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ABSTRACT. - We study a random walk in a N dimensional hypercube.
To each site of the hypercube we associate a random value according to
a Bernouilli distribution. These values together with the "temperature"
define the law of the waiting times of the walk at each site. We exhibit a
transition between the high and low temperatures regime by studying the
distance between two trajectoires starting from different initial conditions
and subjected to the same noise.

Keywords : Random walk in random environment, dynamical phase transition, disordered
system.

RESUME. - Nous etudions une marche aleatoire sur un hypercube de
dimension N. A chaque site de l’hypercube est associe une valeur aleatoire
distribuee selon une loi de Bernoulli. Ces valeurs et la temperature definis-
sent la loi des temps de sauts de la marche. Nous prouvons qu’il existe
une transition entre des regimes a haute et basse temperature en etudiant
la distance entre deux trajectoires initialement distinctes, quoique soumises
au même bruit.
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I. INTRODUCTION

Experiments and numerical simulations both suggest the existence of
phase transitions in disordered systems. A characteristic feature of these
systems seems to be the occurence of very long relaxation times and it is
believed that this is due to the presence of a large number of metastable
states.

A crucial point to study even numerically this kind of phenomena is to
establish the relevant time scales. Furthermore Monte Carlo methods are
based on the observation of the time evolution of finite Markov Chains.
These chains, as long as they have only one closed set are ergodic (i. e.

admit only one invariant probability measure). So that the problem is to
find a criterium of dynamical phase transition which is not based on the
multiplicity of the invariant states.

This can be done by studying the way the process approaches its

invariant state and loses memory of its initial conditions.

A simple example will help understanding what we mean by that.
Consider a simple random walk on the set {0,1,2, ...,N} with probabil-
ity p (and 1-p respectively) to jump one step to the right (to the left

resp.) where 0 is an absorbing barrier and N is a reflecting barrier. For
any p  1 regardless to the starting point the process always ends its
motion by being trapped by 0. Therefore the Dirac measure concentrated
on zero is the unique invariant state. Nevertheless the way the process
approaches the final state depends in a crucial way on the value of the
parameter p.

/? 1, the process has to fight against the drift to join the invariant

state 0. This has the following consequence. If we call TN the number of
steps the process takes to reach 0 starting from N, then as N diverges,

converges in law to a mean one exponential random variable.
This amounts to say that this time is unpredictable. On the other hand if

/? - the drift pushes the motion towards the final invariant state. In this
case converges in probability to the constant 1, that is the life
time of the process is essentially deterministic if N is large enough.

It is also interesting to observe that in the first grows

exponentially with N, whereas in the second one it grows linearly.
These elementary results can be obtained by almost direct computations.

In the first case, if we neglect the trivial case, where the starting point is
already in the trap, the result follows from the fact that the process looses
memory from its initial condition in a time which is much shorter than

The second case follows from the Law of Large Numbers.
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This transition from a deterministic to an unpredictable relaxation time
is present in many models, for instance dynamical systems with a small
random perturbation and Markovian systems with interacting particles ],
and defines a kind of dynamical phase transition.

In the context of disordered systems, B. Derrida in a recent series of

papers ([ 1 ], [4], [5]) has suggested to study the dependence from the initial
condition by comparing two time evolutions subjected to the same thermal
noise.

Numerical simulations and heuristic arguments strongly suggests the
existence of a low temperature phase where starting from two different
configurations they remain at a finite distance from each other for a very
long time, and a high temperature phase where their distance goes to zero
in a much shorter time. As far as we know, all these studies are non

rigorous and in particular the time scales involved are not explicitly
discussed.

Here we perform this program in a rigorous way with one of the
simplest non trivial models of disordered system. We consider a simple
random walk taking values on the hypercube { -1, + 1 }N, where N is a
positive natural number (i. e. the set of all possible configurations of N
spins taking the values -1 or + 1 ). Traps are randomly distributed in the
following way: each point of the hypercube (i. e., each spin configuration)
is choosen to be a trap independently of the others with probability
1/NB where y is a real positive number. Once we have fixed this random
medium (the choice of the traps), the time evolution is defined in the

following way. If the process is in the configuration (J at time t, the

probability to leave it at time t + 1 is 1 /( 1 + NI3) if a is a trap, otherwise it
is 1 /2.
Once the jump is decided a spin is choosen with probability 1 /N

and flipped. In this definition B is a real positive number ("the inverse
temperature"). To implement this program we suitably couple two pro-
cesses evolving in the same random medium, with the law described above,
in such a way that once they meet they remain together forever.
From elementary arguments of the theory of Markov chains, it follows

that they will eventually meet. Therefore the natural question is: how long
does it take for the processes to meet?

Let us call TN the random time in which this occurs. In the absence of
traps TN/N log N converges to 1 in probability, as N diverges and this is
the content of proposition III . 1.

This suggests that N log N is a natural scale to look for any kind of

dynamical phase transition for our model.
In the case y &#x3E; 1 there are not enough traps to produce a dynamical

phase transition. In fact the fraction of spins which are different in the
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two configurations becomes neglegiable before one of the processes reaches
a trap for the first time. This is the content of theorem II. 1.
The interesting case is "1  1 where dynamical phase transition occurs.

In the high temperature phase (Py) the fraction of time each one of
the processes spends in a trap is negligeable (actually this fraction is
upperbounded by 1/N~). This is the content of proposition IV. 1. As a
consequence the distance between the two processes becomes negligeable
at time N log N.

In the low temperature phase (P &#x3E; y) most of the time the processes are
trapped and therefore the distance between them remains essentially con-
stant for a time of order N1 + 0, for a suitable 8&#x3E;0. This is the content of
the proposition VI. 1. As a consequence we finally obtain theorem II. 2.

This paper is organized in the following way: in section 2 we define the
model and state the results.

In section 3 we establish some estimates independent of P that single
out the relevant time scale.

In section 4 we present a new construction of our stochastic process
that allows to control the randommess introduced by the energies.

Sections 5 and 6 deal respectively with the proof of the high temperatures
and law temperatures results.
We conclude and state some open questions in section 7.

II. DEFINITIONS AND MAIN RESULTS

The set of spin configurations with N spins ± 1 is denoted by
~N = { " L + 1 }N. 6 and ç are generic elements of ~f~~ ~=(~1..... 6N).
Given j~{ 1, ...,N} and 03C3~HN we denote by 03C3j the spin configuration
obtained from a by flipping the spin at the site j, that is:

Given two configurations a and ç we define their distance by

Let M be a random subset of defined on a probability space
and having Bernoulli distribution with density where

y is a positive number i. e. for any subset F c ~f~

Annales de l’Institut Henri Poincaré - Physique théorique .
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where I F is the cardinal of F.
Given ~’e{l,2, ...,N} we define a quantity p o)

in the following way:

where

and P is a positive number, the inverse temperature.
Even a) is "i" dependent we shall omit to mention it in the

notation.

We consider the following stochastic time evolution in given a
configuration c~ (t) at time t we choose an index i E ~ l, ... , N ~ with

probability IIN and we update the spin ai to the value + 1 with probability
p (~~ ~ (t))~
A realisation of this stochastic time evolution can be obtained in the

following way: we introduce two independent sequences of independent
random variables I (t) and U (t) where t = 1,2, ... They are defined on a
new probability space The random variables I (t), taking
values in the ...,N}, are identically distributed and for any
~E{1,2,...,N},~(I(~=~)=1/N.
The random variables U (t) are identically distributed with uniform

distribution on [0,1] i. e. for any Me[0,1].
We fix 03C9~03A9N, given an initial configuration 0’(0) and 03C9~03A9, we define

a (t, eo) for all ~1 in the following way:

We remark that performs a random walk on a random
environment with traps (namely the configurations belonging to M) which
slow down the process.
Now we consider, for sake of defmitness, o(0)=(~(0))~=i with

o-,(0)= + 1, Vz-e 1, ... ,N and ~(0)=(~(0))~ with ~.(0)= - 1, 
and we construct both 6 (t) using the same (0, that is the same
random choice of indices I (t, o) and the same choice of U (t, in the

following way:

we update the two spins 6i and 03BEi to the value + 1 if

Vol. 55, n° 2-199L
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and

we update the spin a~ to the value -1 (resp. + 1) and the spin ~~ to the
value + 1 (resp. -1 ) ; if

we update the two spins 03C3i and 03BEi to the value -1.
We remark that with this algorithm have the same

law, the one described in the introduction.
We denote

All the random objects we consider are defined in the product space

Even if all those objects depend on N, we shall omit them in the
notation if no confusion is possible.
With these definitions in hand we can state formally our theorems. The

first one treats the case in which the density of traps is not large enough
to induce a dynamical phase transition, whereas the second one treats the
case in which such a phenomenon occurs.

THEOREM II. 2. - Given 0  y  1,
any Õ such and any 081, 1

any 1 1

The actual proof of these theorems will include explicit bounds in terms
of E, 11 and N for the involved probabilities.
Theorem II. 1 will be proved at the end of section 3.
The first part of theorem II. 2 will be proved in section 5, the second

part in section 6.

III. ESTIMATES INDEPENDENT OF p

In order to justify our choice of the time scale we present here a

preliminary result related to a random walk This result correspond

Annales de l’Institut Henri Poincaré - Physique theorique
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to y = + oo i. e. the set M is empty and therefore 6 (t) and ç (t) are

homogeneous random walk on that is we take the same definition as

before with p (a) =1 /2 for all a. For these processes we define the following
stopping time

We emphasize that in this case ~(a(~), ~)) is a Markov chain on the set
[0,1/N,2/N, ..., 1], we call it d* (t) and its probability transitions are as
follows:

and

PROPOSITION III. 1 :

Proof. - We first remark that

where ’L 1 == 1 and ’LK for K = 2, ... , N are independent random variables
with distribution

~
where /~ == - .

N

The time ’tK is exactly the number of steps the process D* (/) takes to
~~1 ~

go from 1 - - to 1 - 2014, therefore
N N

and we get easily

Let us now estimate

Vol. 55, n° 2-1991.
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For any positive real number X we have

Now

Since for any we have

we get

Now since

and

Choosing 03BB such that 1 -e -).. = 2014 get after some easy estimates
4 N

On the other hand, for 0

If 03BB = with a  1, using

we get

Annales de l’Institut Henri Poincaré - Physique théorique
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It can be checked that for any ~&#x3E;0

if N is large enough.
After some easy estimates we get

and this conclude the proof of proposition III. 1.
According to proposition III. 1, the time the coupled random walks

take to meet in the absence of traps is typically N log N. Therefore this is
a natural time scale to study the distance between the random walks with
the random environment. Now the question is: how long does it take for
a random walk to reach a trap for the first time? This is the content of
proposition III. 2. Let us define the stopping time

PROPOSITION III . 2. - For any y&#x3E;8&#x3E;0, e&#x3E;0

Proof - Using the Markov inequality

where

In order to obtain an upperbound to the last expectation we introduce
an auxiliary process 6 (t) defined in the following way:

and for any ~ 1

and if I (t) = i

We remark that for all In particular we have

where

Vol. 55, n° 2-1991.
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Since the auxiliary process o (t) is homogeneous, V depends only on co,
not on co. Therefore we are allowded to use Fubini-Tonelli theorem to get

Now we use the elementary fact that to obtain the lower
bound

Therefore we get:

for some positive constant and this ends the proof of Proposition III. 2.
The idea of the proof of theorem II. 1 is the following: since for y &#x3E; 1

the time each random walk takes to reach M is longer than N log N, they
meet before realising they are in a trapped environment.

Proof of Theorem II. 1. - We want to show that if y &#x3E; 1

Using Markov inequality we get

Now

Taking 8 small enough in order that y - 8 &#x3E; 1 we get

In the neither the process 
had met the set M. Therefore we have reconstructed the process
d* (N log N) using the I (t) and U (t) and we remark that

for any S~).
Now using Proposition III. 1, goes to zero and using

Proposition 111.2 E([P(S~N~)) goes to zero.

Annales de l’Institut Henri Poincaré - Physique théorique
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IV. THE NUMBER OF EFFECTIVE JUMPS

In this section we give another construction of the process o (t) which
allows us to control the effective number of jumps performed in a given
time interval. The first step is to construct the embedded chain (~(~)).
We take as the starting a(0) and define ~(~), ~==1,2, ... ,

as a homogeneous random walk taking values in defined on a

probability space (Qo? ~o, IP 0) with transition probability given by

for 2, ..., N} and 
We remark that

The second step is the introduction of the sequence of times the process
takes to perform the jumps described by the embedded chain: let

A:== 1, 2, &#x3E; ... where q belongs to the set 2’ 1 ,1 1+N03B2} be a sequence of
independent geometric random variables defined on a probability space
(SZ1, with distribution probability given by

For k= 1, 2, 3... let us take qk= 1/2, if 03B6(k-1)~M and qk= 1 1+N03B2,
if Now we define the random process (t) in the following
way:

We remark that this process, defined on the probability space

~’ O ~o O ~1), has the same law that cr (t).
The following proposition will be used in the proof of the ~3  ~y case.

PROPOSITION IV. 1. - For P, "1

Proof’. - Let us define e (0) = 0 and

Vol. 55, n° 2-1991.
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Then we get:

Therefore

Now we remark that

This last expression is bounded from above by (1 + Na) 1{ ~ ~~~ E M~
Now using Fubini-Tonelli, we get

from which the result follows.
Now we will prove two lemmata useful for the P &#x3E; y case.

Proof.~

where

The previous espression is bounded from above by

We remark that to have we must flip at least 03B1t spins. Therefore
for any 0a 1 and any t &#x3E; 0 the following inequalities hold:

Annales de 1’Institut Henri Poincare - Physique " théorique "
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Choosing it follows that

and this ends the proof of the lemma.

Proof - and call Bk the event

using lemma IV. 2

and this proves the lemma.

V. THE CASE 

We prove now the second part of Theorem II . 2.
To simplify the notation let us call

Obviously We remark that in the time evolu-
tion of the set C (t) there are only three possibilities:

In particular if X (t) E B we are in the third case.
Therefore

If we call

and for all ~ 1

Vol. 55, n° 2-1991.
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we can define the process Zk by

If we define

we get

Now it follows from proposition IV. 1 that

for E small enough.
So that we get when N goes to 00 :

Now we remark that (Zk) is a Markov chain and that has the same

law as d* (k), introduced 0 in section III. 
N

Therefore if

using Proposition III. 1 -+ o in probability, and 1 

t 

13 goes tog p p 
N 

p y 
N +r-~-£ 

g

zero, concluding the proof of the second part of Theorem II . 2.

VI. THE CASE ø &#x3E; "1

The proof of the first part of Theorem II. 2 will be a consequence of
the following proposition.

PROPOSITION VI. 1. - Take [3 &#x3E; y and öø-y, there exists £0&#x3E;0, such
that for any E E ]0, Eo[

Poincaré - Physique theorique
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where

Proof. - We first remark that,

where the are defined in section IV.

Now

where q = 1 + 1 N~ and ~e]0, l-8-y[.
The first term in the right hand side of the previous inequality goes to

zero by lemma IV. 3, the second one also by direct computation if ~ and
E are such that

This concludes the proof of proposition VI. 1.
The proof of the first part of theorem II. 2 follows from the following

inequality

where 

In fact

Since and have the same law as introduced in

proposition VI. 1, this last upper bound goes to zero if t = ~T 1 + s and this
ends the proof.

Vol. 55, n° 2-1991.
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VII. CONCLUSION AND SOME OPEN QUESTIONS

As it is well known after Doeblin’s pioneer work [3], studying the
distance between two coupled time evolutions is a crucial point to charac-
terize the relaxation time of the system.

In particular if we want to perform numerical simulations of the invari-
ant states of the system by using some sort of Monte Carlo algorithm we
must know how long the computer must run until we get a realistic

picture. This is exactly the kind of question we study in this text. We only
get a very partial answer.

First of all we did not say anything about the collapsing time in the
low temperature case. By analogy with the results obtained in the context
of metastability we conjecture that this time converges in law to an

exponential random time, when suitably rescaled (cf. [6] for a survey of
recent results of the so called pathwise approach to metastability).

In this paper we have considered a particular coupling between the two
time evolutions. Therefore a second question is: how coupling dependent
our results are ? In particular in order to characterize the rate of conver-
gence to the invariant state, we must look for an optimal coupling.

In the high temperature phase (Ø  "1) we have proved that the number
of differences between the two processes is negligeable with respect to N.
It would be natural to study the fluctuations of the distance.
Another open question is the study of the model for ø == "1, where a

different behaviour may show up.

Finally it is clear that the model we have presented is an extreme
caricature of a disordered system. More realistic models should be treated.
A first step in this direction is done in [2] which considers a Glauber
dynamics associated to a kind of Random Energy Model.
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