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Section B :

Calcul des Probabilités et Statistique.

1 . SUMMARY

Though the object of the present paper is to give a survey on the deve-
lopment concerning the distribution of values of additive arithmetical
functions, some mention will be made of arbitrary arithmetical functions,
too. Since by the method of characteristic functions, the distribution
problem of additive number theoretical functions reduces to the existence
of the limit of the mean of multiplicative functions, it seems natural to
include in such a survey the results of the latter topic. I shall however
not discuss this problem in its generality, only the well known Delange
theorem will be stated with remarks on two different lines of generaliza-
tions of it. I wish to emphasize the probabilistic character of the problem
and this paper was prepared for an audience whose interest was assumed
to be probability theory.
Out of the references three kinds of works are left out intentionally:
(i) Books on number theory having a minor section on this topic.
(ii) Survey papers touching our problem but hardly contains more

than the formulation of the problem.
(iii) Some of those papers which were published by the same author

on the same line before 1962; in regard to these papers the reader is referred
to the very comprehensive monograph by J. Kubilius (1962).

I intend to go through the whole development of this subject and hence
there will be a considerable overlap with the very popular works of M. Kac
(1959) and J. Kubilius (1962). My intention is however different from

(*) « Now at temple University, Philadelphia, Pa 19122 ».
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theirs, and in any case, the results of the past ten years may justify to have
a new look at the earlier results.

After the introduction of the number theoretical concepts and the listing
of probabilistic results needed for the understanding of the references made
in the sequel, the paper is split into the following sections: 4. The laws

of large numbers; 5. The Erdos-Wintner theorem; 6. The central limit

problem; 7. Asymptotic expansion of the distribution function of arithme-
tical functions. In all sections it will be observed that the results remain
valid if the arithmetical functions in question are considered on a wide
class of sequences of integers (others than the successive ones) and also
for functions defined on algebraic number fields.

2 THE FORMULATION OF THE PROBLEM

Any function defined on the integers 1, 2, ... is called an arithmetical

(number theoretical) function. Throughout the paper, 2 = pl  p2  ...
will denote the successive prime numbers. The fundamental theorem of

arithmetic says that there is a unique representation of any integer n in
the form 

, _

with 0 integers. Clearly, only a finite number of sin) 5~ 0; (1 a)
can be written as

where pj|n signifies tqat Pj is a divisor of n. In (1 b) we always assume

that Pj =1= pt if j ~ t.

DEFINITION 1

An arithmetical function f (n) is called additive if for co-prime u and v

By (1 b) and by induction we have that if f (n) is additive then

p?(n) II n signifying, that p?(n) I n but (does not divide n).
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DEFINITION 2

An additive arithmetical function ,f(n) is called strongly additive, if

For strongly additive functions ,f(n), (3) reduces to

Note, that the sequence { .f (p~) ~ and (5) uniquely determine the strongly
additive function f (n).

DEFINITION 3

An arithmetical function g(n) is called multiplicative, if for co-prime u
and u

and strongly multiplicative, if (6) holds and

By induction and (1 b) we have that a strongly multiplicative function g(n)
satisfies the relation

Again, the sequence ~ g(p~) ~ and (8) uniquely determine the strongly. multi-
plicative g(n).

In the sequel, unless otherwise stated, we assume that an additive func-
tion is real-valued and multiplicative functions are complex valued.
There is a strong relation between additive and multiplicative functions.

Obviously, if f (n) is (strongly) additive, then the function exp(Z f (n)) is

(strongly) multiplicative for any fixed complex number Z. On the other

hand, let g(n) ~ 0 be a (strongly) multiplicative function. Then there is
a unique solution of the relation

and thus g(n) = expCf(n)) where f (n) is a complex valued (strongly) additive
function. If g(n) may take 0 also, then consider the sequence of

primes for which g(p~t) ~ 0. In this case the relation (9) determines a
(strongly) additive function f (n) on the multiplicative semi-group generated
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by { and .f (n) is undetermined for other integers. This remark will

be exploited later on.
Consider the following special arithmetical functions

By (5) and (10), if f (n) is strongly additive,

Clearly, the right hand side is always a sum of a finite number of terms and
especially, for any n  N,

From (8) and (10) we have, that for any strongly multiplicative function g(n),

where n  N is arbitrary.

DEFINITION 4

The arithmetical function .f (n) is said to have the asymptotical distri-
bution F(x) if

for all continuity points of F(x).
This is a special case of a general concept called asymptotic density.

DEFINITION 5

The sequence A = {al  a2  ... ~ is said to have asymptotic density
D(A) if

exists.

A weaker assumption on A is to suppose to have logarithmic density.
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DEFINITION 6

We say that the logarithmic density L(A) of A exists, if

exists (0  a 1 ).
These definitions introduced by number theoreticians clearly show

that the concepts involved are probabilistic. Namely, consider the pro-
bability space SN = dN, PN), where S2N = ~ ~, 2, ..., N ~, dN the
set of all subsets of QN, and PN generates the uniform distribution on 
i. e. i ~) = N -1, i = 1, 2, ..., N. Then any arithmetical function .f (n)
restricted to QN is a random variable on SN, and

and for a sequence A = 1  a2  ... ~,

hence, (13) is equivalent to the relation

for all continuity points of F(x). Also, if D(A) exists then

Note, that

where [x] denotes the integer part of x. Hence

and similarly
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(16) and (17) show that the random variables { are almost indepen-
dent on the probability space SN, and hence by (11 a), any strongly additive
arithmetical function is a finite sum of « almost independent » random
variables if we restrict ourselves to the probability space SN (what can
be done by (13) if we are interested in the distribution problem only). We
remark here that it would be convenient to consider strongly additive
functions on the whole set of successive integers if D(A) defined in (14)
were probability measure, since by (11), (14), (16) and (17) we have that
the functions {~j} were independent random variables and f (n) were a
series of independent terms. This is however not the case, the set func-

tion D(A) is finitely additive only, and hence we have to deal with the
dependent (but « almost » independent) on SN.
We shall be able to investigate the distribution problem of the sum (11 a)

assuming only that the terms { E J ~ satisfy a condition of « almost indepen-
dence », partially expressed by the relations (16) and (17), i. e. we do not

make reference to the actual elements of This approach allows us
to obtain results concerning the distribution of strongly additive arithme-
tical functions considered on a wide class of sequences of integers. As

an example I mention the following case : let Q(I), Q(2), ..., Q(N) ~,
where Q(x) > 0 is polynomial of integral coefficients. Then, putting
Q(Pk) for the number of residue classes mod pk satisfying the congruence

the random variables Eim) defined in (10), where now m = Q(x), satisfy
the relations (16) and (17) pk ! 1 being replaced by 1, i. e.

for t = 1, 2,... (see Hardy and Wright (1954, p. 96-97).
To conclude this section I list some additive and positive valued multi-

plicative functions: U(n), the number of prime divisors of n (with multi-
plicity) ; V(n), the number of distinct prime divisors of n; 0(n) = U(n) - V(n) ;
~(n), the so called Euler function, the number of integers between 1 and n

prime to n; d(n), the number of divisors of n, 6(n), the sum of divisors of n ;
a(n), the number of distinct Abelian groups of order n.
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3. PROBABILISTIC LEMMAS

Let S = (Q, P) be a probability space. For any random variable X

on S, E(X) denotes the expectation of X and

is called the characteristic function of X.

LEMMA I (P. LEVY)

Let q2i, ({J2, ... be the characteristic functions of the random variables

Xi, X2, ... on S. Assume that ({In -~ ~p continuous at t = 0, then P(Xn  x)
has a limit, F(x), ~p is a characteristic function and uniquely determines
F(x).

LEMMA 2 (P. LEVY (1931))

Let Xi, X2, ... be independent random variables on S and assume that
EXi converges. Let dk be the largest jump of the distribution function
of Xk. The distribution function of LXi is continuous at every x if and
only if

Further, if all terms Xi have purely discontinuous distribution, then the
distribution of LXi is either continuous at every x or purely discontinuous.

LEMMA 3 (FRECHET and SHOHAT (1931))
Let Xl, X2, ... be a sequence of random variables and assume that

lim o0 E(Xn) = mk exist for all k. Assume further, that {mk} uniquely
determines the distribution function F(x). Then lim P(Xn  x) = F(x).

n

Especially, if

then
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LEMMA 4 (LIAPOUNOV)
Let X 1, X2, ... be a sequence of independent random variables, ) X 5 e,

and putting

n

sf = is assumed to tend to + oo. Then

k= 1

is asymptotically normally distributed.

LEMMA 5 (KOLMOGOROV (1928))
Let X1, X2, ... be independent random variables and put

The series EXk converges (with probability 1) if and only if the three series

converge.

LEMMA 6 (ESSEEN (1945))
If F(x) and G(x) are two distribution functions, G’(x) exists for all x

and G’(x) ~  A, and lpG(u) denote the characteristic functions
of F and G respectively, and if

then for - oo  x  + 00

where K is a constant not depending on any of x, E, A, T.

LEMMA 7 (KUBIK (1959))
Let X2, ... be independent random variables taking two values

only. Let further An and Bn be constants such that
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Assume that

has a limit distribution admitting finite variance and that

n

1 P2 03A3V(Xk) ~ variance of the limit distribution.B~ ~
Then this limit distribution always belongs to the class F(A, C, a, b) of
distributions the characteristic function 03C6(u) of which is determined by
the integral

where

Finally, I shall make reference to the Chebisev inequality: for any
random variable X having finite expectation E and variance V,

where E > 0 is any constant and 6 = fi

4. THE LAW OF LARGE NUMBERS

Since any arithmetical function f (n) is a random variable on the proba-
bility space SN = (S2N, d N, PN), QN = { 1, ..., N}, .91 N the set of all
subsets of QN and PN({ i ~) = 1/N, the Chebisev inequality provides a

good tool to investigate the « avarage behaviour » of f (n). Here

The first result of this kind obtained by purely number theoretical methods
was discovered by Hardy and Ramanujan (1917) for which Turan (1934)
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gave a proof still without reference to probability theory but by the same
argument what is usual to obtain the Chebiev inequality itself. The
theorem says that for almost all n  N, the number of prime divisors
of n is asymptotically log log N, or in our terminology, the exact result is

and hence by the Chebisev inequality,

Turan (1936) generalized the Hardy-Ramanujan theorem for a wider
class of additive functions and finally Kubilius (1956) proved the following
inequality: for any complex valued additive arithmetical function

with a suitable constant A, not depending on f (n), or in other words

and hence, putting

by the Chebisev inequality we have that for any additive arithmetical
function f (n),

(22) gives an interesting result only, if BN  +00, and if B~ = 
and then it says that for almost all n  N, ,f(n) is asymptotically equal
to AN. In the preceding calculations I used the relations that

what follows immediately from ( 11 a) and (16). Note that (22) was obtained

by making use of (11 a), (16) and (19) only, i. e. it was not essential that

f (n) is an additive arithmetical function defined on the integers 1, 2, ..., N ;
and hence we obtained
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THEOREM 1

Let SN = dN, Pist) be a sequence of probability spaces, and let the
random variables ..., En,N, n = n(N) taking the values 1 or 0 only,
be defined on S2N. Assume that there is a sequence ql, q2, ... such that

further, let { ck ~ ~ be a sequence of real numbers such that

(A constant not depending and putting

if

then

where a(N) tends to + oo arbitrary slowly.
Applying theorem 1, we always assume that S2N is a finite set, siN the

set of all subsets of S2N and PN generates the uniform distribution on dN.
Let first S2N be the ... , Q(N) ~ where Q(x) > 0 is an irreducible
polynomial of integral coefficients. Then (18) says that (23) is satisfied

with qk = 1, and (24) was proved by Uzdavinys (1959, 1962) and
Barban (1960) hence theorem 1 is applicable to the additive arithmetical
function

(in order to satisfy the restriction (26) on the number of terms), but in
this case it is very easy to show that in probability

Another corollary to theorem 1 is obtained if we take S2N as the set of
consecutive integer ideals arranged according to the usual norm in a
number field over the field of rational numbers. (23) is well known (with
qk = r-1(pk), where r(pk) is the norm of the kth prime ideal) and (24) was
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proved by Danilov (1965). (26) is also valid, and well known. The

advantage of the probabilistic approach to the number theoretical one
is clearly seen already from these examples what will be made even more
obvious in the coming sections.

5. THE ERD6S-WINTNER THEOREM

The problem of giving necessary and sufficient conditions for the exis-
tence of the asymptotic distribution of an additive arithmetical function
was settled by Erdos and Wintner (1939) and reads as follows.

THEOREM 2 (ERDOS and WINTNER (1939))
For the existence of the asymptotic distribution of the additive arithme-

tical function /(n) it is necessary and sufficient that the series

converge. 
1

The sufficiency part of this theorem was obtained by Erdos (1938)
generalizing results of Behrend (1931-1932), Davenport (1933) and Schoen-

berg (1936). Behrend and Davenport investigated the asymptotic distri-
bution of a(n), the sum of the divisors of n, while Schoenberg obtained a

general theorem giving as sufficient condition for the existence of the

asymptotic distribution of f~(n) the convergence of the three series (29)
assuming the absolute convergence of the first one. The case of Schoen-

berg is easy, the general case however was obtained by deep number
theoretical tools. Notice that the conditions (29) are the same as those
in the Kolmogorov three series theorem (lemma 5), but theorem 2 can
not be deduced from lemma 5 directly because, as we have remarked,
the density as a set function is only finitely additive. Several attempts
have been made to re-obtain the sufficiency part of theorem 2 (in this
section this will be referred to as « the Erdos theorem ») by purely proba-
bilistic arguments. One line of attempts can be described as follows:

map the set of integers Z into a set Q, and construct a 6-field ~ of subsets
of Q and a measure P on d. If this procedure maps the arithmetical

progressions into elements of and the P-measure of these sets is the den-

sity of the arithmetical progressions then the arithmetical functions {~j}
defined in (10) will be rendom variables on S = (Q, ~, P) and
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and hence any additive arithmetical function .f (n) satisfying (29) will be
a random variable on S (by (11) and lemma 5). The hardest part is then

to take care in the construction and mapping to guarantee that in this
case PCf(n)  x) = DCf(n)  x). This is the point where all attempts
have broken down, and hence only weaker results than the Erdos theorem
were obtained by Novoselov (1960), Billingsley (1964) and Paul (1964).
Paul succeded by this procedure to show that (29) guarantees that

what is again weaker than the Erdos theorem. Novoselev (1964), after
several publications on this line, came very close to settling the problem
of reducing the statistical properties of additive arithmetical functions to
that of sums of independent terms, his tools are however a bit complicated
especially for the number theoreticians and in the last step mentioned
above he still needs quite a lot of computations of number theoretical
character. At the same time by his approach interesting new results can
be obtained.

Another (successful) approach will be described after some remarks

on the several proofs of a theorem of Delange (1961) from which the Erdos
theorem can be re-obtained. By lemma 1, the Erdos theorem can be

proved by turning to characteristic functions, i. e. to investigate

for f (n) additive. Since the function

is multiplicative and g(n) ) 5 1, the Erdos theorem is contained in the

following

THEOREM 3 (DELANGE (1961))
Let g(n) be a (complex valued) strongly multiplicative arithmetical

function with 1. Then

exists and is different from 0 if and only if the series
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converges. In this case

Applying theorem 3 with g(n) in (30), we get the sufficiency part of theorem 2
by the fact that the convergence of (32) implies the convergence of all
the series of (29).

Delange (1962) gave another proof of theorem 3, both proofs being of
analytical character. Renyi (1965) gave a very simple proof for the suffi-
ciency part of theorem 3 which at the same time gives a very simple proof
for the Erdos theorem. By developing this proof of Renyi I gave a purely
probabilistic proof for the Erdos theorem. Before formulating this theo-
rem and approach of mine, I wish to give the references to important results
on multiplicative functions. By dropping the conditions of g(n)  1

and A ~ 0, the Delange theorem was generalized by Wirsing (1967) and
Halasz (1968) in very extensive but fairly difficult papers. To earlier

results the reader is referred to Renyi (1965, II) and Delange (1962). Ano-

ther generalization of the Delange theorem is given in Galambos (1970),
where

is investigated for a general class of integers mi with 5 1, by a pro-
babilistic approach.
As remarked above, I gave a purely probabilistic proof for the Erdos

theorem. This approach resulted in more than re-proving the Erdos
theorem, what will be seen later on. In order to formulate my theorem

let us introduce a concept :

DEFINITION 7

Let SN = dN, PN) be a sequence of probability spaces. We say

that the random variables Ek,N, k = 1, ..., n = n(N), taking two values 0
or 1, form a class K, if there exists a sequence 0  qk  1, such that

there exists an
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with N, such that for any 1 5 ii 1  i2 ...  it  M,

and there is a set r of real sequences { such that

with a constant A not depending on { and N.

By the method of characteristic functions, we can easily prove

THEOREM 4 (GALAMBOS (to appear))
Let = 1, ..., n = n(N), be a class K on SN, and let { be a

sequence of real numbers for which (K3) is satisfied. Then the limit

distribution of 
~

exists, as N ~ +00, if

and if the series

converge.

By (16), (17) and by the Kubilius inequality (19) we have that the random
variables defined in (10) form a class K ((K3) being satisfied for any sequence
of real numbers) and hence theorem 4 implies the Erdos theorem. Theo-
rem 4 is much more than the Erdos theorem, namely, choosing QN of
the probability space SN as any finite set of (not necessarily successive)
integers, the power of theorem 4 becomes that it reduces the distribution
problem of additive functions considered on this sequence of integers to
checking whether the random variables corresponding to those defined
in (10) form a class K. The properties (Kl) and (K2) are usually simple,
and (K3), the generalization of the Kubilius inequality, is always much
simpler than the usual tools applied by number theoreticians, in most
cases very sharp sieve results. As interpretations I mention some results
obtained by number theoretical tools and which follow immediately
from theorem 4.
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Let f (n) be an additive arithmetical function and Q(x) > 0 a polynomial
of integral coefficients. Considering the probability space SN with
QN = { Q( 1 ), ... , Q(N) ~, .91 N the set of all subsets of QN and PN generating
the uniform distribution on ~N, the random variables

form a class K, (K3) being satisfied for any sequence {ck} tending to 0
by results of Uzdavinys (1959, 1962) and Barban (1960) and hence by (28)
we have that the existence of the limit distribution of f (Q(x)) is guaranteed
by (35) whenever 0 as k - +00. This was recently proved
by Katai (1969) and Uzdavinys (1967) obtained this theorem under a

slight assumption on Q(x), but at the same time he showed that for ,f(n)
with - 0, k -~ +00, the conditions (35) are also necessary. Both
Katai and Uzdavinys use sharp versions of sieve theorems.
Theorem 4 yields immediately sufficient conditions for the existence

of the limit distribution of additive functions f (n) defined on number fields.
Simply take QN = ~ al, ..., aN ~, a~ integer ideals, and hence whenever
the random variables Ek,N, pk being the prime ideals arranged in increasing
order with respect to the usual norm, form a class K, theorem 4 is appli-
cable directly with qk = r( . ) being the norm. This line of research
has a very extensive literature, without attempting to be complete, I men-
tion the papers Juskis (1964), de Kroon (1965), Grigelionis (1962) and
Rieger (1962, I), and the last chapter of Kubilius (1962).
To conclude this section I mention the problem of determining the

possible limit laws of additive arithmetical functions. If (29) is satisfied,
the characteristic function of the limit law is

what by lemma 2, is the characteristic function of a distribution function F(x)
continuous at every x or discrete (note that dk = 1 - 1/pk if f (pk) ~ 0
and 1 if = 0). It is continuous at every x if and only if

Erdos (1939) showed, by giving examples, that it is possible that the limit
be singular and also that it be entire, but so far no neccessary and suffi-
cient condition is known to decide which is the case.


