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ABSTRACT. — We show that every o-homomorphism of logics
h: L, -» L,, where (L,, & (L,)) and (L,, &,) are sum logics [where & (L,)
is the set of all c-additive states on L, and &, is a quite full set of
c-additive states on L,] is necessarily a lattice o-homomorphism. Some
applications of this statement to Hilbert space logics and projection logics
of von Neumann algebras are given.

REsuMmE. — Nous prouvons que tout o-homomorphisme de logiques
h:L,—>L,ou(L,, #(L,)) et (L,, &,) sont des logiques sommes [ (L,)
est 'ensemble de tous les états c-additifs sur L, et &, est un ensemble
fort d’états o additifs sur L,] est nécessairement un oc-homomorphisme
de treillis. Nous donnons des applications de ce résultat aux logiques
d’espaces de Hilbert et aux logiques d’algébres de Von-Neumann.

1. INTRODUCTION

By a (quantum) logic we will mean an orthomodular o-lattice
L(,1,", A, v) (see [13] for detailed definition). Two elements a, b of L

o
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are orthogonal (written a L b) if a<d’, and a, beL are compatible if there
are mutually orthogonal elements a,, b,, ¢ in L such that a=a, v ¢ and
b=b,ve.

Let L, and L, be two logics. A map h: L, - L, is said to be a
homomorphis (of logics) if (i) h(1)=1, (ii) h(a’)=h(a)’ for any aeL,, (iii)
h(avb)=h(a@)vh(b) for any a,bel,, alb. A homomorphism

h: L, - L, is said to be a o-homomorphism if (iii") h( v ai>= v h(a,) for
i=1 i=1
any sequence (a;);.n of mutually orthogonal elements of L,. A homo-
morphism h:L,—>L, is a complete homomorphism if
@iii”) h(v a)= v h(a,) for any set (a);.; of pairwise orthogonal elements
iel iel
of L,.

A logic homomorphism h: L, > L, is a lattice homomorphism if
h(av b)=h(a)v h(b) [dually, h(a A b)="h(a)Ah(b)] for any a, beL,. A o-
homomorphism (complete homomorphism) of logics which is a lattice
homomorphism, is a lattice c-homomorphism (complete lattice homo-
morphism). -

It is easy to see that if A: L, - L, is a logic homomorphism, then
h(0)=0, a, beL, and a<b imply h(a)<h(b) in L, and a, belL,; and
alb imply A(a) L h(b) in L,. Moreover, if a< b, then h(a) - h(b) and
h(avb)=h(a)vh(b), h(anb)y=h(a)Ah(b). In particular, if L, is a
Boolean (o-) algebra, then every (o-) homomorphism from L, into a logic
L, is a lattice (0-) homomorphism.

In general, a logic o-homomorphism need not be a lattice c-homo-
morphism. A simple reasoning shows that for a two-dimensional Hilbert
space H, there is a two-valued homomorphism from L (H) into itself,
which is not a lattice homomorphism. It is easy to find a logic homomorph-
ism from a horizontal sum of three four-element Boolean algebras into
the Boolean algebra with three atoms that is even a bijection but it is not
a lattice homomorphism.

The aim of this paper is to show that every o-homomorphism of logics
h: L, —» L, between two sum logics (L,, & (L,)) and (L,, &), is necessarily
a lattice o-homomorphism. We note that a special case of this statement
is proved in [12]. Since a projection logic of a von Neumann albegra of
operators acting on a separable complex Hilbert space which does not
contain any I,-factor as a direct summand is a sum logic in the sense of
our definition (see, e. g., the review paper [9]), we obtain as a consequence
that every logic o-homomorphism from such a projection logic into a
projection logic of any von Neumann algebra is necessarily a lattice o-
homomorphism. In particular, if H and K are complex separable Hilbert
spaces and dim H##2, then using Hamhalter’s result (see [7]), we find that
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every homomorphism of projection logics 4: L (H) —» L (K) is a lattice o-
homomorphism.

2. HOMOMORPHISMS OF SUM LOGICS

Let L be a logic. A state on L is a map s: L — [0, 1] such that s(1)=1,

and s( v a)= ) s(a;) for any sequence (a;);.y of mutually orthogonal
ieN ieN

elements in L. Let & (L) denote the set of all states on L. A logic L is

called quite full if for any a, beL such that af£b there is se & (L) such

that s(a)=1 and s(b) #1.

An observable on a logic L is a o-homomorphism from the c-algebra
% (R) of Borel subsets of the real line R into L. If x is an observable and
se (L), then the map s,: 4 (R)— [0, 1] defined by s, (E)=s(x(E)) is a
probability measure on % (R). The expectation of an observable x in a

state s is then defined by s(x)= Jtsx (dr), if the integral exists. An observa-

ble x is bounded if there is a compact subset C<=R such that s(C)=1. An
observable x is a proposition observable if x ({0, 1})=1. To every a€L,
there is a unique proposition observable g, such that g,({1})=a.

If x is a bounded observable on L, then s(x) exists and is finite for
every se & (L). In [5], there is proved that also the opposite statement is
true: If =& (L) is o-convex and quite full, then an observable x is
bounded if and only if s(x) exists and is finite for all se &.

Let x, y be bounded observables on a logic L with a quite full set of
states . We say that a bounded observable z is a sum of x and y if
s(x)+s(y)=s(z) for all se ¥ (L). A couple (L, &), where L is a logic and
& is a o-convex quite full set of of states is said to be a sum logic if for
every pair x, y of bounded observables on L there is a unique sum z. We
shall write z=x+y if z is the sum of x and y. For more details about
sum logics we refer to [6].

Now we are ready to state and prove our main result.

Tueorem 1. — Let (L, ¥ (Ly)) and (L,, &), & =S (L,) be sum logics.
Then every logic o-homomorphism h: L, — L, is a lattice G-homomorphism.

Proof. — Let h: L; — L, be a 6-homomorphism. Let x be an observable
on L;. Define A(x): #(R) > L, by h(x) (E)=h(x(E)). Then h(x) is an
observable on L,. For every se ¥ (L,), the map s.h: L; - [0, 1] defined
by s.h(a)=s(h(a)) is a state on L. If x is a bounded observable on L,,
then for any se & (L,), s (h(x))=s.h(x), where s.he ¥ (L,), and therefore
s.h(x) exists and is finite. This implies that 4 (x) is bounded. For acL,,
let g, denote the proposition observable such that g,({1})=a. Then
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226 S. PULMANNOVA AND A. DVURECENSKIJ

h(g,) {1D=h(g,({1})=h(a), similarly h(q,({0})=h(a)’. This proves
that h(q,) = gy )

Now let x, y be bounded observables on L, and let x+ y=z. Since for
every se¥, s.he¥ (L)), we find s.h(@)=s.h(x)+s.h(p), i.e.,
s(h(2))=s(h(x))+s(h(y)) for all se ¥, which entails A (z)=h(x)+h(y).

By Gudder [6], for any pair a, b of elements of a sum logic L we have
(9.+9s) {2})=anb. Let a, beL,. Then

h(@anb)y=h((g.+4q,) (2} =h(g.+a») ({2})
= (h(g)+h(g) ({2}
= GhwT e ({ 2 })=h (@ A k(D).

Hence A (a A b)=h(a) A h(b) holds for all a, beL,. This proves that s is a
lattice c-homomorphism.

3. APPLICATIONS

ProrosiTioN 1. — Let H, K be separable, complex Hilbert spaces
(dimH=3) and let h: L(H) - L (K) be a homomorphism of logics. Then h
is a lattice c-homomorphism.

Proof. — See [7].

ProposiTiON 2. — Let H, K be separable, complex Hilbert spaces
(dimH=3) and let h: L(H)-> L(K) be a homomorphism. Then
dim A ([x])=dim A ([y]) for every x, yeH (where [x] denotes the one-dimen-
sional subspace generated by x). In particular, there is a finite or countably
infinite cardinal r such that dim K =rdim H.

COROLLARY. — A homomorphism between two separable complex Hilbert
space logics L (H), L (K) (dim H = 3) is necessarily injective.

The proof follows by Theorem 1 and Matolcsi [11], Propositions 3 and
4.

Recall that a set S is of non measurable cardinality if there does not
exist any probability measure defined on all subsets of S vanishing at all
points. In the opposite case we say that S is of measurable cardinality.

Prorosition 3. — Let H, K be Hilbert spaces (dimH=3). Then every
o-homomorphism h: L(H) > L(K) is a complete lattice homomorphism if
and only if dim H is a non measurable cardinal.

Proof. — Assume that dim H is non measurable. Let x be a unit vector
of K. Then m!(M)= ( h(M) x, x ), MeL (H), defines a completely addi-
tive state on L (H) (see, e. g., [9]). Since x is arbitrary, we conclude that h
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is a complete homomorphism of logics. Applying Theorem 1, we obtain
that 4 is a complete lattice homomorphism.

Now suppose that dimH is a measurable cardinal. Let (x),c1 be an
orthonormal basis in H. Then there exists a probability measure p on 27
vanishing on all one-point sets.

Define

m(M)=f [Me,|Pdu(), MeL(H).
T

Then m is a state on L (H) with the properties m (H)=1 and m([e])=0
for all teT. Indeed,

mH)=p(T)=1,
m(le])= f le 2 dp@=p({t}h=o0.

(See also [3]). This implies that m is a o-additive, but not completely
additive measure on L (H). Define

K, (M, N)=j {Me,, Ne, > dp(z).
T
For a;eC, i<n (neN) we have
Z“i&ij(M.-, Mj)=JZai&j<Mien Mje, ) dp (1)

=f||2aiMie,||2du(t)§0-

This shows that K,, is a reproducing kernel. By [12], there is a vector-
valued measure § defined on L (H) with values in a Hilbert space K, such
that m(M)= ||E(M)||*(MeL (H)). By [10], there is a o-homomorphism
h: L(H) - L(K) of logics and a vector veK such that EM)=hM)v
(MeL (H)). This entails that 4 is not a complete homomorphism.

In a similar manner as Proposition 2, we can prove the following
statement.

ProrosiTioN 4. —  Every o-homomorphism h: L(H) - L(K), where
2#dim H is non measurable, is injective. Moreover, dim A ([x]) =dim A ([y])
Jor all x,yeH, and there is a cardinal a(a=dim[x]) such that
dimK =adimH.

The following proposition is a generalization of the theorem obtained
by Jajte, Paszkiewicz [8]. Using Proposition 1 and results of Aerts, Dau-
bechies ([1], [2]) and Wright [14], we obtain an alternative proof.
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228 S. PULMANNOVA AND A. DVURECENSKIJ

ProrosiTioN 5. — Let H, K be two separable Hilbert spaces with dimen-
sions greater or equal to three and let h: L (H) —» L (K) be a homomorphism.
Then there exists a family of maps (9;); .y from H to K such that

— each @; is an isometry or anti-isometry;

— K is the orthogonal sum K= @ ¢;(H);

jel
~ for al MeL(H), h((M)= v ¢; ' (M).
jel
ProrosiTioN 6 (a generalization of Dye’s theorem). — Let # be a

von Neumann algebra with no direct summand of type 1,. Then any o-
homomorphism of logics between the projection logic of # and that of a
von Neumann algebra A is implemented by the direct sum of a
*-isomorphism and a *-antiisomorphism between M and N
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