7 (2.3.1)

for all self-adjoint operator, Y on a Hilbert space. The functiofi is called locally
operator Lipschitz if for evenA > 0 there exists a constaii, > 0 such that (2.3.1)
holds for all self-adjoint operatorX, Y, of norm less thamA. Clearly, an operator
Lipschitz function is a Lipschitz function, but the converse is not true, and in fact being
a C?* function does not insure that the function is locally operator Lipschitz. Examples
of operator Lipschitz functions are functions of the form

fx)= /e”“yu(dy),

R

where i is a bounded complex measure such thake||u|(dx) < oo, (this follows
from Duhamel’s formula, see, e.g., Section 1.2 in [5]). From this one can infer easily
that C? functions are locally operator Lipschitz. More precise description of the classes
of operator Lipschitz and locally operator Lipschitz functions can be given in terms of
Besov spaces, see, e.g., Peller [13].

If (A4, 7) is a non-commutative probability space, we shall also consider more
generally functionsQ : AX, — A, (Where Ay, is the self-adjoint part of4), and call
such functions locally Lipschitz if there exists consta@iiX); K > 0 such that for all
X;, Y; with norms< K, one has

k
[O(X1, ..., X)) = (Y1, ..., Y| < CUO(Z 1Xi — Yi”)-

i=1
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Examples of such functions include self-adjoint polynomials in non-commuting indeter-
minates, but also many functions not given by functional calculus.

3. Existence of multidimensional free diffusions

Let (A, 1) be afiltered non-commutative probability space, as in Section 2.2, in which
S1(1), ..., S(@) (t > 0,) ak-dimensional free brownian motion, is defined. E&¢tr) is
an A,-free brownian motion, aniS1(¢) | > 0}, ..., {Sk(¢) | t > 0} are free in(A, 7).
Let Oy, ..., Or: A*, — A,, bek locally Lipschitz functions, such that eagdy maps
At 10 A, for all s > 0. Consider the system of stochastic differential equations

dX;(1) = Qi (X1(t). ... Xe (1)) dt +dSi(t) (1<i <k) (3.1.1)

which means that we are looking for maps> X; (¢) with values inA, such that
t
X;(t)=X;0)+ S;(1) +/Q,-(Xl(s),...,Xk(s))ds forall t > 0, (3.1.2)
0

whereX; (0) are the initial data.

THEOREM 3.1. —Assume the following condition is satisfied for some constants
aeRandb >0:

k k
D (Qi(X1. . XOXi + X Qi(X1, ..., X)) +1) <ad X7+b (3.1.3)

i=1 i=1

forall Xy, ..., X; € A,,. Then, given arbitrary initial condition&; (0) = X° € Ao (i =
1,...,k), the systen{3.1.1) of stochastic differential equations has a unique solution
(X1(0), ..., Xi()) for all ¢+ > 0. Furthermore, we hav&(; (1) e A; forall i =1,...,k
and allt > 0, and the maps — X;(¢) are norm continuous.

Proof. —We will construct the solution by the Picard iteration method. In order to keep
the Lipschitz constants bounded we have to truncate the polynomials for big norms. Thi:
will be done by a functiork : [0, o0) — [0, 1] which has the following properties: there
exists R > 0 such that: is identically 1 on[0, R] and identically O on2R, oc]; & is
continuous, G 4(r) < 1 for all + > 0, andh has a finite Lipschitz constant, i.e., there
exists aC > 0 such that

|h(t) —h(s)| < Clt —s| forallz,s >0.

Then we truncate a given locally Lipschitz functighby going over to

k
f(X1, ., Xp) = Q(Xl,...,Xk>h<Z ||X,-||>.

i=1
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LEMMA 3.2. -There exists a constamt> 0 such that forXq, ..., X;, Y1,..., Y1 €
A, we have the estimate

k
1f (X1, X)) — f(Y, . Y| <e DX =Y.
i=1

Proof. —Put
my :=max{| Xall,.... I Xcll} and my :=max{||Y1ll,..., Il }.
Note thatmy > 2R implies f (X4, ..., X;) = 0. Thus the estimate is trivially satisfied in

the caseny > 2R andmy > 2R.
Consider now the casgyx > 2R andmy < 2R. Then we have

| f(X1, oo, X)) — f(Yn, .. Yo = f (Y, ..., Y|

k
=|oy.... V)| ’h(Z”Yi”)
i=1

Now note thatQ (Y1, ..., ¥;) is bounded on the set given by, < 2R and that

() =)+ ()

k k
SO =D I1Xll
i=1 i=1

The caseny < 2R andmy > 2R is analogous. So assume finally that bath < 2R
andmy < 2R. Then we have

1f (X1, .., X)) = F(Y1, ..., Y|

k k
<|Q(X1, ... X0 - ‘h(an,-n) —h(ZnYin)‘
i=1 i=1

<C

k
<CY Y — X,
i=1

k
+oX1, ..., X)) — Q(Ya, ... Yo | - ‘h<ZIIYiII>‘
i=1

k
<OX1, ... X0 - CY_NYi = Xill + | Q(X1. ..., X)) — Q(Y1. ... Yo .
i=1
The assertion follows now by noticing th&(X4, ..., X;) remains bounded on the set
given bymy < 2R and that we have on the set given layy < 2R andmy < 2R an
estimate of the form

k
1Q(X1, ..., X)) — P(Y1,.... Y| <&D_IX; = Vil
i=1

for some constart. O
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We can now approximate the solution of the system (3.1.1) by replacing the functions
Q; by their truncated versions

k
fi(X1, .., X)) = Q,~<X1,...,Xk)h<§j ||X,-||)

j=1
for a functioni as above with some fixe® > 0. Thus we consider now the system of
stochastic differential equations

dX;(t) = fi(X1(t), ..., X (0))dt +dS; (1) (1<i<k) (3.1.4)

with the initial conditions
X;(0)=
This can be solved by Picard iteration applied to the integral equations

X,~<r)=X?+/f,~(X1<s),...,Xk<s))ds+s,~<r),

which gives in the usual way the existence and uniqueness of the solution of the

system (3.1.4). Since the whole construction above depends via the fuhotiorthe

parameter® we will denote this solution byXf(z), ..., XX (1)). Itis also clear that as

long as>"*_; I XX(1)|| < R, this solution(XX(r),..., Xk (1)) is also a solution of the

original problem (3.1.1). To ensure that fBr— oo we get a solution of (3.1.1), we thus

need an argument ensuring that the norms of our solutions do not explode in finite time
To see this let us consider the function

k
Z) =Y X%

i=1

An application of the free Ito’s formula yields

k
deZ(1)) = <Z X; (1) ) dt+e" Y d(Xi(r)?)
i=1
k
<ZX, (1) ) dt
i=1

k
ot Z( (X1(0), ..., Xe (D) X (T) 4+ Xi (0) fi (X(0), ..., Xe(0)) + 1) dt

i=1
k

+ e Y (@S, ()X (D) + Xi (1) dSi (1)),
i=1

By the norm continuity of stochastic integrals with respect to their upper bounds, the
norms || X;(x)®|| are continuous functions of the time. Let us consider
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Tr =inf{z| Z" LIXE ()|l > R}, thenTg > 0 and forz < Tk, by the hypothesis on the
functions Q;, we have

t k t t
Z(t) < Z0) + e‘”b/e“” dt + e“’z (/dS,-(r)X,-(r)e“” + /X,-(r)e‘“ dS,-(r)).
0 i=1 \p 0

By using the Burkholder—Gundy inequality in operator norm for stochastic integrals with
respect to free brownian motion [5] we obtain

b
IZDOI < NZO)[ + —(e"’ -1

rery ( )

1/2
IIZ(0)||+ +22 2f</||X(r) ||e_2‘”dr> e

/dS (t) X:(v)e " || + /Xi(r)e_“’ dsS;(7)

t 1/2

b
<NIZO)] +—(e" — 1) +k - 4v/2 max ||Z(s)||</ —Zafdr) e
a 0<s <t

b [e2a
<||Z(0)||+;( —1)+k-4 mgax\/||Z(s) )

p(1) = max | Z(s)].

Put now

Then we have, for al < Ty

b
0(1) <9 + (€ = 1) + 4y /o) (& ~ 1) /a.
Attime Tk one has makX;(Tr)|l > R/ k, thereforeR?/k? < ¢(Tg) < R?, hence
b
R?/K? < 9(0) + — (&7 — 1) + 4R/ (€7x — 1) /a.
a

From this we deduce a lower bound f6g, so thatTp — oo aSR — oo if a > 0,
and Ty = oo for R large enough itz < 0. Thus for fixed:, one hasXx? = X, for all
R > Rpandifa < 0, then there exists a uniform bound on the solution for all times, i.e.,
max ;>o | X; ()| <oco. O

3.2. Markov property of the free diffusion

Define fors > 0 the followingC* and von Neumann subalgebrasAf

FO=C*({Xo; Si(s); i=1,...,k; s<1t}); X2=C*(X;(t);i=1,...,k);
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G =C*({X;(t); Si(s) = Si(t); i=1,....k; s =1}),

F= (Y =) 6= (@)

which represent respectively the past, present and future of the process. Obsen
that X° ]—“? N G2. The following proposition is an immediate consequence of the
uniqueness of the solution of (3.1.1), and of Lemma 2.1.

ProprPosITION 3.3. —The algebrasF, andg, are X;-free, furthermore the conditional
expectationz (. | ;) mapsg? onto A°.

This means that the proceXs is a free Markov process with respect to the filtrations
JF andg. It follows that for all timess < # one can define an operat8y, : X° — X0 by
the formula

(Y| FO)=z(Y | X% =P,,Y.

This operator is a completely positive map, and is a non-commutative analogue of :
probability transition function.

4. One dimensional free diffusions and the Fokker—Planck equation
4.1. The free Fokker—Planck equation
Let f:R — C be a locally operator Lipschitz function, such that
—xf(x)<ax?’+b forallx eR, (4.1.1)

and letX be the solution to
1

which exists according to Theorem 3.1. lgbe aC? function onR, then by the free
Itd’s formula ([5, Section 4.3]), one has

t 1 t 1 t
0(X,) = 9(Xo) + / dp(X,)2dS, - 5 / ¢ (X f(X)ds + 5 / Ao (X,)ds,
0 0 0

where one defines

0 —
st =2 ([EZED 1 wy)
x\J x—y

for aC? functiong, ., being the distribution oX. Note that the factor 2 in the definition
of A, above was overlooked in [5]. Taking the trace of both sides of the equation, one
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has, since the stochastic integral has expectation 0,

t

1 1
T(p(X)) =1(p(Xo0) — 5/ (¢ (X)) f(Xy)) ds + E/ Asp(Xy))d

0

or

1 t
/ 0(x) pr (dx) = / 000 ofdn) — 5 / / o' (1) £ () s (dx) ds
R R 0 R

[0 e —e)
+0/R/£(R/ﬁus(dy)> us(dx)ds. (4.1.3)

As we shall see later, the distribution &f has a bounded (non smooth in general)
density p,(x), for all r > 0. Making formal integration by parts in this formula,
Eqg. (4.1.3) means that,(dx) = p,(x) dx is a weak solution of the free Fokker—Planck
equation (1.4.2). It is known that even for a smooth initial distributionf & 0, then

the distribution ofX, can develop singularities, i.e., folarge enough, there will exist
points where the density, is not differentiable, hence in general Eq. (1.4.2) cannot be
taken in a pointwise sense.

4.2. Free Markov property of the diffusion

In the one-dimensional case, the results from Section 3.2 yield an operator
P, X% — X0 which is a Markov operator and is given by a Feller kernel of proba-
bility measureP; ,(x, dy) on Spe¢X,) x Spec¢X,). The free Markov property of the
diffusion now implies that for all timeg;, < ¢, < --- < t,, the following time ordered
moments can be computed

t(fuX) - fo(X,)
— / . / FLD) -+ f () phey (A1) Pryiy(va dxa) -~ Py 1o (G, )
R

where f1, ..., f, are bounded Borel functions dR. In particular, they coincide with

the time ordered moments of the classical Markov process with transition probabilities
given by P, , and one dimensional distributions . Taking conditional expectations in
Itd’s formula yields thatP, , = p,,(x, y)dy is a weak solution to the linearized, non
time homogeneous, free Fokker—Planck equation

0 0
Eps,t(an-x) —sz(x) p”(xO,x) pf(X)a(Hps,t(xo,x))

9
+ a(ps,f(xo,X)f(X))-

This is to be compared with the Markov property for processes with free increments
(see [4]).
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4.3. The stationary case

Suppose that the initial distribution &f, is chosen so that the distribution (dx) =
p:(x)dx is constant. In this case one has, from the free Fokker—Planck equation, tha
Hp = %f on the support op(x) dx. As we shall see, this can be achieved by takifig
to be distributed as the measure maximizing the relative free entropy. In this case, th
Markov operatorsP; , become time homogeneous, indeed they depend only-or.

As it is easy to check, these correspond to the classical Markov transition operato
associated with the Dirichlet form

0) = %/R/‘L; e

See, e.g., [10]. Observe that this Dirichlet form can be put in the form

2
u(dx) p(dy).

1
Qp)=51n® 1(19gl?),

where, e.g., on polynomialg,: C[X] — C[X] ® C[X] is the non-commutative deriva-
tion (for the naturalC[X] bimodule structures of [X] and C[X] ® C[X]) such that
0X =1® 1. More generallyp can be defined on functions by

() —e(y)
R

dp(x,y)

This is to be compared with the expression of the stationary diffugidn?), which is
associated with the Dirichlet form ab?(p(x) dx)

1
0(p) = §/|V<p(x>|2u(dx).
R

Thus, going from the classical diffusions to the free diffusions means replacing the
gradient by its non-commutative analogue.

5. Euler scheme for the solution of the free diffusion equation
5.1. Convergence of the Euler scheme

In order to obtain regularity results on the free diffusion, we shall develop in this
section an Euler scheme for the solution of our diffusion equation. This Euler scheme
could be defined in the multidimensional case, in the setting of Theorem 3.1, and the
arguments presented below would imply its convergence without difficulty, however for
notational simplicity, and since we shall only use the one dimensional case, we stick tc
this case here. We continue with the hypotheses of Section 4.1. Let us=fiX and
define a proces¥ ™, first in the interval0, 1/n] by
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Xg" = Xo,

1
X" =Xo+S8, for <u<-=,
n

n 1
X(l)=Xo+S%—Ef(X0+S%),

and then continue by induction @nassumingX ™ has been defined for < f define

k k+1

n n n n

1
X" =X 4 S — Si — Zf(xg” + Sis1 — Sk ).

This will give an Euler approximation to the solution of Eq. (4.1.2).

THEOREM 5.1. —Letr > 0, then there exists a positive constan{depending ory,
t and| Xgl|), such that

Jn

Proof. —We know that sup, | X;|| < oo, hence we can always assume théf| . <
00, andf is operator Lipschitz with some constat(depending om). Define fork > 1,

B

SngXi”) — X,|| < £ foralinzo, (5.1.1)
s<t

af’ = | X{" = X¢| and u? = X{ — Xi — (X~ Xos)
then, clearly
al” =0, a” <al’;+ul’ fork>1
and
X" — X, || <a”y + —||f||oo

for % <t < % therefore it is enough to prove estimate (5.1.1) for the timekthe
form £. One has

u<">=Hif( X%+ Sk — Sica ——/f(X)ds
k 2n
k
<5 [ X = XE, — 51+ 5 s
;1
k
<5 [ % =X - X, ) ds
k=1

n
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N
1
Sk =S — 5 / (X)) du

k
K n
<3/
=1 =1

n n

K | k 1 k—1 @
<5/ 2> =5+ 51 (5= = )+l ) ds
k=1

+a,En_) ) ds

[

K/ . 1

< (a;i_)ln_l +2n7 Y24 = ||f||oon_2>
2 4
K

< zalﬁn_)l + xn 32

for some constang. Finally we get
n n K
a,(( ) <a,(( )1(1+ —> +Xl’l 3/2.

Letb” = af” (1+ £)=* then one has

K k
b,in) < b]((n_)l +x (l+ Z) 7’1_3/2 < b]((n_)l + Xekﬁl’l_g/z.

Summing ovek gives

a/in) < blin)el(% < Xfekgn—ug
Estimation (5.1.1) follows from this. O '
5.2. Regularity of the free diffusion

Let us denote byDY?g the half derivative of a functiorg, then ||DY?g|? =
Jr 1x18 ()] |2dx, whereg is its Fourier transform. We assume tifahas a derivative, and
we are in the situation of Theorem 3.1, with eith&r Lipschitz function, orf locally
Lipschitz, satisfying (4.1.1), with < 0. In these latter case, sindg remains uniformly
bounded, we can as well assume tlfias in fact a Lipschitz operator function, and let
2K be a Lipschitz constant fof .

THEOREM 5.2. —There exist constantk;, K, depending only ory, such that the
distribution of X, has a density satisfying

K
I pilloo < K1/4/t + Ko and ||D1/2p,||2<Tl+K2 forall ¢ > 0.

Proof. —We shall prove only the first estimate, since this is the only one we shall use in
the sequel. The second one can be obtained along similar lines, using the results of [1€
Let us fixz, then by Theorem 5.1, we know that the Euler scheme approximatitn
converges in norm towards,. In particular, this implies that the distribution af"™
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converges weakly towards that &f, hence it suffices to prove that farlarge enough,
X" has a density satisfying the estimates of Theorem 5.2, for some conktarks,
independent of: ands. Let us prove first thai” has a density for alt > 0. For

0 <t < 1/n, the distribution ofx™ is obtained from that oK by a convolution with

a semi circular distribution of varianae hence we know from [2] that the distribution
of X has a density”, which is continuous, analytic on the set where it-i§ and
bounded by 1(r +/t). Forn large enough, the map— x — —f(x) is a diffeomorphism,
whose inverse has a derivative bounded abovélby zln I ' llso) ™%, hence the density
of Xi’}fl is bounded above by/n/(7r (1 — K)) By induction onk, we see that for all

t with £ <t < & the distribution ofX,” has a bounded density, and the maximum
of this denS|ty is smaller than the maximum of the densityk @, since it is obtained
by a free convolution (see, e.g., [2]). It is therefore enough to prove the bounds for the
timesr = 5 Passing from‘((”)1 to X(”) consists in convolving freely with a semi-circular
distribution of variance: ! and then applying a diffeomorphism of derivative bounded
above by 1- £ Let v, be the supremum of the density h’fk’”, then one has, by [2],

Lemma 6 and Proposition 5,

Uk—1
(1+ arctar(vak 1/n)(1—

Uk

Let
X

(1+ Zarctan2rx2/n))(1— £y’

then the functiorp, satisfies the following properties, farlarge enough:
(2) p, is increasing oni0, +ool.
(2) pn(x) >xfor0<x <x, =,/5-tan(3

() p.(x) < x forx > x,.
It follows that one has; < u; whereu, is the recursive sequence

,On(.X) =

nK)

uy=~/n/m, Urs1 = Pp(Ur),

This sequence is decreasing and— x, ask — oo. One has

2 2
uk_fl —u?=u;? ((1 — K /n)? <1+ - arctar(Znu,f/n)) - 1).

Since the function arctan is concave[@n+oo[ andu?/n < u?/n = m~2 one has for all
k>1, = 2 arctar2ru?/n) > cu?/n for some universal constanITherefore
2
(1-K/n) (1 + = arctar(znu,f/n)> > (1—K/n)(1+ cui/n)
T

—K/n +cu,§/n - (cui/n)(K/n)

>
>1—K/n +cu,€/n — 7 2cK /n.
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Let K, = /K (% + 1), then there exists a constansuch that ifiu;, > K, then one has

2
up? ((1— K/n)2<1+ ;arctar(Znulz/n)> - l) >a/n

for all 1 <! < k. In this case one has

k-1
ug?=up’+ Z(u,‘fl —u; %) > ak/n,
1=1

hencev, < uy < ,/4;. Therefore for allk one hasvy;, < /-7 + K». This yields the
required estimate. O
The continuity inL? of the Hilbert transform yields the following

COROLLARY 5.3. —The densitiep™ belong to allL” spaces as well as their Hilbert
transforms forl < p < oo, and one hap™” — p, and Hp\™ — Hp, in L” for every
1< p < 0. The mapt — p, is continuous or0, oo[, in L? for everyl < p < .
Furthermore, the logarithmic energy

/Iog lx — yIp:(x)p;(y)dx dy

is defined and continuous in and one has/log|x — y|p\" (x)p,(»)® dxdy —
J1oglx — yIp:(x)p;(y) dx dy asn — oo.

6. Connection with free entropy and free Fisher information
6.1. Relative free entropy and free Fisher information

Let F be a locally bounded Borel function dR, let us introduce the following
quantity

Sr() = / / loglx — y| p(dx) e(dy) — / F(x) pu(d) (6.1.1)
R2 R

for a probability measurew, with compact support inR. This quantity always
makes sense ift-oo, +oo[. We shall also need the following relative version of free
information, defined for differentiabl& with F' = f by

1 2
Tr (1) =4/<HP(X) - Ef(x)> p(x)dx (6.1.2)
R

if u has a density e L3(R), and Iz(u) = oo if not. We shall see that the quantities
above are the right analogues of the relative entropy given by (1.1.5), in the classica
case and of the relative Fisher information (1.1.6). The limit eigenvalue distribution of
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the matrix model with potentia is the unique measuygewhich maximizes the quantity
Y r (1) (see [16] for some information about such maximization problems).

6.2. Nonincrease of the relative free entropy for the free diffusion

Let us consider again Eq. (4.1.2), where we assume nowtlsaa C? function. As we
shall see now, as in the case of classical diffusions, the quantity,) is nondecreasing
with ¢, so that it converges to some valueras- oo, but in general this limit value is
strictly smaller than the maximum value.

PROPOSITION 6.1. —Let u;(dx) = p,(x)dx be the distribution of the solution
to (4.1.2) then one has for > 0

d 1 2 1
B (u) =2 R/ (Hp,oc) - §f<x)) Pdx=SIr). (62)

Proof. —We shall prove that for ai < ¢ one has

2

’ 1
Yr(u) — Zp(p) = 2/[/(Hpu(x) — éf(x)> Pu(x)dx} du
N R

Since, by Corollary 5.3 the quantity integrated is continuous, ithis will prove the
claim. Choose the nearest integérd such that" <s <t < ﬁ Denote byu™ the

distribution of X" and byyf”) the distribution ofX(") + Si — Si-1. Since one obtains

u(,ffl from ;L(”) by free convolutlon with a semi- C|rcular distribution, one has, for all
k> 1,

k+l

Fo(uh ) — To(u)') =2 / ( / P () Hp™ (x)? dx)

cf. [18], and from Eq. (4.1.3), applied to the cak®, =d;,

Fooyplh (dx) — F(X)M(”)(dX)=— ( f<x)p§”)<x>Hp§")<x)dx)ds
[rovon= [rontiuo=- (]

hence
S () — S (uf)

+

/( / ) (2Hp(" (x)? ~ f(x)Hp<”><x))dx) (6.2.2)
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The measureu(") is the image of{” by the mapr > x — X f(x), consequently one
has ’

(i) - =ty )= [ | (10g

x pi'?l Cpl (ndxdy

B 1 B n
/(F (x f(x)) F(x)) p%l_(x) dx

_// 1 f(x) f(J’) P, (x)pgl)l (y)dxdy

n

Cy e S f(y)‘ logx — y|)

. 1
" éﬂzng(x)pin;l_(x)dx +0(-;).

(n)

where the O is uniform i%. Moreover one ha$X,€+l X[l =0nY?) fork <5 < &2,

uniformly overx and s, therefore, sincel®)= f(y is Lipschitz as a functlon of two
variables, one has

//1f(x) F) (kn+>l ()pi”ﬁl (y)dxdy

—// i A f(y) PP ) drdyds +0 31/2)

k+l

1
_2//f(x)p§n>(x) Hp(n)(x)dxds+0< 3/2) (6.2.3)
Comparing (6.2.2) and (6.2.3), we get the convergence resmalt.

7. Asymptotic behaviour of the free diffusion
7.1. Nonconvergence towards the master field

We shall now give examples of potentidisfor which there exist initial distributions
such that the distribution of, does not converge towards that of the master field. The
examples we give have several potential wells, and if these wells are deep enough the
no mass can escape from them. Let us consider a fungtisnch thatf has isolated
zeros atxy, ..., x, € R, and there exist positive constantsh such thatf’ > a on the
interval]x; — b, x; + b[, and these intervals are two by two disjoint. Then there exists a
nonnegativeC? function G such thaiG(x) = (x — x;)? on the intervallx; — b, x; + bl,
andJ = Uj_ylx; — b, x; + bl is exactly the set wher& (x) < b2. Let us apply Ito’s
formula to é“G(X,), we get
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1G(X,) = G(Xo) + / 459G (X,) tdS, — / 5G/(X,) f(X,) ds
0 0

t t
+2a/e2”“G(Xs)ds+ :—ZL/eZ“SASG(XS)ds.
0 0
Suppose that G (Xo)|| < b? and letT =inf{t||G(X,)|| > b?}. Then the support of the
distribution ofX, is included inJ for t < T, and for such one has

Gx) — G(y)’
Y

X —

106G (X)) | oo (rgeory < SUP < 2b,

x,yeJ

-G (X)) f(X,)+2aG(X,) <0 as self adjoint operatars

|AG(X)|| < sup 9 (M) <2
x,yeJ 0x x—y

so that
t 1 t
e'G(X,) <G(X0)+/e2”SaG(XS)ﬂdSS+§/e2”ASG(XS)ds,
0 0

therefore, using the free Burkholder—Gundy inequality

|G (X))|| < IG(Xo) || + 4by/2(% — 1) /4a + 2(e*" — 1) /2a.

Assume that

IG (Xo)ll + 4b/~/2a + 1/(2a) < b?,

then we see that < T for all time ¢ > 0, i.e.,T = oo, and thus the support of the
distribution of X, always remains in/. Since X, is norm continuous, it follows that
the mass put by the distribution &f, on each of the intervalsc; — b, x; + b[ remains
constant in time. Therefore, the distribution Xf cannot converge towards the master
field, unless one puts the right masses in the wells at the initial distribution.

Let us consider the quartic model with X) = 3 X%+ £ X*. Then the limit distribution
of the matrix model has a Cauchy transform given by

1 1
G(z)= E(Z + g7%) — §(1+ 2ga® + gz%)V/ 72 — 4a?,
where Za* 4+ a? =1 (see, e.g., [7, Eq. (5.3)]). In particular, this solution exhibits an
analytic continuation for negativg, with g > —1/12, although then one hdy = oo

for all N. These solutions are interpreted as coming from the local minimum at O of the
potential P. Indeed if we look at the free diffusion equation

1 3
dX[:dS[_E(X[-i_gXl)dt



604 P. BIANE, R. SPEICHER / Ann. I. H. Poincaré — PR 37 (2001) 581-606

then starting ak, = 0, and using the same technique as above with the free Burkholder—
Gundy inequality, one can see that fonegative, but close enough to zero there is indeed
a solution defined for all times which moreover remains uniformly bounded in norm.
This suggests that the distribution &f converges towards the analytic continuation of
the solution, although we cannot prove this. The advantage of considering free diffusior
eguations is that we can study with the same techniques equations involving more tha
one variable, indeed for models such as A model where

P(A, B)=aA%+ BB* + A+ B>+ y(AB + BA)

one can prove that fofy| < 1 and for negative values a@f and 8 close to zero the
solution starting from 0 again exists and remains bounded over all times, suggesting th:
an analytic continuation of the model exists for suchnd 8. Of course this argument
works for much more general models, but we do not have any rigorous argument for th
convergence of the solution towards some limit distribution.

7.2. The case of the free Ornstein—Uhlenbeck process

On the other hand in the case whgftér) is a linear function, then we know that the
distribution of X, always converges to the semicircular distribution. We even have an
exponential rate of convergence for the relative free entropy, thanks to the free analogu
of the log Sobolev inequality due to Voiculescu.

Let F(x) = Ax? for a positiver > 0. Then we havef (x) = 2ix and the diffusion
equationd X; = dS; — A X, dt has the solution

t
X, =eMXo+ / e =0 gs..
0

The distribution ofX, is given by the free convolution of the distribution of‘€Xy with
a semi-circle of variancél — ) /(21). In particular, forr — oo the distribution ofX,
converges towards a semi-circle of varianj;e i.e., towards the distribution O%S,

wheresS is a semi-circular of variance 1. In this case we have
Z(Xoo) = Z(X0) = x (Xoo) = 2 (X3,) = x(X) + A7 (X?)
=x($) - %lOQ(ZX) - % — x(X) +At(X?)
and
1(X) = ®(X) — 4 + M%7 (X3?),

where y and @ are the free entropy and the free Fisher information, respectively.
We claim now that we have a corresponding free logarithmic Sobolev-inequality for
p=2\le.,

iI(X)2E(Xoo)—2(X)
2p
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or
D (X) =4 x(S) — 2x10g(21) + 2% — 4y (X).
To prove this it suffices to have this inequality for that value.afhich maximizes the
right hand side. This value ofis determined by
log(2%) = 2 (S) — 2x (X),

and the free logarithmic Sobolev inequality for the Ornstein—Uhlenbeck process is thu:
equivalent to the statement

2re

2x(X) =2 2x(S) — log®(X) = log o)’

But this inequality was proved by Voiculescu in Proposition 7.9 of [21].
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