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AsstrACT. — Consider a€]0,1[. We prove that there exists a constant
K (o), depending on o only, such that for p>1, there exists a map F from
R to R? such that for s, e R, we have

| F@~F @]/ s—]—1|<K @/p"

Resumt. — Pour a€]0, 1], il existe une constante K (a), dependant de o
seulement, telle que pour p>1, il existe une application F de R dans R”
telle que, pour tous réels s, ¢ on ait

|| F@=F@||]s—1|-1]£K @/p"
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356 M. TALAGRAND

1. INTRODUCTION

A helix is a map 2 from R to a Hilbert space H such that
[|h(s)—h(2)||=||h(s—1)]| for 5, 7€ R. Within isometries, a helix is determin-
ed by the function

(1) v@=|lh@]>*

It is a theorem of I. J. Shoenberg that the functions V¥ (¢) given by (1) are
exactly the functions of negative type. In this note, we are interested in
the case || A (2)||=|¢|*, for a certain a€]0, 1[. The case a=1/2 corresponds
to Wilson’s helix, that is realized by Brownian motion.

P. Assouad and L. A. Shepp raised the question whether the helix
corresponding to ||A(#)||=]|¢|"/* (Wilson’s helix) can be approximated in
the p-dimensional euclidean space. This was settled by J. P. Kahane [2]
who obtained the following result. (Throughout the paper, ||.|| denotes
the euclidean norm.)

TueoreM 1 (J. P. Kahane). — There exists a universal constant K such
that for p=1, there exists a map F from R to R? such that

vser, 1- E<IFO-FOl _, K

p |s—t|'? p
On the other hand, P. Assouad [1] proved that for all a€]0, 1], p=p,,
there exists a map F from R to R? such that

1 F(s)—F
2 Vs, teR, —gng
|s=2f°
where K depends on a only. The estimate of (2) does not improve when
p — co. The purpose of the present note is to improve upon (2).

THEOREM 2. — Given a.€]0, 1], there exists a constant K (o), depending
on o only, such that for p=1, there exists a map F from R to RP that
satisfies

K -
) VsreR, 1- O NFO-FOf

K (o)
P |s—tf "

o

In the case a=1/2, this gives an error in K/_/p, and unfortunately does
not recover the error K/p of Kahane’s Theorem 1. It is not difficult to see
that this error K/p is of optimal order in Kahane’s theorem; but when
a#1/2, we do not have a nontrivial lower bound for the error in (3).
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APPROXIMATING A HELIX 357

2. THE APPROACH

We fix a€]0,1[, and p>1. For convenience, we assume that p is a
multiple of 4 (so that p>4). We set, for n>0,

Dn={—l—;0§i§p2"}.
p2

For 0<¢g<2"*'—2, we set

_| 9 qt2
I”'q— 2n+1’2n+1 :

Thus I, , = [0,1]=1, o. For n>1, 0<¢=<2"*' -2, we find /(9)(=1,(¢))
such that I, , = I,_; ;- When 0<g<2"*'—2, and when g is even, there
are two possible choices. We make an arbitrary choice; the construction
will actually not depend on that choice.

Consider a map ¢t — x(f) from R to a Hilbert space H that satisfies
|| x(@®—x(s)||=|7—s|*. We first construct affine maps 6, , from H to R?
that satisfy

@) Vs,t€D, N1, |18, x(@) =0, (x| =|2—5]*
(5) VtEDn—l m In, q° en,q(x(t))=en—l,l(q) (X(t))

We proceed to this easy construction, by induction over n. A basic
observation is that D, NI, , has p+1 points. The affine span of these
points is isometric to RP?; thus for each n, g, one can find an affine map
€, o from H to R? that satisfies

Vs, t€D, ML, g |G (D) =8, (O] =1 =]

We take 0, (=& o If all the maps 6, , have been constructed,
for a certain n and for all ¢<2""'-2, we take 0,,, ,=U°&,,, .,
where U is an isometry of R? such that U(§,,, ,(x())=8, ;, (x(?) for
teD,_; NI, , By isometry we mean that ||U(x)—U(y)|=|x~y|| for
x,y€RP. The existence of U follows from the following elementary fact,
that will be used repeatedly: if S is a map from a subset A of R? to R? such
that || S(x)—S(»)||=||x—y|| for x, ye A, then we can find an isometry U
of R? such that U (x)=S(x) for xeA.

For the simplicity of notation, we will write x, , , =9, ,(x(#)). The idea
of the preceding construction is that the points x, , ,, € D,NI, , have
the correct position with respect to each other. Also, a certain degree of
consistency is obtained through (5). One would like to have F(f)=x, , ,
for teD, N1, , The problem is that it is not possible to insure that
X qt=Xn q+1,¢ fOr teD,NI, NI, .. To solve that difficulty, for
tel, ., we will construct an isometry R of R?. We require the following

n, q,t
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358 M. TALAGRAND

properties.
(6) ForteD,NI, ,NI, 441, we have
Ro g e 0.0 =Ry g1, (K g1, 0)-
() ForteD,_ NI, 0 ¥y=Xp 4 t=Xu—1,1(9,» WE have
Rn, at (»)=R,_ 1,1(q),t ).
(8) Fors,tel, ,, x,yeRP, we have

1Ra, 0,6 () =Ry g, s (D)= R, 0 )= R, o (N[ EK[[x—p]| |£=5].

(There, as in the sequel, K is a constant depending on o only, that is
not necessarily the same at each occurence; on the other hand, K,, K,, ...
denote specific constants depending on o only).

) Ifx=x for uel, ,MND,, then for s,zel, ,ND,, we have

n, q,u
n(l—a)

2
”Rn,q,s(x)_Rn,q,t(x)HéK |S‘“t|.

(10) For ¢ in [(¢g+1)27"7%, (g+2)27"1], the isometry R} °R, ,.;,
does not depend on ¢.

The construction of these isometries will be done in section 3; but,
before, we provide motivation by proving Theorem 2.

For teD, N1, ,, we set

(11) F()=R,, 4 (X 4,0

Givne n, there are two consecutive values of g for which rel, ; if follows
from (6) that the value of F(¢) does not depend on which value of ¢
we use. Also, it follows from (7) that the value of F(¢) does not depend
on which value of n we consider. Thus, (11) actually defines F(¢) for
teD= U D,.
nz0
Consider now u,veD, such that |u—v|<27""!. Thus u,vel, , for
some g. Let t=(g+1)27"" 1. It follows from (4), since R, g 1S an-iso-
metry, that
” R'l, q, 7T (xll, q, ll) - Rn, q, T(x'l, q, U) “ = | u—v 'u'

Thus, by (9), used for s=u, t=1, and for s=v, =1, we have
(12) | [|[F@—F@)||—|u=2[|=||Rn, g uXn g) ~Ro g c X 0. ) |
2'"1
+" Rn,q,v(xn,q, u)_Rn,q,‘r(xn,q, v)”éK pa .

It follows in particular that
(13) |F@@)—F@)||sK27"
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APPROXIMATING A HELIX 359

LEMMA. — For s, teD, we have ||F (s)—F (1) || <K |s—1]"

Proof. — Consider the largest n such that |s—¢|<27", so that
27"<2|s—t|. We observe that, given s€[0,1], we can find ueD, such
that |s—u|<27"/p<27""2 We thus construct sequences (1), (v) k=n,
such that u,, v, €Dy _,, |u,— 5| <27, |o,—u| <27 Thus |u,—v,|<27"*2,
| =1 | |e—v441|S27%*1. We can and do assume that u,=s, v, =1
for k large enough. Then

IF ()~ F @) || <|F @)= F ()|
+ Z (“ F(u)—F (w4 ,) “ + ” F(v)—F (v441) ”)

kZn
By (13), this implies that
|[F@-F@|sK27*"<K|s—¢]*. O
The lemma implies in particular that F can be extended by continuity
to the closure of D, i.e. to [0, 1], and that
(14) IF®-F@)||<K|s—t|*

for s, te[0, 1].

Consider now s,t€[0,1] and the largest » such that |s——t|§2‘"“,
so that 27"<4|s—t|. Consider g such that s,tel, .. Thus we can find
u,vel, ,N D, such that |s—u|<27"/p, |1—2|<27"/p. By (14), we have

K ~no 2—71('1
IF@)-F@ll< i . IFo-Fo <2

o

o

Thus

—nao

IFO-FOI-[Fo-Fo| <<

o

From (12), we have

[IF@-F@|~|u—of|=

K2“ml

(4
Thus, since |s—¢|=27""2, we have

IFO-FOI _, | X | lu=sf _
[s=1F

(15)
Pl sl

We have ||u—v|—|s—t||£27"*!/p. Using that |(1+x)*—1|<K|x]| for
| x|<4, we get that

o

u—of _
=i

2’

IIA
IIA

HF@—F@H_4<E.

(16) Vs, tel0,1], <
Is_tla pu
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360 M. TALAGRAND

There is no loss of generality to assume F(1/2)=0. Consider an ultra-
filter % on N, and define

G ()= lim nﬂFG + 1).

n->u n

1
The limit exists since, from (14) and F<5>=0, we have

na”F<1+£)||__<_K|z1«.
2 n

Moreover it is immediate to check that, for s, teR, we have
G ®—G@®]||/|s—t|*—1|<K/p* This completes the proof of Theorem 2.

The reader has observed that conditions (8) and (10) have not been
used. Condition (8) is used during the construction as a preliminary step
for conditions (9). Condition (10) helps to keep control of the situation as
the induction continues.

3. CONSTRUCTION

The construction proceeds by induction on n. For t€[0,1], we set
Ry, o,,=Identity. We now perform the induction step from n—1 to n.
Consider ¢, —1<¢<2"*2—2, and set

t=(g+127"1, T=(¢q+2)2""Y, I=[1,7]
For tel, we construct isometries T, a, 1> O, g,+ Of RP, such that the following
holds (where we set I(—1)=0)
17) T o =Ricii@s  Swav=Rac1ig+1n),
(18) VielIND,, T, 4 q0=S 4 g+1,0
(19) ForteD,_; N1, we have
Tn, at (xn, a =R, _ 1,1t (xn, a )
Sn, q,r(xn,q+l,l)=Rn—1,l(q+1),t(xn,q+1,t)'

(20) For s,tel, x,yeRP, we have

| T qs )= T g, ()= (T 4, ) =T, 0, OD | SK, 2" s~2] | x= |

l[Sn. 4.5 ()=S0, 4,5 (D =S4, 0, () =S, 0. . ONDISK, 2| s~ 1] || x=y]|.
(21) Foru,s,teIND,, X=Xy 0w ¥V=Xn g+1,u W€ have

2
[ Th, g s () =T 0. M| SK,

n(l—a)

- |s—1t]
n(l—a)

2
“Sﬂ,q,s(y)—sn,q,t(y)”§K2 |S_t|.

(-]

(22) For tel, the isometry T, } ,°S, ,.;,, does not depend on ¢.

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



APPROXIMATING A HELIX 361

Before we proceed to the construction of the isometries T, g s S, 4,0
we show how to construct the isometries R, ,, for 0<g=<2""'-2.
Forte[g2 " !, (g+1)2 " JwesetR, , ,=S, ;-1 for tel(g+ 21,
(g+2)27""', we set R,,,=T,,,. Condition (17) ensures that
Snq-1,:=1Tn g SO that R, . is well defined. It is simple to see that
conditions (6) to (10) follow from conditions (18) to (22) respectively.

We now construct the isometries T, , ., S, o, Set I=1(q), '=1(g+ 1).
Thus, we either have /’=/ or I'=[+1. For te[(/+1)277, (+2)27", we
have by induction hypothesis and (10) that, if /'=I/+1,

(23) 4 LR,y 1, = Constant isometry: =V.

s

If I'=1I, the above also holds, for V=identity. We set for simplicity
A=R,_, , +sB=R,_; . It is simple to see that te[(/+1)27", (I+ 2)27";
thus, by (23), we have A~'-B=V.

Given teIN\D,_,, we have

R, i1e(n-1,,0=Razy, e (Xn—1,10, 1)

This is obvious if ’=1; if I’=1I+1, this follows from (6). Remembering

that R;Y, , ,°R,_; ., ,=V=A"1°B, we get
VieIND,_;, A(Xu-1,,0=Bx-y, 1,0

It then follows from (5) that
29 VieIND, 1, A4 )=B(Xs 4410
Since A, B are isometries, it follows from (4) that

Vs, teIND, [|AG ¢ )~ A o II=IB G gr1,9 = BGn e[|
Thus, there exists an isometry U of R? such that
(25) VieIND,, U°A(x,,)=B(x, 41,0

Since card I N\ D,=p/2+ 1 <p, we can assume that det U= 1 (by compos-
ing if necessary U by a reflection through a hyperplane containing the

points A (x, , ), teIND,) Itis then clear that we can find a semi-group
U (¢) of isometries of R?, with U(1)=U, such that

{ Va,beR, Vx,yeRY
(26)
[U@®-U@»-U®E®+UEG 0K |b-al || x|l

(actually one can take K;=2m).
For tel, we set
Tn,q,t= n—l,l,tnA—l°U((p(t))°A

Sn,q,t=Rn—l,l',t°B_1 ~U(p(®)—1°B
where @ (f)=2"*!(¢—1). Thus ¢ (1)=0, ¢ (v')=1. Thus (17) holds.
It remains to prove (18) to (22).

Vol. 28, n° 3-1992.



362 M. TALAGRAND

Proof of (18). — It follows from (25) that, for t<D, N I, we have
A (x,, q,t)=U~1 °B(Xp, 41,0
so that
@7 U@O)*A (50 )=U @O~ 1)*B(x, 4, ).
Since R, ; ,°R,_, ;. ,=A~ !B, we have
R,y °B7'=R,_, A7},
and, combined with (27) and the definition of T, , ,, S, , ,, this implies (18).

Proof of (19). — We consider only the case of T, , ,, and leave the

other case to the reader. By (24), (25), we have
tEImDn—l = U°A(xn,q,t)=A(xn,q,t)
so have
U () A(x,, 0,0 =A (X, 4,0
for all seR. Thus
AT U@ ) A(Xy 0 )=Xp 40

which implies the result.

Proof of (20). — We prove this inequality for the constant K, =4K,,
where K3 occurs in (26) and we again consider only the case of Ty g
We have

[T, g5 = T g s (D)= (T, 0. ) =T, ., . N || @ +AD)
where
M=[Ry_1,1,,cA™ U (@@)°AX)~R,_; ;s A1 U(o (1) °A())
"R,y AT U(@) A+ R,y AT U (9 (9) A ()|
(H):”Rn—1,1,z(xl)"Rn—1,1,:()")_Rn—1,1,s(x')+Rn—x,t,s(y’)”
for xX’=A"1-U(@(s)°Ax), y=A"1U(p(s))°A(y). Since A and
U (¢ (5)) are isometries, we have || x'—y'||=||x—y||. We observe that (8)
holds with the same value K=K, of the constant K than (20); thus, by
induction hypothesis, we have
A=K, 2" Y s—t] || x=y]-
Since R,_; , ,°A~! is an isometry, we have
D=[U(@®) A®)-U@@®)° A»-U@©) AX+U@) AV)].
Since |A(x)— A ||=||x—y|, |¢ (O |s2"*1|s—¢]|, by (26) we have
M=K 27" [s=1] [[x=p].
Thus
D+ADSK, 2"+ K 2 [s— 1] | x—y|| <K, 27 s—1] [ x =y

since K; =4K,.
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Proof of (21). — We prove (21) for K, =2°K, (1-27®"%)", and again
we consider only the case of T. We proceed by induction, observing
that (9) holds with the same constant K,. We find v in IND,_, with
|u—v|<27"*!/p. We set z=x, , ,. We have

[ T, 4,5 )= Ty, g, ) | M+ AD)
M=(Tp, (@~ Tp Q@
(AD=||T,, s ()= Tn, g, (D= (T 4, () =T, ¢ s @ |-
We recall that by (24), (25)
UeA(Z)=B(xn,q+ 1, v)=A(z)9
so that, by definition of T, , ,

D= “ R,_1,1@.s@)~Ruoi 1), :(2) “
and, by induction hypothesis,

where

(n—1)(1-a)
OsK,———— Js—t]
p
If we recall that (20) holds for the constant K; we have
(DK, 2" |s—t| || x—z|-
Since, by (4),
[x—z||=|u=o[*<27""D)p%
we have (I <K, 2*2"* "9 |s—¢|p~* Thus

n(l1—a) 2n(1—a)

[2°K, +K, 270 9 |s—¢t|=

M+aD= K, |s—].

o o

Proof of (22). — We have, for te],
T, 1 ,°S

o
n,q,t n,q,t

=A L U(—o(®) AR °R,y 1, ,» BT U(@()—1)°B.
Since, by (23), we have R}, , ,°R,_; ;. ,=A~'°B, we have
ToL oS, . =A"1eU(=@(®) U(@(H-1)°B=A"1-U !B,

n,q, t °
and this does not depend on ¢.
The proof is complete.
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