Erratum Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities

<http://www.numdam.org/item?id=AIHPB_1989__25_4_589_0>
Erratum

Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities

by

M. F. BARNESLY, S. G. DEMKO, J. H. ELTON and J. S. GERONIMO

The proof given for Lemma 2.5, pg. 374, while correct for certain spaces, e.g. \mathbb{R}^1, is incorrect in general, as it assumes special properties of the modulus of continuity. A correct proof is obtained by replacing from the beginning of the proof through lines 13, page 375, by the following:

Proof. Note that each φ_i is non-decreasing, and $\varphi_i(t) \leq 1$ for all t, since $|p_i(x) - p_i(y)| \leq 1$ for all x, y. Let

$$
\varphi_0(t) = \begin{cases}
t, & 0 \leq t \leq 1 \\
1, & t > 1.
\end{cases}
$$

Let $\varphi = \varphi_0 \vee \varphi_1 \vee \ldots \vee \varphi_N$, where $t \vee u$ denotes $\max\{t, u\}$. It is clear that φ also satisfies Dini’s condition.

Sublemma. Let $\varphi : [0, 1] \to [0, \infty)$ be non-decreasing, with

$$
\int_0^1 \frac{\varphi(t)}{t} \, dt < \infty.
$$

Then there exists $\psi : [0, 1] \to [0, \infty)$ such that $\psi(t) \geq \varphi(t)$ for all t, $\frac{\psi(t)}{t}$ is non-increasing, and

$$
\int_0^1 \frac{\psi(t)}{t} \, dt < \infty.
$$

Proof. W.L.O.G. assume $\varphi(0) = \varphi(t), \forall t$. Let $f(t) = \varphi(t)/t$. We shall use the “rising sun” lemma of F. Riesz (Boas, page 134): Let E be the “shadow region” for the sun rising in the direction of the positive x-axis; that is, $E = \{t \in (0, 1) : \exists x > t \text{ with } f(x) > f(t)\}$. Then E is an open set and if (a, b) is any one of the open intervals comprising E, $f(x) \leq f(b)$ for $x \in (a, b)$, and $f(a) = f(b)$ since f is right-continuous and has only upward jumps.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203
Vol. 25/89/04/589/04/$2,20© Gauthier-Villars
Let C be countable collection of non-overlapping open intervals such that $E = \bigcup C$. Define

$$ g(x) = \begin{cases} f(x), & x \notin E \\ f(b), & x \in (a, b) \in C. \end{cases} $$

Thus $g(x)$ is non-increasing and $g \geq f$. Now if $(a, b) \in C$,

$$ \int_a^b [g(x) - f(x)] \, dx = \int_a^b [f(b) - f(x)] \, dx $$

$$ = \int_a^b \left[\frac{\varphi(b) - \varphi(x)}{b} - \frac{\varphi(a)}{x} \right] \, dx \leq \int_a^b \left[\frac{\varphi(b)}{b} - \frac{\varphi(a)}{b} \right] \, dx $$

since φ is non-decreasing. Thus

$$ \int_a^b [g(x) - f(x)] \, dx \leq [\varphi(b) - \varphi(a)] \frac{b-a}{b} \leq \varphi(b) - \varphi(a), $$

so

$$ \int_a^b \frac{[\varphi(b) - \varphi(a)]}{b} \, dx \leq \sum_{(a, b) \in C} \frac{\varphi(b) - \varphi(a)}{b} \leq \varphi(1) $$

since φ is non-decreasing, so $\int_0^1 g(t) \, dt < \infty$. Finally, let

$$ \psi(t) = tg(t) \geq tf(t) = \varphi(t), \quad \text{and} \quad \psi(t) = g(t) $$

is non-increasing. \square

So by the sublemma, increasing φ if necessary, we may assume in what follows that $\varphi(t)/t$ is non-increasing and φ is Dini.

Let $f \in C_c(X)$, $\|f\| \leq 1$, and also assume $f \in \text{Lip}_1$, so

$$ |f(x) - f(y)| \leq C d(x, y), \quad \forall x, y \in X. $$

We may take $C \geq 2$.

Without loss of generality, we may assume $q \leq 1$ in the hypothesis of the lemma.

Define

$$ \beta^*(t) = \frac{N \vee C}{1 - t^q} \int_0^{u - t^{-q}} \frac{\varphi(u)}{u} \, du. $$

This is finite since φ is Dini. Then $\beta^*(0) = 0$, and β^* is continuous and strictly increasing. Also, β^* is a concave function, since $\varphi(t)/t$ is non-increasing.

We thank Roger Nussbaum for pointing out that our earlier proof was incorrect.

REFERENCES