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Generalization of the Kaluza-Klein theory
for an arbitrary non-abelian gauge group
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Vol. IX, n° 2, 1968,

Section A :

Physique théorique.

RESUME. - L’isomorphisme entre les theories d’électromagnétisme
d’Utiyama et de Kaluza et Klein est généralisé pour un groupe non-abelien
semi-simple de jauge. Les equations de champ de jauge non-abelien sont
derives d’un principe variationnel geometrique. L’interaction entre le

champ gravitationnel et le champ généralisé de Yang et Mills est donnée
sous une forme explicite. Les equations de mouvement d’une particule
dans le champ exterieur sont obtenus a partir de 1’equation des géodésiques
dans 1’espace fibre principal.

SUMMARY. - The isomorphism between the Utiyama and the Kaluza-
Klein theories of electromagnetism is generalized to the case of a non-
abelian semi-simple gauge group. The equations of the non-abelian gauge
field are derived from a geometrical least action principle. The interaction
between the gravitational and the generalized Yang-Mills field is given
explicitly. The equations of motion of a particle in an external field are
obtained from the geodetic equation in the principal fibre bundle space.

1. THE EQUIVALENCE
OF THE UTIYAMA AND KALUZA-KLEIN APPROACHES
TO THE THEORY OF THE ELECTROMAGNETIC FIELD

Utiyama has put forward a theory of invariant interaction defining
the quantities on which the lagrangian invariant with respect to a given
gauge group must depend [J]. In the case of electromagnetic field this
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theory can be regarded as a theory of connections in a principal fibre
bundle over a Riemannian manifold V4 with a structure group isomorphic
with a one-dimensional sphere S1. In this case there exists an isomorphism
between the theory of Utiyama and the theory of Kaluza and Klein that
treats the electromagnetic and gravitational field in a unified way, as some
special metric geometry in a five-dimensional differential manifold. The

existence of such an isomorphism was shown recently by Trautman and
Tulczyjew [6], [7].
The possibility of introducing a metric in the principal fibre bundle,

which in this case is also a five-dimensional manifold, is inherent in the

very structure of a bundle with connection. This special metric is defined
by the following requirements:

a) The horizontal subspaces of the tangent space to the bundle must be
orthogonal in this metric to the vertical subspaces;

b) The projection of the metric onto the horizontal space must be iso-
morphic with the Riemannian metric of the base manifold;

c) The vertical part of the metric must be isomorphic to some metric
of the space tangent to the fibre, i. e. to some metric on the Lie algebra
of the structure group.

The only arbitrariness present in the definition of the metric is contained
in c) ; indeed, there are many different metrics on the group. For the

Kaluza-Klein theory the group metric is the most trivial, defined by the
notion of the natural length in R 1 . This choice is equivalent to the « strong
cylindricity condition » of the Kaluza-Klein theory (cf. Einstein [2]).

Utiyama’s theory does not define the lagrangian; it only dictates its

dependence on geometric quantities, i. e. on the curvature form of the

bundle. However the explicit form of this dependence is not defined.

In order to generalize the equivalence of the Utiyama and Kaluza-Klein

approaches for non-abelian gauge groups, we shall assume that the lagran-
gian is equal to the scalar density made of the square root of the deter-
minant of the Riemannian metric tensor multiplied by the scalar Rieman-
nian curvature, R, of the bundle manifold. There still remains the problem
of choosing a metric on the group space. We shall assume the metric

group invariant, and for the case of a semi-simple Lie group we shall take
the Killing tensor constructed from the structure constants of the group :

It is easy to see, that for a one-dimensional abelian gauge group (i. e. in
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the theory of gravitation and electromagnetism) the Riemann scalar of the
bundle, constructed with the metric tensor defined above, is equal to the
sum of the Riemann scalar of the base manifold and the lagrangian of the
electromagnetic field, and that the determinant of the five-dimensional

metric tensor is equal to the determinant of the metric tensor of the base.
However, it is by no means obvious that for any non-abelian gauge group
the Riemannian scalar curvature of the bundle will be the sum of the Rie-
mann scalar of the base and a lagrangian of the Yang-Mills type. Our

first aim is to prove this statement.

2. GENERALIZATION

OF THE KALUZA-KLEIN THEORY

FOR A NON-ABELIAN GAUGE GROUP

Following the program given above, we construct a principal fibre bundle
over some Riemannian space-time manifold V4 with metric tensor giJ~
the structure group being some finite-dimensional Lie group G. We assume
that there is a connection in the bundle, given by a Lie algebra valued
1-form A on the bundle manifold. The curvature form of this connection,
being the covariant differential of the connection form, DA, is interpreted
as a generalized Yang-Mills field tensor. We also assume an invariant
metric on the structure group, choosing the Killing form in the case of a
semi-simple group.

In the following, we restrict our considerations to a neighbourhood of
some point of the bundle; it is well known that such a neighbourhood can
be regarded as a direct product of some neighbourhood in the base and a
neighbourhood in the group space. This suggests choosing special coordi-
nate system natural to the problem. Let the indices i, j, k, ... take values
from 1 to 4, the indices a, b, c, ... - from 4 to M + 4, M = dim G, and
the indices a, (3, y, ... - from 1 to M + 4. The natural choice is taking
the first 4 of them as the coordinates in the base neighbourhood, and the
remaining M as the coordinates in the neighbourhood of the group. When
this is done, the differential of the projection onto the base, dp, has the
coordinates ~~ and dpa = 0. Similarly, the isomorphism u of the
Lie algebra of the structure group onto the vertical subspace of the tangent
space to the bundle has the coordinates
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The connection form A has coordinates A7, and the curvature form in
our coordinate frame is

Cb~ being the structure constants of the group G. Other components of
the curvature form vanish in our coordinate frame.
The coordinate system in the base neighbourhood can be chosen at will,

whereas in the group neighbourhood, in order to simplify the calculations,
we choose locally geodesic coordinates. That is, we require the covariant
derivative of Af in the group space to vanish; as the connection coefficients
in the group space are equal to the structure constants, this means that

or

because of the antisymmetry of Cb~ in the two lower indices.
Let the metric of the base be gij and the invariant metric on the group

be gab. Here invariance means that

where Ra and La are the right and left translations respectively. Without

lack of generality we can reduce (4) to the condition

Local triviality of the bundle gives

Let us now find the explicit form of the bundle metric satisfying the require-
ments a), b), c). Expressed in coordinates these requirements are

Analogous equations can be written for the covariant tensor :

where dr? is the differential of the lift and 0": is the isomorphism of the
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Lie algebra onto the vertical subspace tangent to the fibre. By virtue of
the general relations in principal fibre bundles

one can easily deduce that the only solution for and gaP satisfying condi-
tions (7) and (8) is :

In our special coordinates these formulae take the form:

and

A simple computation shows that (13) is the inverse of (12) and that
the determinant of (12) is equal to the determinant of gil. With these

preparations we can calculate the Christoffel symbols for the bundle mani-
fold. The calculations are done in the coordinate system defined above.
It is useful to remark, that the field of vectors A: = is a Killing
field with respect to our metric. This can be easily seen in our coordinate
system. First, one can easily see that the only non vanishing components
of A: are A~ = ~a. Now, since the 3~ vanish as well as v-agbc one easily
obtains

After some calculations we obtain the formulae for the connection coefli-
cients in our coordinate system:
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where we use the notation

Not all connection coefficients are explicitly covariant with respect
to the gauge group; however, if the fully covariant structure

constants Cabc = gadCtc are antisymmetric in all three indices, we can

replace faij by the covariant quantities Faij in the last two of connection coeffi-
cients without affecting them. In the case when gab is the Killing metric
the full antisymmetry of Cabc takes place by virtue of the Jacobi identities.
Taking the lagrangian, by analogy with the Kaluza-Klein theory, equal

to g. R, by well known standard procedure we obtain the Euler-
Lagrange equations in the form :

The variations shall not be completely arbitrary; we assume that
they do not affect the particular structure of the fibre bundle. In other

words, the variations must not affect the form of the metric (13).
Within these conditions the variations of gij and of A? are arbitrary.

Before computing the explicit form of ( 17) it is useful to indentify the parts
of Euler-Lagrange equations that arise from independent variations of A j
and gij. Replacing gap and gaP by their explicit form, we obtain two systems
of equations :

corresponding to the variations of Ak, and

corresponding to the variations of gjk.
Using (18) we can reduce equation (19) to the simpler form

Equations (18) are interpreted as the field equations, whereas (20) can be
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regarded as the definition of the energy-momentum tensor for the combined
Yang-Mills type and gravitational fields.

After performing some computations we obtain the following expressions
for the Ricci tensor:

Here V, i means covariant differentiation with respect to the Christoffel
symbols of the base and Kjk the Ricci tensor of the base. Putting these
expressions into (18) we obtain

or, by virtue of the non-degeneracy of the group metric tensor

For flat space-time these equations are identical with the well known

Yang-Mills equations for a non-abelian gauge field. Equation (25) gene-
ralizes them to the case of curved space-time, and also provides the form
of the interaction between the gravitational and the generalized Yang-
Mills field.
To obtain an explicit form of (20) and calculate the energy-momentum

tensor we must compute also the Riemannian scalar R. The result is

where K means the Riemann scalar of the base. There is always a lack
of invariance due to the last term in (26) ; nevertheless we can see that this
term vanishes by the following considerations: Since

we have
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because, with our assumptions concerning the full antisymmetry of Cab~,
we have C a = 0, and then ~A~ = 0.
Now

because

The final expression for the Lagrangian is:

From the eq. (20) we can easily evaluate the energy momentum tensor-
by using the relation

where Krs is the Ricci tensor of the base and K is the gravitational constant.
From (20) we obtain:

This expression is in agreement with the well known case ofelectromagnetism,
where Fjk reduces to Jjk and gab to 1. The covariant divergence of Trs.
vanishes from its definition or, if computed from the right-hand side of (3 1)
by virtue of the field equations (25). Having at our disposal the equa-
tions (25) and (31) we can solve - at least theoretically - the problem of
the interaction of a field of the Yang-Mills type with the gravitational field.
Practically this can be done only with very simplifying assumptions, e. g.
some special symmetries of the space-time and the field, or by means of
perturbation calculus. _

3. THE MOTION OF PARTICLES IN A FIELD
OF THE YANG-MILLS TYPE

AND THE GRAVITATIONAL FIELD

In analogy with the Jordan-Thirry variant of the Kaluza-Klein theory
of gravitation and electromagnetism we assume, that the trajectory of
a point particle is a geodesic in our M + 4 dimensional bundle manifold.
Then, inserting into the equation of a geodesic the expressions for the.
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connection coefficients (15) we obtain the equations of motion in the form:

In our coordinates the components A~ of the bundle connection are equal
to 5~ hence we can transform (32) to the form

The scalar product Af -y- is constant since in any metric space the g eodesics
are always at the constant angle to the Killing field. Introducing the notion
of the generalized charge Qa we obtain

a
where Qa = 2Aa03B1 dS. It is worthful to remark, that Qa really does cor-

respond to the quantity analogous to the charge divided by the mass of
the particle.
The equations (34) are not complete, during the motion the charge-

vector rotates in the group space. This can be seen by differentiating its
definition; then the way of rotating depends explicitly on the external field.

In the case of one-dimensional abelian gauge group with gab reduced

to 1 we obtain the classical Lorentz equation of an electron moving in an
external field. In the non-abelian case there is an interesting new aspect
to this equation of motion. Whereas in the case of the electromagnetism
the necessary and sufficient conditions for the particle to move along a
geodesic in space-time was either the vanishing of the charge, or the vanishing
of the field, here we obtain yet another possibility: the vanishing of the

group scalar product of the « charge-vector » and the field : gabQaFb = 0,
in spite of non vanishing of both Qa and Ft. It is difficult to see, however,
if this circumstance has any physical meaning at all.
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