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ABSTRACT. - Let ~ N(t), t > © ~ be the renewal process associated
with a sequence Xl, X2, ... of non-degenerate non-negative i. i. d.

random variables. Let C > 0 be a fixed constant, and consider

and 

In this paper, we prove that lim sup infT~~ {0394T- CA log T } /log log T = + h(C)

a. s., where A and h(C) are constants depending upon C and the distribution
of Xl, together with a similar result for 5~ under the condition that
E (exp (sXi))  oo for some s > 0.

Key-words : Erdös-Rényi laws, laws of large numbers, renewal processes, law of the
iterated logarithm, almost sure convergence.
AMS, 1980, classification. 60 F 05.

RESUME. - Soit {N(t), t~ 0} le processus de renouvellement asso-

cie a une suite Xl, X2, ... de variables aléatoires non-degene-
rées positives ou nulles. Soit C > 0 une constante fixee, et soit
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196 J. N. BACRO, P. DEHEUVELS AND J. STEINEBACH

AT= log T)-N(t) ~ et &#x26;~= Clog T)-N(t) ~.
Dans cet article, nous établissons que

p. s., où A et h(C) sont des constantes ne dependant que de C et de la loi de Xl .
Nous prouvons un résultat analogue pour ~T sous la condition que

E (exp (sX1))  00 pour une valeur de s > 0.

Mots-clés : Lois d’Erdös-Rényi, Loi des grands nombres, processus de renouvelle-
ment, loi du logarithme itere, convergence presque sure.

1 INTRODUCTION AND RESULTS

Let Xl, X2, ... be independent non-negative and identically distri-

buted random variables such that :

Define the corresponding renewal process by

where So = = X~ + ... + Xn. Let C > 0 be fixed and let C log T,
T > 1.

In this paper, we will be concerned with the limiting behavior of the
Erdos-Renyi type statistics A~ and bT as T --~ oo, where

and

Before stating our theorems, it will be convenient to give some preliminary
results and notations. Let and let so=sup {s: ~(s) oo ~.
Clearly ~( . ) is increasing on ( - and such that r~(o) = 1. Hence
so E [0, oo). We shall make use of the following properties of the moment
generating function r~( . ) see e. g. Deheuvels and Devroye (1983), Deheuvels,
Devroye and Lynch (1986).

Annales de l’Institut Henri Poineare - Probabilités et Statistiques



197CONVERGENCE RATES IN ERDOS-RENYI TYPE THEOREMS

Let m(s) = Observe that m( . ) is increasing on ( - 00, so) and
that m(o) _ ,~, so that m( . ) is continuous on ( - oo, 0 u ( - 00, so). Set

It is noteworthy that a = ess sup X1 whenever ess sup Xi  00 or when

so = oo and ess sup Xi = 00. In general we have a  ess sup Xl in the
other cases.

Define Ao and Bo by

It is straightforward that 0  Bo  Ao  oo and that the equation
= 1 has a unique solution s = s(8) for all Bo  0  Ao. Further-

more s( . ) is decreasing on (Bo,Ao) and such that s( 1 /~c) = 0 while

Consider now s - 8 log and note that this function of s E ( - oo, so)
has first derivative 1 - 8m(s) and strictly negative second derivative. Thus,
for Bo  8  Ao, it has a unique maximum on (- oo, so ) reached for
s = 8(8).

Because of the analycity of ~( . ) on ( - 00, so), s(0) is differentiable on
(Bo,Ao). Furthermore

It follows that r(.) decreases on (Bo, ] and increases on 
Clearly = 0 so that r(0) > 0 for all Bo  0 =~ 1/,u  Ao.
We investigate now the limiting behavior of r(0) as 8 -~ Ao (resp.

0 - Bo). Observe that r(e) - = s{8). This, jointly with = 0,
implies that 

_

It follows from the above equalities that

Vol. 23, n° 2-1987.



198 J. N. BACRO, P. DEHEUVELS AND J. STEINEBACH

and

By Theorem 2 of Deheuvels, Devroye and Lynch (1986), we have

Note also that Bo > 0 and so = oo is equivalent to ess sup Xl  oo, so

that finally

Likewise

Define now c 1 = lim (l/r(0)) and co = lim (1/h(8)), corresponding to

and

We may now state our main results in the following theorems.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



199CONVERGENCE RATES IN ERDOS-RENYI TYPE THEOREMS

THEOREM 1. For any e 1  C  oo, let A E -,Ao ) and s* *  0 be

the unique solutions of the equations ’ 

THEOREM 2. - For any co  C  oo, let Be Bo , - and s* > 0 be the
unique solutions of the equations ’ ’

Then

REMARK 1. - Note that the assumption co  oo in Theorem 2 requires
that so > 0.

Retka (1982) and Steinebach (1982) proved that, under the assumption
of Theorem 1 we have _

Recently Steinebach (1986) proved that, under the same assumptions

The following extension of Theorem 5 in Deheuvels, Devroye and
Lynch (1986), given by Bacro (1985), enables us to also provide the best
constants in (5) as well as in an analogue assertion with dT replaced by ~T :
Using the notations introduced above, let [c log N + ~, log log N ],

N = 1, 2, ..., and

Vol. 23, n° 2-1987.



200 J. N. BACRO, P. DEHEUVELS AND J. STEINEBACH

Let Co and e i be defined by (using the notations 1/~ = 0, 1 /0 = oo)

and

THEOREM A (Bacro, 1985). - For c > Co let a E (~u, a) and t* > 0 be the

unique solutions of the equations

By considering ( - Sn }n=0,1,... instead of {Sn }n=0,1,... an immediate
corollary of Theorem A is as follows:

THEOREM B. Far c let f3 E (b, ~u) and t**  0 be the unique solu-
tions of the equations

Then

REMARK 2. - The random variables Xi , X2, ... in Theorems A and B
need not be restricted to possess non-negative values only (see Bacro
(1985)). Moreover, it is obvious from the proofs that the results are the

same if {max min } in the definition of {DN dN} is replaced by

{max min}0nNN-K’N
As will be seen in the sequel, the assumption that Xi , X2, ... are non-

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



201CONVERGENCE RATES IN ERDOS-RENYI TYPE THEOREMS

negative can be relaxed to  oo for some s  0. We will not state

the corresponding results for sake of brevity.
Before we give the proofs of Theorems 1 and 2, let us, for example,

consider the case of the standard Poisson process, which possesses indepen-
dent and stationary increments and hence can directly be treated by using
Theorems A and B.

2. ERDÖS-RÉNYI TYPE INCREMENTS
OF POISSON PROCESSES

be a standard Poisson process, i. e. a renewal process
associated with an i. i. d. sequence Xl, Xl, ..., where x) = e-x,
x > 0. Since = 1 /( 1 - s), s  1, and ,u = 1, we have the following
corollaries of Theorems 1 and 2:

COROLLARY 1. - For any C > 0, let 1  A  oo be the solution of

Then

COROLLARY 2. - For any C > 1, let 0  B  1 be the solution of

As indicated above we can give a direct proof of Corollary 1 by making
use of Theorem A. Similarly, Corollary 2 can directly be deduced from
Theorem B.

Vol. 23, n° 2-1987.



202 J. N. BACRO, P. DEHEUVELS AND J. STEINEBACH

Proof of Corollary I . Since we have

where n = [t ], N = [T ], KN = [C log N ], and { N(r) has independent
and stationary increments, relations (10) and (11) follow from assertions
(6) and (7) of Theorem A (with ~, = 0), provided the constants can be deter-
mined in a proper way. But observing that

we have m(t) = et, J1 = 1, a = oo, Co = 0 (i. e. c E (o, oo )), a E ( l, oo ),
t* = log a, and .

1

for this special case of Theorem A. Replacing a = A and c = C completes
the proof of Corollary 1.

In order to deduce Corollary 2 from Theorem B note that b = 0,
P(N( 1 ) = b) = Hence c’1 = 1, ce(l, oo ), 03B2 E (0, 1), t * * = log 03B2 and

It is interesting to compare these direct results of Corollaries 1 and 2

with the results of Theorems 1 and 2 in the special case of exponentially
E(l)-distributed random variables. Since

we obtain

and

The latter equations yield s** = 1 - A  0 and 1/C = 1 - A + A log A,
which implies

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



203CONVERGENCE RATES IN ERDOS-RENYI TYPE THEOREMS

Similarly, in Theorem 2, so = 1, co = 1, Be (0, 1), s* = 1 - B > 0,
1/C = 1 - B + B log B, and

Hence the direct approaches to Corollaries 1 and 2 are in full agreement
with Theorems 1 and 2.

3. PROOFS OF THEOREMS 1 AND 2

The proofs are mainly based upon Bacro’s (1985) Theorems A and B
and a duality argument comparing the increments of a renewal process

with suitable increments of the corresponding partial sum
sequence { Sn ~n-o,l,.... . Consider ~T as introduced before and let

where, for N = 1, 2, ...,

and d is a suitable constant chosen below. Then

LEMMA 1. - For all A’  ~.  ~,", there exist d’ and d" such that

a) P(AT(~.) i. o. (in T)) ~ d’) i. o. (in N)),
b) P(AT(~.) i. o. (in T)) > d") i. o. (in N)).

Proof Let [u ], ] u [ denote the lower and upper integer part of u,
i.e. JM] ~ M  [~] + 1, ]M [ 2014 1  M ~ ]u[.

a) Observe that Ar is integer-valued and it attaines its maximum at a
random point t such that t + C log T = S~, where T is a renewal

point, i. e. n x N(T). Now

implies

Vol. 23, n° 2-1987.
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Setting N = [b‘T ], where 5’ > 1/,u, we know from the law of large
numbers for the renewal process that

N(T) ~ N, for T ~ To chosen large enough,
and also 

_ ,

Hence, for £’  À and T sufficiently large,

where n  N, d = 2C log ~’ ~, KN(~.’) as introduced before. This proves
part a) of our lemma.

bl Suppose that

where 03BB" > 03BB, i. e. for some n  N,

Choose T = ~"N, where b" > ,~. Then, by the SLLN again,

N(T) ~ N, for N ~ No sufficiently large, and

Since A" > ~,, for N sufficiently large,

Choosing d = C log y, we have

which completes the proof.
Considering the events

we also have

LEMMA 2. - For all À’  ~.  ~.", there exist d’ and d" such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Outline of proo, f : If BT(~,) occurs, then

for all renewal points N(T). Choosing N = [ bT ], ~  by ~," > i~
and along the lines of proof for Lemma 1, this also implies

with some suitable constant d and large N. Similar arguments apply for
part b).

Proof of Theorem 1. We apply Theorem B with c = CA, ~3 = 1 /A
and ~, + such that

Note that b±(~,) is strictly increasing in i~~. Let Ào  ~,+  ~.1. Then,
by assertion (8) of Theorem B, for any d,

which, by Lemma 2, also implies

Hence follows,

which proves (2) by letting tend to ~, + . ~
Assertion (1) can be proved in a similar way, making use of relation (9)

in Theorem B and the duality inequalities given in Lemma 1.

The proof of Theorem 2 can be derived from Theorem A and the following
analogues of Lemmas 1 and 2:

Let

and

Vol. 23, n° 2-1987.
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where

and d is a suitable constant. Then we have :

LEMMA 3. - For all À’  ~,  ~.", there exist d’ and d" such that

LEMMA 4. - For all ~,’  ~,  ~,", there exist d’ and d" such that

The proofs are analogous to those of Lemmas 1 and 2 and can be omitted.

Remark 3. It can be verified by an extension of the preceding arguments
that the results of Theorems 1 and 2 subsist in the definitions of OT and 6T
we choose KT as a nondecreasing function of T > 0 such that

KT - C log T = o (log log T) as T ~ oo.

Remark 4. - The duality argument we have used for the Erdos-Renyi
increments Ay and 6T enables for a general KT to obtain similar results
as above by relating the limiting behavior of increments of partial sums
to the limiting behavior of the increments of the corresponding renewal
process. An example of such techniques is given in Deheuvels (1985) for
the Bernoulli process (P(Xi = 1) = 1 - P(Xi = 0) = p E (0,1)).

REFERENCES

[1] J. N. BACRO, Encadrements limites de la statistique de Shepp. Tech. Rep. 86-45,
L. S. T. A., Université Paris-VI, Publ. Inst. Univ. Paris, 1986, 2-3, 1-14.

[2] P. DEHEUVELS, On the Erdös-Rényi theorem for random fields and sequences
and its relationships with the theory of runs and spacings. Z. Wahrsch. verw.

Gebiete, t. 70, 1985, p. 91-115.
[3] P. DEHEUVELS and L. DEVROYE, Limit laws related to the Erdös-Rényi theorem.

Tech. Rep. 83-6, L. S. T. A., Université Paris VI.
[4] P. DEHEUVELS, L. DEVROYE and J. LYNCH, Exact convergence rate in the limit

theorems of Erdös-Rényï and Shepp. Ann. Probab., t. 14, p. 209-223.
[5] M. RETKA, Gesetze von Erdös-Rényi-Typ bei Erneuerungsprozessen. Diplomarbeit,

Universität Marburg.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



207CONVERGENCE RATES IN ERDOS-RENYI TYPE THEOREMS

[6] J. STEINEBACH, Between invariance principles and Erdös-Rényi laws. Coll. Math.
Soc. Janos Bolyai, t. 36, 1982, p. 981-1005, Limit Theorems in Probability and
Statistics, P. Révész ed., Elsevier, Amsterdam.

[7] J. STEINEBACH, Improved Erdös-Rényi and strong approximation laws for incre-
ments of renewal processes. Ann. Probab., t. 14, 547-559.

(Manuscrit reçu le 30 janvier 1986)

(Corrigé le 16 juin 1986)

Vol. 23, n° 2-1987.


