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On the homomorphisms of sum logics
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ABSTRACT. - We show that every 03C3-homomorphism of logics
h: L1 -+ L2, where (L1, ~ (L1)j and (L2, ~2) are sum logics 
is the set of all o-additive states on L1 and ~2 is a quite full set of
o-additive states on L2) is necessarily a lattice a-homomorphism. Some
applications of this statement to Hilbert space logics and projection logics
of von Neumann algebras are given.

RESUME. 2014 Nous prouvons que tout 03C3-homomorphisme de logiques
h : L 1 -~ L2 ou (L 1, ~ (L 1 )) et (L2, ~2) sont des logiques sommes [~ (L 1 )
est 1’ensemble de tous les etats o-additifs sur L 1 est un ensemble
fort d’etats o additifs sur L2J est necessairement un 6-homomorphisme
de treillis. Nous donnons des applications de ce resultat aux logiques
d’espaces de Hilbert et aux logiques d’algebres de Yon-Neumann.

1. INTRODUCTION

By a (quantum) logic we will mean an orthomodular a-lattice

L (0, 1, ’, A, v) (see [ 13] for detailed definition). Two elements a, b of L

Classification A.M.S. : 81 B 10, 03012, 46 L 10.
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are orthogonal (written a .1 b) if a _ b’, and a, bEL are compatible if there
are mutually orthogonal elements al, bl, c in L such that a=al v c and

v c.

Let L1 and L2 be two logics. A map h : L1 -+ L2 is said to be a

homomorphis (of logics) if (i ) /!(!)= 1, (ii ) h (a’) = h (a)’ for any aEL1, (iii )
h(avb)=h(a)vh(b) for any A homomorphism

h : L 1 -+ L2 is said to be a 03C3-homomorphism if (iii’) = v /x for

any sequence of mutually orthogonal elements of L1. A homo-
morphism h : L1 -+ L2 is a complete homomorphism if

(iii") h (v ai) = v for any set I of pairwise orthogonal elements
ieI ieI

of L1.
A logic homomorphism h : L1 -+ L2 is a lattice homomorphism if

h(avb)=h(a)vh(b) [dually, for A a-

homomorphism (complete homomorphism) of logics which is a lattice

homomorphism, is a lattice 6-homomorphism (complete lattice homo-

morphism). ~

It is easy to see that if h : L 1 -+ L2 is a logic homomorphism, then
A(0)=0, and imply in L2 and 1 and

imply h (a) 1 h (b) in L2. Moreover, then and

h (a v b) = h (a) v h (b), A(~A~)=/!(~)A/!(~). In particular, if L1 is a

Boolean (o-) algebra, then every (j-) homomorphism from L into a logic
L2 is a lattice (o-) homomorphism.

In general, a logic 6-homomorphism need not be a lattice a-homo-

morphism. A simple reasoning shows that for a two-dimensional Hilbert
space H, there is a two-valued homomorphism from L (H) into itself,
which is not a lattice homomorphism. It is easy to find a logic homomorph-
ism from a horizontal sum of three four-element Boolean algebras into
the Boolean algebra with three atoms that is even a bijection but it is not
a lattice homomorphism.
The aim of this paper is to show that every 6-homomorphism of logics

h : Lt -+ L2 between two sum logics (L1, !7 (L1)) and (L2, !7), is necessarily
a lattice 03C3-homomorphism. We note that a special case of this statement
is proved in [12]. Since a projection logic of a von Neumann albegra of
operators acting on a separable complex Hilbert space which does not
contain any I2-factor as a direct summand is a sum logic in the sense of
our definition (see, e. g., the review paper [9]), we obtain as a consequence
that every logic 03C3-homomorphism from such a projection logic into a
projection logic of any von Neumann algebra is necessarily a lattice a-
homomorphism. In particular, if Hand K are complex separable Hilbert
spaces and dim H ~ 2, then using Hamhalter’s result (see [7]), we find that
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every homomorphism of projection logics h : L (H) -+ L (K) is a lattice 6-
homomorphism.

2. HOMOMORPHISMS OF SUM LOGICS

Let L be a logic. A state on L is a map s : L ~ [0, 1] such that s ( 1 ) =1,
and s ( v ai) _ ~ for any sequence of mutually orthogonal

ieN ieN

elements in L. Let F (L) denote the set of all states on L. A logic L is
called quite full if for any a, bEL such that ~ ~ there is s E Y (L) such
that s(a)= 1 
An observable on a logic L is a a-homomorphism from the a-algebra

~ (R) of Borel subsets of the real line R into L. If x is an observable and
then the map sx: ~(R)-~[0, 1] defined by sx (E) = s (x (E)) is a

probability measure on ~ (R). The expectation of an observable x in a

state s is then defined by s (x) (dt), if the integral exists. An observa-

ble x is bounded if there is a compact subset C c R such that s (C) =1. An
observable x is a proposition observable if ~({0, 1 ~) =1. To every a E L,
there is a unique proposition observable qQ such that qa (~ 1 ~) = a.

If x is a bounded observable on L, then s (x) exists and is finite for
every In [5], there is proved that also the opposite statement is
true: If c:(L) is o-convcx and quite full, then an observable x is
bounded if and only if s (x) exists and is finite for all 

Let x, y be bounded observables on a logic L with a quite full set of
states g. We say that a bounded observable z is a sum of x and y if
s(x)+s(y)=s(z) for all A couple (L, ~), where L is a logic and
g is a 7-convex quite full set of of states is said to be a sum logic if for
every pair x, y of bounded observables on L there is a unique sum z. We
shall write z = x + y if z is the sum of x and y. For more details about
sum logics we refer to [6].
Now we are ready to state and prove our main result.

THEOREM 1. - Let (Lt, g(L1)) and (L2, sum logics.
Then every logic 03C3-homomorphism h : L1 -+ L2 is a lattice 

Proof - Let h : L 1 -+ L2 be a 6-homomorphism. Let x be an observable
on L1. Define h (x) : ~ (R) -~ L2 by h (x) (E) = h (x (E)). Then h (x) is an
observable on L2. For every the map s.h: L~ ~[0, 1] defined
by s.h(a)=s(h(a)) is a state on If x is a bounded observable on L 1,
then for where and therefore

s . h (x) exists and is finite. This implies that h (x) is bounded. For 
let qa denote the proposition observable such that ~({1})=~. Then

Vol. 54, n 2-1991.



226 S. PULMANNOVÁ AND A. DVUREENSKIJ

h(qa) ({ 1}) = A (~ ({ 1 })) = ~ M, similarly A (~ ({0}) = ~ MB This proves
that h (qa) = qh (a).
Now let   be bounded observables on L 1 and let x+ y=z. Since for

every ~e~, S.hE!/(L1), we find s.h(z)=s.h(x)+s.h(y), i.e.,
s (h (z)) = s (h (x)) + ( y)) for all s ~ ~, which entails h (z) = h (x) + h ( y).
By Gudder [6], for any pair of elements of a sum logic L we have

({2})=~A~. Let a, Then

Hence h (a n b) = h (a) n h (b) holds for all a, b E L 1. This proves that h is a
lattice 03C3-homomorphism.

3. APPLICATIONS

PROPOSITION 1. - Let H, K be separable, complex Hilbert spaces

(dim H ~ 3) and let h : L (H) --&#x3E; L (K) be a homomorphism of logics. Then h
is a lattice a-homomorphism.

Proof - See [7].

PROPOSITION 2. - Let H, K be separable, complex Hilbert spaces

(dim H ~ 3) and let h : L (H) -+ L (K) be a homomorphism. Then
dim h ( [x]) = dim h ( [y]) for every x, y E H (where [x] denotes the one-dimen-
sional subspace generated by x). In particular, there is a finite or countably
infinite cardinal r such that dim K = r dim H.

COROLLARY. - A homomorphism between two separable complex Hilbert
space logics L (H), L (K) (dim H ~ 3) is necessarily injective.
The proof follows by Theorem 1 and Matolcsi [11], Propositions 3 and

4.

Recall that a set S is of non measurable cardinality if there does not
exist any probability measure defined on all subsets of S vanishing at all
points. In the opposite case we say that S is of measurable cardinality.

PROPOSITION 3. - Let H, K be Hilbert spaces Then every
03C3-homomorphism h : L (H) -+ L (K) is a complete lattice homomorphism if
and only ~ dim H is a non measurable cardinal.

Proof - Assume that dim H is non measurable. Let x be a unit vector
of K. Then mx (M) _ ~ h (M) x, x ~ , M E L (H), defines a completely addi-
tive state on L (H) (see, e. g., [9]). Since x is arbitrary, we conclude that h
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227ON THE HOMOMORPHISMS OF SUM LOGICS

is a complete homomorphism of logics. Applying Theorem 1, we obtain
that h is a complete lattice homomorphism.
Now suppose that dim H is a measurable cardinal. Let be an

orthonormal basis in H. Then there exists a probability measure ~, on 2T
vanishing on all one-point sets.

Define

Then m is a state on L (H) with the properties m (H) = 1 and ~([~])=0
for all t E T. Indeed,

(See also [3]). This implies that m is a a-additive, but not completely
additive measure on L (H). Define

For (nEN) we have

This shows that Km is a reproducing kernel. By [ 12], there is a vector-
valued measure 03BE defined on L (H) with values in a Hilbert space K, such
that m (M) _ ~ ~ ~ (M) ~ ~ 2 (M E L (H)). By [ 10], there is a a-homomorphism
h : L (H) -+ L (K) of logics and a vector such that  (M) = h (M) v
(MeL(H)). This entails that h is not a complete homomorphism.

In a similar manner as Proposition 2, we can prove the following
statement.

PROPOSITION 4. - Every a-homomorphism h : L (H) -+ L (K), where
2~dim H is non measurable, is Moreover, 
for all and there is a cardinal (x((x=dimM) such that
dimK=cxdimH.
The following proposition is a generalization of the theorem obtained

by Jajte, Paszkiewicz [8]. Using Proposition 1 and results of Aerts, Dau-
bechies ([I], [2]) and Wright [ 14], we obtain an alternative proof.

Vol. 54, n° 2-t99L
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PROPOSITION 5. - Let H, K be two separable Hilbert spaces with dimen-
sions greater or equal to three and let h : L (H) -+ L (K) be a homomorphism.
Then there exists afamily of maps (cp j) j E J from H to K such that
- each 03C6j is an isometry or anti-isometry;
- K is the orthogonal sum K = EB cp j (H) ;

jEJ
- for all MEL(H), h (M) = v (M).

jEJ

PROPOSITION 6 (a generalization of Dye’s theorem). - Let ~ be a
von Neumann algebra with no direct summand of type 12. Then any 03C3-

homomorphism of logics between the projection logic of M and that of a
von Neumann algebra % is implemented by the direct sum of a
*-isomorphism and a *-antiisomorphism between ~~ and J".
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