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INTEGRAL STRUCTURES ON p-ADIC FOURIER
THEORY

by Kenichi BANNAI & Shinichi KOBAYASHI (*)

Abstract. — In this article, we give an explicit construction of the p-adic
Fourier transform by Schneider and Teitelbaum, which allows for the investigation
of the integral property. As an application, we give a certain integral basis of the
space of K-locally analytic functions on the ring of integers OK for any finite
extension K of Qp, generalizing the basis constructed by Amice for locally analytic
functions on Zp. We also use our result to prove congruences of Bernoulli-Hurwitz
numbers at non-ordinary (i.e. supersingular) primes originally investigated by Katz
and Chellali.
Résumé. — Dans cet article, nous donnons une construction explicite de la

transformation de Fourier p-adique de Schneider et Teitelbaum, qui nous permet
d’étudier son integralité. Comme application, pour toute extension finie K de Qp

nous donnons une certaine base entière de l’espace de K-fonctions localement ana-
lytiques sur l’anneau des entiers OK , en généralisant la base construite par Amice
pour les fonctions localement analytiques sur Zp. Nous utilisons également notre
résultat pour démontrer certaines relations de congruence étudiées initialement
par Katz et Chellali entre nombres de Bernoulli-Hurwitz aux places non-ordinaires
(c’est-à-dire supersingulières).

1. Introduction

One important method in studying the congruences and p-adic proper-
ties of important invariants in number theory is the use of p-adic measures
interpolating such values. Such theory was applied to obtain the Kummer
congruence between special values of Riemann zeta function as well as the

Keywords: p-adic distribution, p-adic Fourier theory, Amice transform, integrality, con-
gruence, Lubin-Tate group, Bernoulli-Hurwitz number, p-adic periods.
Math. classification: 11S40.
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construction of the p-adic L-functions for elliptic curves with ordinary re-
duction at p. When dealing with the non-ordinary case, it is necessary to
use the theory of p-adic analytic distributions, which is a generalization
of the theory of p-adic measures. For such p-adic distributions on Zp, the
Amice transform gives a one-to-one correspondence between Cp-valued dis-
tributions on Zp and rigid analytic functions on the open unit disc. The
general idea is to study the congruences and p-adic properties of the inter-
polated invariants through the p-adic property of the rigid analytic function
corresponding to the p-adic distribution. However, contrary to the case of
p-adic measures, the Amice transform is not well-behaved integrally for
general p-adic distributions, hence it is necessary to investigate in detail
the precise integral structure of this transform. Amice [1, §10] investigated
the precise integral structure of the Amice transform.
Let OK be the ring of integers of a finite extension K of Qp. In [8, §4],

Schneider and Teitelbaum constructed the p-adic Fourier transform, which
is a one-to-one correspondence between Cp-valued distributions on OK and
rigid analytic functions on an open unit disc. The purpose of this article is to
give an explicit and elementary construction of the p-adic Fourier transform
of Schneider-Teitelbaum, which allows investigation of the precise integral
structure of this correspondence. We then determine an integral structure
on the ring of locally analytic functions on OK . The integrality of the p-
adic Fourier transform for general K is even less well behaved than for
the case of Qp; even if the rigid analytic function corresponding to a p-
adic distribution has bounded coefficients, the p-adic distribution may not
necessarily be a p-adic measure. As an application of our result, we obtain
the congruences originally proved by Katz [7, Theorem 3.11] and Chellali [4,
Théorème 1.1] of Bernoulli-Hurwitz numbers, which are essentially special
values of p-adic L-functions of CM elliptic curves at non-ordinary primes.
We now give the exact statements of our theorems. Let p be a rational

prime and let | · | be the absolute value of Cp such that |p| = p−1. Let π
be an uniformizer of OK , and let Fq be the residue field of OK . We define
LAN (OK ,Cp) to be the space of locally analytic functions on OK of order
N which take values in Cp. That is, f(x) ∈ LAN (OK ,Cp) if and only if f(x)
is defined as a convergent power series

∑∞
n=0 an(x−a)n on a+πNOK for any

a ∈ OK . We let ‖f‖a,N := maxn{|anπnN |}. The space LAN (OK ,Cp) is a p-
adic Banach space induced by the norm maxa∈OK

{‖f‖a,N} and we denote
by LAN (OK ,Cp)0 the submodule of elements whose absolute values are less
than or equal to 1. We let G be a Lubin-Tate group of K corresponding to
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π, and let $p ∈ Cp be a p-adic period of G. We let

ρ(k) = max
k6m
{|m!/$m

p |}, ρ(k) = min
06m6k

{|m!/$m
p |}.

See Proposition 3.1 for the properties of these numbers.
Let ϕ(t) be a rigid analytic function on the open unit disc. In other words,

ϕ(t) is a power series of the form ϕ(t) =
∑∞
n=0 cnt

n such that |cn|rn0 → 0 for
any 0 < r0 < 1. Let µϕ be the distribution on OK corresponding to ϕ(t)
given by Schneider-Teitelbaum’s p-adic Fourier theory [8, Theorem 2.3].
Then we have the following:

Theorem 1.1. — Let f ∈ LAN (OK ,Cp). Then we have∣∣∣∣∫
a+πNOK

f(x) dµϕ
∣∣∣∣ 6 ρ(0)

∣∣∣∣πq
∣∣∣∣N ‖f‖a,N‖ϕ‖N(1.1)

where

(1.2) ‖ϕ‖N := max
k

{
|ck|ρ

([
k

qN

]) }
and [x] is the integral part of x.

The crucial difference from the case whenK = Qp is the fact that |π/q| >
1 when K 6= Qp. A finer version of the above is given as Theorem 4.3. Since
ρ
([

k
qN

])
∼ p−kr where r = 1/eqN (q−1), the value ‖ϕ‖N is approximated

by
‖ϕ‖B(p−r) = max

x∈B(p−r)
{ |ϕ(x)| },

where B(p−r) ⊂ Cp is the closed disc of radius p−r centered at the origin.
As an application of our main theorem, we obtain an estimate of the

Fourier coefficients of Mahler like expansion of functions in LAN (OK ,Cp).
Let λ(t) be the formal logarithm of G, and following [8], we define the
polynomial Pn(x) by

exp(xλ(t)) =
∞∑
n=0

Pn(x)tn.

Note that when G is the multiplicative formal group G = Ĝm, then λ(t) =
log(1 + t) and the above expansion is simply

(1 + t)x =
∞∑
n=0

(
x

n

)
tn.

Hence the polynomial Pn(x) is a generalization of the binomial polynomial(
x

n

)
= x(x− 1) · · · (x− n+ 1)

n! .
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Then we have the following.

Theorem 1.2 (Theorem 4.7). — The series
∑∞
n=0 anPn(x$p) converges

to an element of LAN (OK ,Cp)0 for an satisfying

|an| 6 ρ
([

n

qN

])
, lim

n→0
|an|/ρ

([
n

qN

])
= 0.

Conversely, if f(x) ∈ LAN (OK ,Cp)0, then it has an expansion

f(x) =
∞∑
n=0

anPn(x$p)

of the form

|an| 6 c
∣∣∣∣πq
∣∣∣∣N ρ([ nqN

])
, lim

n→0
|an|/ρ

([
n

qN

])
= 0,

where c = 1 if e 6 p− 1, and c = ρ(0) otherwise.

Corollary 1.3 (Corollary 4.8). — Suppose

eN,n := γ

([
n

qN

])
Pn(x$p), (n = 0, 1, · · · ),

where γ(u) is an element in Cp such that ρ(u) = |γ(u)|. If we denote by
LN the OCp -module topologically generated by eN,n, then

ρ(0)−2
∣∣∣ q
π

∣∣∣N LAN (OK ,Cp)0 ⊂ LN ⊂ LAN (OK ,Cp)0.

In particular, LN⊗Qp = LAN (OK ,Cp). In other words, the functions eN,n
form a p-adic Banach basis of LAN (OK ,Cp). Moreover, if e 6 p− 1, then∣∣∣ q

π

∣∣∣N+1
LAN (OK ,Cp)0 ⊂ LN ⊂ LAN (OK ,Cp)0.

This result for the case OK = Zp gives the result of Amice [1, Théorème
3], namely that the functions[

n

pN

]
!
(
x

n

)
(n = 0, 1, · · · )

form a topological basis of LAN (Zp,Cp)0 (actually, we can show that it is
a basis of LAN (Zp,Qp)0).

As another application, in Theorem 5.8, we derive from our estimate
of the integral the congruence of Bernoulli-Hurwitz numbers BH(n) at
supersingular primes established by Katz [7, Theorem 3.11] and Chellali [4,
Théorème 1.1].
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2. Schneider-Teitelbaum’s p-adic Fourier theory.

Let K be a finite extension of Qp and k = Fq the residue field. Let e
be the absolute ramification index of K. We fix a uniformizer π of K and
let G be a Lubin-Tate formal group of K associated to π. For a natural
number N and an element a of OK , we define the space A(a+ πNOK ,Cp)
of K-analytic functions on a+ πNOK by

A(a+ πNOK ,Cp)

:=
{
f : a+πNOK→Cp | f(x) =

∞∑
n=0

an(x−a)n, an ∈Cp, πnNan→ 0
}
.

We equip the space A(a+ πNOK ,Cp) with the norm

‖f‖a,N := maxn {|πnNan|} = maxx∈a+πNOCp
{|f(x)|}.

We also define the space LAN (OK ,Cp) of locally K-analytic functions on
OK of order N by

LAN (OK ,Cp)

:=
{
f :OK → Cp | f |a+πNOK

∈A(a+πNOK ,Cp) for any a ∈ OK
}
,

which is a p-adic Banach space by the norm maxa {‖f‖a,N}. We denote by
LAN (OK ,Cp)0 the submodule of elements whose absolute values are less
than or equal to 1. We put

LA(OK ,Cp) =
⋃
N

LAN (OK ,Cp)

and equip it with the inductive limit topology. A continuous Cp-linear func-
tion LA(OK ,Cp)→ Cp is called a Cp-valued distribution onOK . We denote
the space of Cp-valued distributions on OK by D(OK ,Cp), i.e.

D(OK ,Cp) = lim←−
N

Homcont
Cp

(LAN (OK ,Cp),Cp).

TOME 66 (2016), FASCICULE 2
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We write an element of D(OK ,Cp) symbolically as∫
dµ : LA(OK ,Cp)→ Cp, f 7→

∫
fdµ =

∫
OK

f(x) dµ(x).

The space D(OK ,Cp) has a product structure given by the convolution
product. For a compact open set U of OK , we let∫

U

f(x)dµ(x) :=
∫
OK

f(x) · 1U (x) dµ(x),

where 1U is the characteristic function of U .
The structure of D(OK ,Cp) is well-known for the case K = Qp and

described through the so-called Amice transform. We denote by Rrig the
ring of rigid analytic functions on the open disc of radius 1, that is, the ring
of power series of the form ϕ(T ) =

∑∞
n=0 cnT

n such that |cn|rn0 → 0 for any
0 < r0 < 1. Then there exists an isomorphism of topological Cp-algebras

(2.1) D(Zp,Cp) ∼= Rrig, µ 7→ ϕ

that is characterized by the equation

cn =
∫
Zp

(
x

n

)
dµ(x)

or equivalently
ϕ(T ) =

∫
Zp

(1 + T )x dµ(x).

For the Mahler expansion

f(x) =
∞∑
n=0

an

(
x

n

)
of f ∈ LA(Zp,Cp), Amice showed that |an|rn → 0 for some r > 1 and
hence we can compute the integral as

(2.2)
∫
Zp

f(x) dµ =
∞∑
n=0

ancn.

Schneider-Teitelbaum [8, Theorem 2.3] constructed an isomorphism analo-
gous to (2.1) for a general local field K.
Let $p be a p-adic period of G. By Tate’s theory of p-divisible groups

and Lubin-Tate theory, we have

HomOCp
(G, Ĝm) ∼= HomZp

(TpG, TpĜm) ∼= OK .

(The last isomorphism is non-canonical.) Hence there exists a generator
of the OK-module HomOCp

(G, Ĝm), which is written in the form of the
integral power series exp($pλ(t)) ∈ OCp

[[t]] where λ(t) is the logarithm of

ANNALES DE L’INSTITUT FOURIER
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G. The element $p ∈ OCp
is determined uniquely up to an element of O×K .

We fix such a $p and call it the p-adic period of G (if the height of G is
equal to 1, then the inverse of $p is often called a p-adic period of G. For
example, see [9]). It is known that |$p| = p−s, where s = 1

p−1 −
1

e(q−1) (see
Appendix of [8] or an elementary proof in [3] when K/Qp is unramified).
We define the polynomials Pn(X) ∈ K[X] by the formal expansion

exp(Xλ(t)) =
∞∑
n=0

Pn(X) tn.

Note that in the case G = Ĝm, π = p and λ(t) = log(1 + t), the polynomial
Pn(X) is simply the binomial polynomial

(
X
n

)
. By construction, Pn(x$p)

is in OCp
if x ∈ OK .

Theorem 2.1 (Schneider-Teitelbaum [8, §4]).
i) The series

∞∑
n=0

anPn(x$p)

converges to an element of LA(OK ,Cp) if limn |an|
1
n < 1. Con-

versely, any locally K-analytic function f(x) on OK has a unique
expansion

f(x) =
∞∑
n=0

anPn(x$p)

for some sequence (an)n in Cp such that limn |an|
1
n < 1.

ii) There exists an isomorphism of topological Cp-algebras

(2.3) D(OK ,Cp) ∼= Rrig.

having the following characterization property: if ϕ(T ) =
∑∞
n=0 cnT

n

corresponds to a distribution µ, then

cn =
∫
OK

Pn(x$p) dµ(x)

or equivalently

ϕ(t) =
∫
OK

exp(x$pλ(t)) dµ(x).

Schneider and Teitelbaum called the power series ϕ(t) correspond-
ing to µ the Fourier transform of µ and denoted it by Fµ(t).

TOME 66 (2016), FASCICULE 2
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3. Power sums

In this section, we give an estimate of the absolute value of the power
sum

SN,n,k := ∂nG
∑

tN∈G[πN ]

(t⊕ tN )k|t=0,

where x ⊕ y = G(x, y), ∂G is the differential operator λ′(t)−1(d/dt), and
G[πN ] is the kernel of the multiplication [πN ] of G. This estimate is crucial
for everything in this paper. We use Newton’s method to compute this
value.
We define ρ[l, n] and ρ[l, n] by

ρ[l, n] = max
l6m6n

{|m!/$m
p |}, ρ[l, n] = min

l6m6n
{|m!/$m

p |}

for l 6 n. For l > n, we put ρ[l, n] = 0 and ρ[l, n] =∞. Then ρ(k) = ρ[k,∞]
and ρ(k) = ρ[0, k] are the constants appearing in the introduction.

Proposition 3.1.
i) The values ρ(k) and ρ(k) are decreasing with k.
ii) We have

ρ(k) 6 ρ(k), ρ(k) 6 ρ(0)ρ(k).

iii) We have

ρ(k1 + · · ·+ kn) 6 ρ(k1) · · · ρ(kn).

iv) We have
p

1
p−1−

k
e(q−1) 6 ρ(k) 6 1.

Proof. — i) is clear. For ii), first we have ρ(k) > |k!/$k
p | > ρ(k). Suppose

ρ(k) = |k1!/$k1
p | and ρ(k) = |k2!/$k2

p |. Then k1 > k > k2 and∣∣∣∣ k1!
$k1
p

/
k2!
$k2
p

∣∣∣∣ =
∣∣∣∣(k1

k2

)
(k1 − k2)!
$k1−k2
p

∣∣∣∣ 6 ρ(0).

For iii), suppose that ρ(ki) = |li!/$li
p | for li 6 ki. Then the assertion for ρ

follows from

ρ(k1 + · · ·+ kn) 6
∣∣∣∣ (l1 + · · ·+ ln)!

$l1+···+ln
p

∣∣∣∣ 6 ∣∣∣∣ (l1 + · · ·+ ln)!
l1! · · · ln!

∣∣∣∣ ∣∣∣∣ l1!
$l1
p

∣∣∣∣ · · · ∣∣∣∣ ln!
$ln
p

∣∣∣∣ .
For iv), suppose that ρ(k) = |l!/$l

p| for l 6 k. Then

p
1

p−1−
k

e(q−1) 6 p
1

p−1−
l

e(q−1) 6

∣∣∣∣ l!$l
p

∣∣∣∣ = ρ(k).

�
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If e 6 p− 1, then we can determine ρ(k) and ρ(k) explicitly.

Lemma 3.2. — Let k be a non-negative integer and let q be a power
of p.

i) For any integer 0 6 r < q, we have
(
kq+r
r

)
≡ 1 mod p.

ii) We have
(
k
q

)
∈ [k/q]Zp.

Proof. — i) is clear. For ii), we write k = aq+ r with 0 6 r < q. We put
(1 + x)q = 1 + xq + pf(x) for some integral polynomial f(x). Then

(1 + x)k = (1 + xq + pf(x))a(1 + x)r ≡ (1 + xq)a(1 + x)r mod apZp[x].

Hence the coefficient of xq in the above is in aZp. �

Proposition 3.3. — Let i, e and h be natural numbers. We put q = ph.
Then we have

vp(i!) >
i

p− 1 −
i

e(q − 1) − h+ 1
e

+
[
i

q

](
1
e
− 1
p− 1 + 1

e(q − 1)

)
+ vp

([
i

q

]
!
)
.

In the above, equality holds if and only if i ≡ −1 mod q. In particular, if
e 6 p− 1 or i < q, then we have

vp(i!) >
i

p− 1 −
i

e(q − 1) − h+ 1
e

and equality holds if and only if i = q−1. In this case, we have ρ(0) = |π/q|.

Proof. — First, we assume that i < q. We prove the inequality by in-
duction on h. If h = 1, then i < p. Hence the left-hand side vp(i!) is equal
to zero, and the right-hand side takes the maximum value when i = p− 1,
which is also equal to zero. We assume that the inequality holds for natural
numbers less than h. Since the right-hand side is strictly increasing for i,
and vp(i!) strictly increases only when p divides i, we may assume that i is
of the form i = kp− 1 for some natural number k 6 ph−1. We have

vp(i!) = vp((kp)!)− vp(kp) = k − 1 + vp((k − 1)!).

On the other hand, we have
i

p− 1 −
i

e(q − 1) − h+ 1
e

= (k−1) + k−1
p−1 −

k−1
e(ph−1−1) − (h−1) + 1

e
+ k−1
e(ph−1−1) −

kp−1
e(q−1)

6 k − 1 + vp((k − 1)!).

TOME 66 (2016), FASCICULE 2
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In the last inequality, we used the inductive hypothesis and k 6 ph−1. Hence
we have the desired inequality, and equality holds only when k = ph−1, i.e.
when i = q − 1. For i > q, by Lemma 3.2 ii) and by induction, we have

vp(i!) > vp((i− q)!) + vp(q!) + vp

([
i

q

])
>

i

p− 1 −
i

e(q − 1) − h+ 1
e

+
[
i

q

](
1
e
− 1
p− 1 + 1

e(q − 1)

)
+ vp

([
i

q

]
!
)
.

From the above argument and by induction, to have the equality, i must
be congruent to −1 modulo q. On the other hand, if i ≡ −1 mod q, then
direct calculations give the equality. �

Proposition 3.4. — Suppose that e 6 p− 1, and that e > 1 or h > 1.
i) We have |n!/$n

p | > 1 for 0 < n < q.
ii) For any non-negative integer n, ρ(n) = |n0!/$n0

p | where n0 = [n/q]q.
iii) For n ≡ −1 mod q and a natural number i 6= q, we have∣∣∣∣ n!

$n
p

∣∣∣∣ > ∣∣∣∣ (n+ q)!
$n+q
p

∣∣∣∣ > ∣∣∣∣ (n+ i)!
$n+i
p

∣∣∣∣
In particular, for any non-negative integer n, we have ρ(n)= |n1!/$n1

p |
where n1 = [n/q]q + q − 1.

Proof. — We prove i) by induction on h of q = ph. If h = 1, then n! is
a p-adic unit and the assertion is clear. Assume that h > 1. We write as
n = kp+ r with 0 6 r < p. Then

n!
$n
p

=
(
n

r

)
(kp)!
$kp
p

r!
$r
p

.

Hence by Lemma 3.2 i) and the induction on n, we may assume that r = 0
and k > 1. Then

vp

(
(kp)!
$kp
p

)
= vp((kp)!)−

kp

p− 1 + kp

e(q − 1) < vp(k!)− k

p− 1 + k

e(ph−1 − 1) .

By the inductive hypothesis for h, the right-hand side is negative or 0.
Next we prove ii). Suppose that m < n0. Then∣∣∣∣ n0!
$n0

/
m!
$m
p

∣∣∣∣ =
∣∣∣∣ n0

$p

(
n0 − 1
m

)
(n0 −m− 1)!
$n0−m−1
p

∣∣∣∣ 6 ∣∣∣∣ n0

$p

∣∣∣∣ ρ(0) =
∣∣∣∣n0π

q$p

∣∣∣∣ < 1.

ANNALES DE L’INSTITUT FOURIER
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Suppose that n > m > n0. We write as m = [n/q]q + r with 0 < r < q.
Then i) and Lemma 3.2 i) show that∣∣∣∣ n0!

$n0
p
/
m!
$m
p

∣∣∣∣ =

∣∣∣∣∣
(
m

r

)−1$r
p

r!

∣∣∣∣∣ < 1.

Finally, we show iii). Let n be such that n ≡ −1 mod q. We have

(n+ i)!
$n+i
p

/
(n+ q)!
$n+q
p

= (n+ i)!
(n+ q)!$

q−i
p = u

q

π

(i− 1)!
$i−1
p

π$q−1
p

q! ,

where u =
(
n+q
q−1
)−1(n+i

i−1
)
is a p-adic integer by Lemma 3.2 i). By Proposi-

tion 3.3, the p-adic (additive) valuation of the right-hand side is positive.
Since vp(π/$p) > 0, the p-adic (additive) valuation of

(n+ q)!
$n+q
p

/
n!
$n
p

=
(
n+ q

q

)
q!

π$q−1
p

π

$p

is positive. �

Next we investigate the absolute values of the coefficients of a power of
the logarithm and the exponential map of the Lubin-Tate group. The case
k = 1 in the proposition below is obtained in [10].

Proposition 3.5. — We put ∂ = d/dt. Then we have∣∣∣∣∣$k
p∂

nλ(t)k

k!n! |t=0

∣∣∣∣∣ 6 ρ[k, n]−1,
∣∣∂nexpkG(t)|t=0

∣∣ 6 |$n
p |ρ[k, n].

Proof. — The case for n < k or k = 0 is trivial. Suppose that n > k > 1.
We first assume that the formal logarithm of G is given by

λ(t) =
∞∑
m=0

tq
m

πm
.

Then it suffices to show inequalities∣∣∂nλ(t)k|t=0
∣∣ 6 |k!$n−k

p |,
∣∣∂nexpkG(t)|t=0

∣∣ 6 |k!$n−k
p |.

When k = 1, the inequality for λ(t) is proven by direct calculations. We
prove the general case by induction on k. We have

∂nλ(t)k|t=0 = k∂n−1(λ(t)k−1λ′(t))|t=0

= k∂n−1
∞∑
m=0

λ(t)k−1 q
mtq

m−1

πm
|t=0

=
∞∑
m=0

(
n− 1
qm − 1

)
qm!k
πm

∂n−q
m

λ(t)k−1|t=0.
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Hence we have |∂nλ(t)k|t=0| 6 |k!$n−k
p |.

We put expkG(t) =
∑∞
n=k ant

n. We prove that |n!an| 6 |k!$n−k
p | by

induction on n. If n = k, then the assertion is true since ak = 1. We assume
that the assertion is true for integers less than n. Since expkG(λ(t)) = tk,
we have

tk = akλ(t)k + ak+1λ(t)k+1 + · · ·+ anλ(t)n + · · · .

By i) and the inductive hypothesis, we have

|am∂nλ(t)m|t=0| 6 |k!$n−k
p |

for m < n. Since ∂nλ(t)n|t=0 = n! and ∂nλ(t)m|t=0 = 0 for n < m, the
assertion is also true for n.
Now we consider a general parameter s. Then the logarithm and the ex-

ponential for G with parameter s are of the form λ(φ(s)) and ψ(expG(s)) for
some φ(s), ψ(s) ∈ sOK [[s]]×. We put λ(t)k =

∑∞
n=k c

(k)
n tn and λ(φ(s))k =∑

d
(k)
n sn. Then we have shown that |c(k)

n | 6 |k!$n−k
p /n!|. Since d(k)

n is a
linear sum of c(k)

l (k 6 l 6 n) with integral coefficients, we have∣∣∣∣∣$k
pd

(k)
n

k!

∣∣∣∣∣ 6 max
k6l6n

{∣∣∣∣∣c(k)
l

$k
p

k!

∣∣∣∣∣
}
6 max
k6l6n

{∣∣∣∣∣$l
p

l!

∣∣∣∣∣
}

= ρ[k, n]−1.

Hence we have the inequality for the logarithm. The inequality for the
exponential is straightforward. �

Lemma 3.6.
i) Suppose that f(t) ∈ OK [[t]] satisfies f(t ⊕ tN ) = f(t) for all tN ∈
G[πN ]. Then there exists a power series g(t) ∈ OK [[t]] such that
f(t) = g([πN ]t).

ii) There exists an integral power series gk(t) ∈ OK [[t]] such that

π−N
∑

tN∈G[πN ]

(t⊕ tN )k = gk([πN ]t).

Proof. — See [5], Chapter III. �

We put

F (t,X) =
∏

tN∈G[πN ]

(1− (t⊕ tN )X) = 1 + α1(t)X + · · ·+ αqN (t)XqN

.

For ∂X = ∂/∂X, we consider the power series

(3.1) π−N∂XF (t,X)
F (t,X) = −

∞∑
k=0

π−N ∑
tN∈G[πN ]

(t⊕ tN )k+1

Xk.
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By Lemma 3.6 and the above formula, π−N∂XF (t,X) ∈ OK [[t]][X].

Proposition 3.7. — Let k, n be non-negative integers and N a natural
number. Then we have

(3.2)

∣∣∣∣∣∣π−N
∑

tN∈G[πN ]

∂nG (t⊕ tN )k|t=0

∣∣∣∣∣∣ 6
∣∣∣πNn+k0(1− 1

q−1 )$n
p

∣∣∣ ρ([ k
qN

])
ρ(0),

where k0 = max{[k/qN ]− n, 0}. We also have

(3.3)

∣∣∣∣∣∣π−N
∑

tN∈G[πN ]

∂nG (t⊕ tN )k|t=0

∣∣∣∣∣∣ 6 ∣∣πNn$n
p

∣∣ ρ [0, n] .

Moreover, if e 6 p− 1, we have

(3.4)

∣∣∣∣∣∣π−N
∑

tN∈G[πN ]

∂nG (t⊕ tN )k|t=0

∣∣∣∣∣∣ 6 ∣∣πNn$n
p

∣∣ ρ([ k
qN

])
.

Proof. — We put G(t,X) = F (0, X)−F (t,X), then G(0, X) = G(t, 0) =
0. We have

1
F (t,X) = 1

F (0, X)−G(t,X) =
∞∑
l=0

G(t,X)l

F (0, X)l+1 ∈ OK [[t,X]].

Since G(0, X) = 0 and G(t,X) is invariant for the translation t 7→ tN , it is
of the form

(3.5) G(t,X) = ([πN ]t)H([πN ]t,X)

for some element H in OK [[t]][X]. Since F (0, X) ≡ 1 mod π, the power
series F (0, X)−l−1 is equal to

∞∑
m=0

(
−l − 1
m

)
(F (0, X)− 1)m =

∞∑
m=0

(
l +m

m

)
πm
(

1− F (0, X)
π

)m
.

Hence we have
π−N∂XF (t,X)

F (t,X) =
∞∑
l=0

π−N∂XF (t,X) ·G(t,X)l · F (0, X)−l−1

=
∞∑
l=0

∞∑
m=0

(
l +m

m

)
πm(π−N∂XF (t,X))G(t,X)l

(
1− F (0, X)

π

)m
.

(3.6)

To show the assertion for k + 1, we look the coefficient of Xk in the last
term of (3.6). We consider the coefficients of the terms Xa, Xb and Xc

with a + b + c = k of π−N∂XF (t,X), G(t,X)l and (1 − F (0, X))mπ−m
respectively. Since deg ∂XF (t,X) = qN − 1, degG(t,X) = qN and deg (1−
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F (0, X)) = qN − 1 as polynomials for X, we have a 6 qN − 1, b 6 lqN

and c 6 m(qN − 1). Then by (3.5), the product of these coefficients is an
integral linear combination of the terms of the form(

l +m

m

)
πmGl([πN ]t)

where Gl(t) is a power series in tlOK [[t]] and l, m satisfies

(3.7) a+ lqN +m(qN − 1) > a+ b+ c = k.

We estimate the absolute value of

(3.8)
(
l +m

m

)
πm∂nG Gl([πN ]t) |t=0.

By Proposition 3.5, we have∣∣∂nG ([πN ]t)d|t=0
∣∣ =

∣∣∣∣πNn dndzn expdG(z)|z=0

∣∣∣∣ 6 ∣∣πNn$n
p

∣∣ ρ[d, n].

Therefore, we have∣∣∂nGGl([πN ]t)|t=0
∣∣ 6 ∣∣πNn$n

p

∣∣ ρ[l, n].

Hence we have (3.3). If n < l, then (3.8) is zero and there is nothing to
prove. We assume that n > l. We let l′ > l be such that ρ(l) = |l′!/$l′

p |.
Then ∣∣∣∣(l +m

m

)
πm∂nGGl([π]N t)|t=0

∣∣∣∣ 6 ∣∣∣∣(l +m

m

)
πm+Nn$n

p

∣∣∣∣ ρ[l, n](3.9)

6

∣∣∣∣πNn$n
p

(l +m)!
$l+m
p

(l′ − l)!
$l′−l
p

(
l′

l

)
$m
p π

m

m!

∣∣∣∣ .(3.10)

First we consider the case a 6 qN − 2 or m 6= 0. Then by (3.7) we have

l +m >

[
k + 1
qN

]
.

In particular, m > [(k + 1)/qN ] − n and the value (3.10) is less than or
equal to

|πNn+k0(1− 1
q−1 )$n

p |ρ
([

k + 1
qN

])
ρ(0)

where k0 = max{[(k + 1)/qN ] − n, 0}. Hence in this case we have (3.2).
Suppose that e 6 p − 1. If l′ < l + m, then

∣∣$m
p

∣∣ < ∣∣∣$l′−l
p

∣∣∣ and hence the

value (3.10) is less than |πNn$n
p |ρ
([

k+1
qN

])
. If l′ > l +m, then

ρ(l) =
∣∣∣∣ l′!$l′

p

∣∣∣∣ 6 ρ(l +m) 6 ρ
([

k + 1
qN

])
.
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Hence the value (3.9) is also less than or equal to |πm+Nn$n
p |ρ
([

k+1
qN

])
.

Hence in this case we have (3.4).
Finally we consider the case when a = qN − 1 and m = 0. Then the

coefficient of π−N∂XF (t,X) of degree a is (q/π)NαqN (t), which is divis-
ible by [πN ]t. Hence in this case the product of the coefficient of Xa in
π−N∂XF (t,X), the coefficient of Xb in G(t,X)l and the coefficient of Xc

in (1 − F (0, X))mπ−m is an integral linear combination of terms in the
form Gl+1([πN ]t) for some Gl+1(t) ∈ tl+1OK [[t]]. In this case l satisfies
l + 1 >

[
(k + 1)/qN

]
. Therefore∣∣∂nGGl+1([π]N t)|t=0
∣∣ 6 ∣∣πNn$n

p

∣∣ ρ[l + 1, n] 6
∣∣πNn$n

p

∣∣ ρ([k + 1
qN

])
.

If n < l + 1, then (3.8) is zero and there is nothing to prove. We assume
that n > l+ 1. In particular, by (3.7) we have n > [(k+ 1)/qN ], and hence
k0 = max{[(k + 1)/qN ]− n, 0} = 0. Therefore we have (3.2) and (3.4). �

4. Integral structures on p-adic Fourier theory

In this section, we give an explicit construction of Schneider-Teitelbaum’s
p-adic distribution associated to a rigid analytic function on the open
unit disc.
Let ϕ(t) be a rigid analytic function on the open unit disc. We will

construct a distribution µϕ on OK such that∫
OK

exp(x$pλ(t))dµϕ = ϕ(t).

If we were able to first prove a Mahler like expansion for K-analytic
functions as in the case of K = Qp, then it would be possible to define the
integral by (2.2). However, as in [8], we will first define the integral then
use this integral to prove the existence of the Mahler like expansion for K-
analytic functions. Our construction of the integral is different from that
of [8] in that we investigate directly the explicit power series corresponding
to the moments of the integral, instead of formally reducing to the case
of Zp.

We fix a Lubin-Tate formal group G associated to π, and denote its
addition by ⊕. For a ∈ OK and a natural number N , we let∫

a+πNOK

(x− a)n dµϕ := 1
qN$n

p

∂nG ∑
tN∈G[πN ]

ϕa(t⊕ tN )

 ∣∣∣∣
t=0

TOME 66 (2016), FASCICULE 2



536 Kenichi BANNAI & Shinichi KOBAYASHI

where
ϕa(t) := exp(−a$pλ(t))ϕ(t).

We put ϕ(t) =
∑∞
k=0 ckt

k and ϕa(t) =
∑∞
k=0 c

(a)
k tk. Then by Proposi-

tion 3.7, we have

∣∣∣∣∫
a+πNOK

(x− a)n dµϕ
∣∣∣∣ 6 ρ(0)

∣∣∣∣πq
∣∣∣∣N |π|Nn sup

k
{ |c(a)

k |ρ
([

k

qN

])
}(4.1)

6 ρ(0)
∣∣∣∣πq
∣∣∣∣N |π|Nn sup

k
{ |ck|ρ

([
k

qN

])
}.

Here for the last estimate, we used the facts that c(a)
k is an integral linear

combination of c0, . . . , ck and the function ρ(m) for m is decreasing.
We define the distribution µϕ on LAN (OK ,Cp) as follows. For an element

f of LAN (OK ,Cp), suppose f is of the form
∑∞
n=0 an(x − a)n such that

anπ
nN → 0 if n → ∞ on a + πNOK . Then we define the integral of f on

a+ πNOK by

(4.2)
∫
a+πNOK

f(x) dµϕ :=
∞∑
n=0

an

∫
a+πNOK

(x− a)n dµϕ.

We define

(4.3)
∫
OK

f(x) dµϕ =
∑

a mod πN

∫
a+πNOK

f(x) dµϕ.

We have to show the well-definedness of the integral.

Proposition 4.1.
i) The integral (4.2) converges and does not depend on the choice

of the representative of a mod πN . The integral (4.3) does not de-
pend on the choice of N . Hence µϕ gives a well-defined element of
D(OK ,Cp).

ii) For a polynomial f(x), we have∫
OK

f(x) dµϕ = f($−1
p ∂G)ϕ(t)|t=0.

Proof. — Since ρ([k/qN ]) 6 Ckp−
k

eqN(q−1) for some constant C which
depends only on e, q and N , the value supk{ |ck|ρ

([
k
qN

])
} is finite. Hence

the convergence follows from (4.1). We show that the integral (4.2) depends
only on the class of a modulo πN . Since the integral is convergent, we may
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assume that f is a monomial (x − a)n. For a′ such that a′ ≡ a mod πN ,
we put b = a′ − a. Since

(x− a)n|a′+πNOK
=

n∑
l=0

(
n

l

)
bn−l(x− a′)l|a′+πNOK

,

it suffices to show that∫
a+πNOK

(x− a)n dµϕ =
n∑
l=0

(
n

l

)
bn−l

∫
a′+πNOK

(x− a′)l dµϕ.

This follows from

$−np ∂nGϕa(t⊕ tm) = $−np ∂nG (exp(b$pλ(t))ϕa′(t⊕ tN ))

= exp(b$pλ(t))
n∑
l=0

(
n

l

)
bn−l$−lp ∂lG (ϕa′(t⊕ tm)) .

Now we show that the integral (4.3) does not depend on N . It is sufficient
to show the distribution relation

(4.4)
∫
a+πNOK

f(x) dµϕ =
∑

b≡a modπN

∫
b+πN+1OK

f(x) dµϕ

where the sum runs over a representative b of OK/πN+1 such that b ≡ a

mod πN . To show this, replacing ϕ by ϕa, we may assume that a = 0 and
f(x) = xn. Then

qN+1$n
p

∑
b≡0 mod πN

∫
b+πN+1OK

xn dµϕ

=
∑

b≡0 mod πN

k∑
i=0

(
n

k

)
bn−k

$n−k
p ∂kG

∑
tN+1∈G[πN+1]

ϕb(t⊕ tN+1)

∣∣∣∣
t=0

=
∑

b≡0 mod πN

∂nG ∑
tN+1∈G[πN+1]

exp(b$pλ(t))ϕb(t⊕ tN+1)

∣∣∣∣
t=0

=
∑

tN+1∈G[πN+1]

( ∑
b≡0 mod πN

exp(−b$pλ(t))|t=tN+1

)
∂nGϕ(t⊕ tN+1)

∣∣∣∣
t=0

= q

∂nG ∑
tN∈G[πN ]

ϕ(t⊕ tN )

 |t=0 = qN+1$n
p

∫
πNOK

xn dµϕ.

The above calculation is also true when a = N = 0, and hence we have

$n
p

∑
b∈OK/π

∫
b+πOK

xn dµϕ = ∂nGϕ(t)|t=0.

TOME 66 (2016), FASCICULE 2



538 Kenichi BANNAI & Shinichi KOBAYASHI

Assertion ii) follows from this equality. �

For ϕ(t) =
∑∞
k=0 ckt

k ∈ Rrig, we define ‖ϕ‖N by

(4.5) ‖ϕ‖N := max
k

{
|ck|ρ

([
k

qN

]) }
.

Since ρ
([

k
qN

])
∼ p−kr where r = 1/eqN (q− 1), the value ‖ϕ‖N is approx-

imately,
‖ϕ‖B(p−r) = max

x∈B(p−r)
{ |ϕ(x)| }

where B(p−r) ⊂ Cp is the closed disc with radius p−r at origin.

Lemma 4.2. — For an element a ∈ OK , let ϕa(t) = exp(−a$pλ(t))ϕ(t)
as before. Then ‖ϕa‖N = ‖ϕ‖N .

Proof. — It suffices to show that ‖ϕa‖N 6 ‖ϕ‖N . This follows from the
same argument showing (4.1). �

Then Proposition 3.7 may rewritten as follows, which is a precise version
of Theorem 1.1 of the introduction.

Theorem 4.3.
i) Suppose that the function f ∈ LAN (OK ,Cp) is given by a poly-

nomial of degree d on a + πNOK for a ∈ OK . For ϕk(t) = tk, we
have

(4.6)
∣∣∣∣∫
a+πNOK

f(x) dµϕk

∣∣∣∣ 6 ρ[0, d]
∣∣∣∣πq
∣∣∣∣N ‖f‖a,N .

We also have

(4.7)
∣∣∣∣∫
a+πNOK

f(x) dµϕk

∣∣∣∣ 6 ρ(0)

∣∣∣∣∣πk0(1− 1
q−1 )+N

qN

∣∣∣∣∣ ‖f‖a,Nρ
([

k

qN

])
where k0 = max{[k/qN ] − d, 0}. Moreover, if e 6 p − 1, then we
have

(4.8)
∣∣∣∣∫
a+πNOK

f(x) dµϕk

∣∣∣∣ 6 ∣∣∣∣πq
∣∣∣∣N ‖f‖a,Nρ([ kqN

])
.

ii) We have∣∣∣∣∫
a+πNOK

f(x) dµϕ
∣∣∣∣ 6 ρ(0)

∣∣∣∣πq
∣∣∣∣N ‖f‖a,N‖ϕ‖N .

Moreover, if e 6 p− 1, then∣∣∣∣∫
a+πNOK

f(x) dµϕ
∣∣∣∣ 6 ∣∣∣∣πq

∣∣∣∣N ‖f‖a,N‖ϕ‖N .
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Corollary 4.4. — We have∣∣∣∣∫
a+πNOK

f(x) dµϕ
∣∣∣∣ 6 p

p
p−1 + 1

e(q−1) ρ(0)|π|N ‖f‖a,N‖ϕ‖B′(p−r)(4.9)

where r = 1/eqN (q − 1) and

‖ϕ‖B′(p−r) := max
k

{
|ck|kp−kr

}
.

Moreover, if e 6 p− 1, then∣∣∣∣∫
a+πNOK

f(x) dµϕ
∣∣∣∣ 6 p

p
p−1 + 1

e(q−1) |π|N ‖f‖a,N‖ϕ‖B′(p−r).(4.10)

Proof. — The formula follows from

ρ

([
k

qN

])
6 kq−Np

p
p−1 + 1

e(q−1)−
k

eqN (q−1) .

�

As before, we define polynomials Pn by

exp(xλ(T )) =
∞∑
n=0

Pn(x)Tn.

Then by formal computation, we have

Pk(∂G)ϕ(t)|t=0 = 1
k!∂

kϕ(t)|t=0

where ∂ = d/dt (for example, formula 6 of Lemma 4.2 of [8]). We let ϕn(t) =
tn and µϕn the distribution associated to ϕn(t). Then by Proposition 4.1 ii)
we have∫

OK

Pk(x$p) dµϕn
=
∞∑
n=0

Pk(∂G)ϕn(t)|t=0 =
{

1 (k = n)
0 (k 6= n).

Hence if ϕ(t) =
∑∞
k=0 ckt

k, then∫
OK

Pk(x$p) dµϕ = ck.

Equivalently,

ϕ(t) =
∫
OK

exp(x$pλ(t))dµϕ.

Proposition 4.5. — For N > 1, we have∣∣∣ q
π

∣∣∣N ρ([ n
qN

])−1
c−1 6 ||Pn(x$p)||N 6 ρ

([
n

qN

])−1

where c = 1 if e 6 p− 1 and c = ρ(0), otherwise.
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Proof. — We have

1 =
∣∣∣∣∫
OK

Pn(x$p) dµϕn

∣∣∣∣ 6 max
a
{
∣∣∣∣∫
a+πNOK

Pn(x$p) dµϕn

∣∣∣∣}
6

∣∣∣∣πq
∣∣∣∣N ||Pn(x$p)‖N ρ

([
n

qN

])
ρ(0).

Similarly, if e 6 p− 1, then by using (4.8), we obtain the lower estimate.
For the upper estimate, we put Pn(xπN$p) =

∑n
k=1 a

(n)
k xk for n > 1. By

the definition of Pn, the value a(n)
k is the coefficient of tn of $k

pλ([πN ]t)k/k!.
Since ρ(k) is decreasing with k, we may assume that λ(t) =

∑∞
l=0 t

ql

/πl.
Since [πN ]t ≡ tqN mod π, we have

λ([πN ]t) ≡ λ(tq
N

) + πtf(t)

for some f(t) ∈ OCp
[[t]]. (cf. [6, Lemma 4].) Hence we have

$k
pλ([πN ]t)k

k! =
k∑
i=0

tif(t)i
$i
pπ

i

i!
$k−i
p λ(tqN )k−i

(k − i)! .

Therefore by Proposition 3.5 we have

|a(n)
k | 6 ρ

([
n

qN

])−1
.

Hence we have ||Pn(x$p)||0,N 6 ρ
([

n
qN

])−1
. Then by the formula before

Lemma 4.4 of [8], for a ∈ OK , we have

||Pn(x$p)||a,N 6 max
06i6n

||Pi(x$p)||0,N 6 ρ
([

n

qN

])−1
.

�

Now we prove that our definition of the distribution coincides with that
of Schneider-Teitelbaum. Namely, we will prove that the distribution has
the characterization property (2.3).

Theorem 4.6. — Let µϕ be the distribution associated to a rigid ana-
lytic function ϕ(t) on the open unit disc. Then

ϕ(t) =
∫
OK

exp(x$pλ(t))dµϕ.

Conversely, for every distribution µ, there exists a unique rigid analytic
function ϕ such that µ = µϕ. Then ϕ is the Fourier transform of µ, and we
have Fµϕ

= ϕ. In particular, we have an isomorphism of algebras,

D(OK ,Cp) ∼= Rrig.
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Proof. — We have already shown the first assertion. For a given µ, we put

ck :=
∫
OK

Pk(x$p) dµ.

Since the distribution is a continuous linear operator on the p-adic Banach
space LAN (OK ,Cp) for every natural number N , there exists a positive
constant C depending only on µ and N such that

|ck| =
∣∣∣∣∫
OK

Pk(x$p) dµ
∣∣∣∣ 6 C‖Pk(x$p)‖N 6 Cp

− 1
p−1 + k

eqN (q−1)

where for the last inequality, we used Proposition 3.1 and Proposition 4.5.
Hence for any 0 6 r < 1, if we choose sufficiently large N , we have |ck|rk →
0 when k →∞. Hence ϕ(t) =

∑∞
k=0 ckt

k is a rigid analytic function on the
open unit disc. Then by construction

ϕ(t) =
∫
OK

exp(x$pλ(t))dµ.

Since the function (x− a)|a+πNOK
is given by

1
qN$n

p

∂nG

 ∑
tN∈G[πN ]

exp((x− a)$pλ(t))|t=t⊕tN

 |t=0,

we have ∫
a+πNOK

(x− a)ndµ = 1
qN$n

p

∂nG
∑

tN∈G[πN ]

ϕa(t⊕ tN )|t=0

=
∫
a+πNOK

(x− a)ndµϕ.

Since π−nN (x − a)n|a+πNOK
for a ∈ OK and n = 0, 1, · · · are topological

generators of LAn(OK ,Cp), we have∫
OK

f(x)dµ =
∫
OK

f(x)dµϕ

for all f ∈ LAN (OK ,Cp). Hence µ = µϕ. �

Now we prove Theorem 4.7.

Theorem 4.7.
i) The series

∑∞
n=0 anPn(x$p) converges to an element of

LAN (OK ,Cp)0 for an satisfying

|an| 6 ρ
([

n

qN

])
, lim

n→0
|an|/ρ

([
n

qN

])
= 0.
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ii) If f(x) ∈ LAN (OK ,Cp)0, then it has an expansion

f(x) =
∞∑
n=0

anPn(x$p)

of the form

|an| 6 c
∣∣∣∣πq
∣∣∣∣N ρ([ nqN

])
, lim

n→0
|an|/ρ

([
n

qN

])
= 0,

where c = 1 if e 6 p− 1, and c = ρ(0), otherwise.

Proof. — i) follows from Proposition 4.5. For ii), we proceed as in the
proof of Theorem 4.7 of [8] except the estimate of the Mahler coefficients.
We put

an :=
∫
OK

f(x) dµϕn .

Then by Theorem 4.3, we have

|an| =
∣∣∣∣∫
OK

f(x) dµϕn

∣∣∣∣ 6 c ∣∣∣∣πq
∣∣∣∣N ρ([ nqN

])
.

We next prove the limit in ii). We may assume that f(x) =
∑∞
i=0 ci(x−a)i

on a + πNOK and f(x) = 0 outside of a + πNOK . For a given ε > 0, we
can take N0 so that

‖
∞∑

i=N0

ci(x− a)i‖a,N < ε.

Hence by (4.7), we have∣∣∣∣∣
∫
a+πNOK

∞∑
i=N0

ci(x− a)i dµϕn

∣∣∣∣∣ 6 ε C1ρ

([
n

qN

])
where C1 is a positive constant independent of n. On the other hand, also
by 4.7, we have∣∣∣∣∣

∫
a+πNOK

N0∑
i=0

ci(x− a)i dµϕn

∣∣∣∣∣ 6 C2p
−n0

e (1− 1
q−1 )ρ

([
n

qN

])
where n0 = max{[n/qN ]−N0, 0} and C2 is a positive constant independent
of n. Hence we have∣∣∣∣∫

a+πNOK

f(x) dµϕn

∣∣∣∣ 6 ε C1ρ

([
n

qN

])
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for sufficiently large n. Hence we have |an|/ρ
([

n
qN

])
→ 0 when n →

∞. Then by i), the series
∑∞
k=0 anPn(x$p) converges to a function in

LAN (OK ,Cp). We put

g(x) = f(x)−
∞∑
k=0

anPn(x$p).

Then we have
∫
OK

g(x)dµϕn
= 0 for all n, and hence

∫
OK

g(x)dµ = 0 for
all distribution µ. Considering the Dirac distribution δa : h 7→ h(a), we
have g(a) = 0 for any a. Hence f(x) =

∑∞
n=0 anPn(x$p). �

Corollary 4.8. — Suppose

eN,n = γ

([
n

qN

])
Pn(x$p), (n = 0, 1, · · · ),

where γ(u) is an element in Cp satisfying ρ(u) = |γ(u)|. If LN is the OCp -
module topologically generated by eN,n, then

ρ(0)−2
∣∣∣ q
π

∣∣∣N LAN (OK ,Cp)0 ⊂ LN ⊂ LAN (OK ,Cp)0.

In particular, the functions en form a topological basis of the p-adic
Banach space LAN (OK ,Cp). Moreover, if e 6 p− 1, then∣∣∣ q

π

∣∣∣N+1
LAN (OK ,Cp)0 ⊂ LN ⊂ LAN (OK ,Cp)0.

In addition, if OK = Zp, we recover Amice’s result, namely that[
n

pN

]
!
(
x

n

)
for n = 0, 1, · · · form a topological basis of LAN (Zp,Cp)0.

5. Relations to Katz’s and Chellali’s results.

As an application, we reprove Katz’s and Chellali’s results ([4], [7]) by
using our results.

First we recall results of Katz [7] and Chellali [4]. Let E be an elliptic
curve with complex multiplication by the ring of integerOK of an imaginary
quadratic field K. For simplicity, we assume that E is defined over K, and
fix a Weierstrass model

y2 = 4x3 − g2x− g3, g2, g3 ∈ OK
of E/K. Let p be an odd prime. We assume that p is inert in K and does not
divide the discriminant of the above Weierstrass model, or equivalently, E
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has good supersingular reduction at p. Then the Bernoulli-Hurwitz number
BH(n) is defined by

℘(z) = 1
z2 +

∑
n>2

BH(n+ 2)
n+ 2

zn

n! ,

where ℘(z) is the Weierstrass ℘-function for the model. Let ε be a root
of unity in OK such that the multiplication by −εp gives the Frobenius
(x, y) 7→ (xp2

, yp
2) of E mod p. Let γ be a unit in the Witt ring W (Fp)

such that
γp

2−1 = −ε−1 p2!
pp+1(p2 − 1) .

For a fixed b ∈ OK prime to p, we put

L(n) = (1− bn+2)(1− pn)
γnp[np/(p2−1)]

BH(n+ 2)
n+ 2 .

Theorem 5.1 (Katz [7]). — The number L(n) is integral. Let l and n
be non-negative integers. Then

L(n+ pl(p2 − 1)) ≡ L(n) mod pl.

Later, Chellali [4] refined the congruences as follows.

Theorem 5.2 (Chellali [4]). — Let l and n be non-negative integers. If
n 6≡ 0 mod p2 − 1, we have

L(n+ pl(p2 − 1)) ≡ L(n) mod pl+1.

If n ≡ 0 mod p2 − 1 and n 6= 0, put L′(n) = L(n)/n, then

L′(n+ pl(p2 − 1)) ≡ L′(n) mod pl+1.

In the following, let K be the unramified quadratic extension of Qp and
let G be the Lubin-Tate group of height h = 2 associated to the uniformizer
π = −εp. We assume that [π]T = πT + T q for q = p2 is an endomorphism
of G. It is known that the formal group of E at p is isomorphic to G.

Proposition 5.3. — Let ϕ be an integral power series and let µϕ be
the corresponding distribution associated to ϕ.

i) We have ∣∣∣∣∣
∫
O×

K

xn dµϕ

∣∣∣∣∣ 6 p.
ii) If m ≡ n mod pl(q − 1), then∣∣∣∣∣

∫
O×

K

(xm − xn) dµϕ

∣∣∣∣∣ 6 p−l+ p
q−1 .
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iii) If (q − 1)|n and m ≡ n mod pl(q − 1), then∣∣∣∣∣
∫
O×

K

(
xm − 1
m

− xn − 1
n

)
dµϕ

∣∣∣∣∣ 6 p−l−1+ 2p
q−1 .

Proof. — We have∫
a+πOK

xn dµϕ = an
∫
a+πOK

dµϕ +
n∑
k=1

∫
a+πOK

(
n

k

)
(x− a)kan−k dµϕ.

Then by the estimate (4.6) the absolute value of the first integral is less
than or equal to p. By the estimate (4.8), the absolute value of the second
integral is also less than or equal to p since ||(x − a)||a,1ρ(0) = 1. We put
m− n = k(q − 1). Then

xm − xn = xn
k∑
i=1

(
k

i

)
(xq−1 − 1)i

= kxn(xq−1 − 1) + xn
k∑
i=2

k

(
k − 1
i− 1

)
(xq−1 − 1)i

i

= k

(
c0 + c1(x− a) + c2

(x− a)2

2 + c3
(x− a)3

3 + · · ·
)

where ci are integers satisfying p|c0. Since ‖(x− a)i/i‖a,1 6 p−2 for i > 2,
the assertion ii) follows from the estimates (4.6).
For an integer s, we have

(xq−1)s − 1
s

=
∞∑
i=1

(logp xq−1)i

i! si−1

=
∞∑
i=1

∞∑
n=i

ci,n
(xq−1 − 1)n

n!

=
∞∑
i=1

∞∑
j+k>i

ci,j,k
πk

k!
(x− a)j

j! si−1

for some integers ci,n and ci,j,k. If we write m = s1(q−1) and n = s2(q−1),
then

(xq−1)s1 − 1
s1

− (xq−1)s2 − 1
s2

=
∞∑

i>2,j+k>i
ci,j,k

πk

k!
(x− a)j

j! (si−1
1 − si−1

2 )

By the estimate (4.6), the integral of π
k

k!
(x−a)j

j! is divisible by p1− 2p
q−1 . The

assertion iii) follows from this fact. �
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For b ∈ OK prime to p, we put

℘b(z) = (1− b2[b]∗)℘(z)

and φ(t) = ℘b(z)|z=λ(t). Then ℘b(z) has no pole at z = 0 and

℘b(z) =
∑
n>2

(1− bn+2) BH(n+ 2)
n+ 2

zn

n! .

It is known that φ(t) is an integral power series. Similarly, for c ∈ OK
prime to p, we put

ζc(z) = (c− [c]∗)ζ(z), ζb,c(z) = (1− b[b]∗)ζc(z),

where ζ(z) is the Weierstrass zeta function and ψ(t) = ζb,c(z)|z=λ(t). Note
that ζc(z) is double periodic and ζb,c(z) has no pole at z = 0. Then

ζb,c(z) =
∑
n>3

(c− cn)(1− bn+1) BH(n+ 1)
n+ 1

zn

n!

and ψ(t) is an integral power series.

Lemma 5.4.∑
z0∈ 1

p Γ/Γ

℘b(z + z0) = p2℘b(pz),
∑

z0∈ 1
p Γ/Γ

ζc(z + z0) = pζc(pz).

Proof. — It is known that∑
z0∈ 1

p Γ/Γ

℘(z + z0) = p2℘(pz).

The first formula follows from this. The above formula also shows that for
a set S of representatives of 1

pΓ/Γ, there exists a constant A(S) such that∑
z0∈S

ζ(z + z0) = pζ(pz) +A(S).

We take S so that S = −S. Then since ζ(z) is an odd function, A(S) should
be zero. Therefore, ∑

z0∈S
ζc(z + z0) = pζc(pz).

Since ζc(z) is an elliptic function, the left-hand side does not depend on
the choice of S. �

Proposition 5.5. — We put B(n) = BH(n+ 2)/(n+ 2) if n > 2 and
0 if n = −1, 0, 1. For n > 0, we have

$n
p

∫
O×

K

xndµφ = (1− pn)(1− bn+2)B(n),
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$n
p

∫
O×

K

xndµψ = (1− pn−1)(c− cn)(1− bn+1)B(n− 1).

Proof. — Since ℘b(z) and ζb,c(z) are double periodic, for t0 ∈ G[p] we
have ψ(t⊕t0) = ζb,c(z+z0)|z=λ(t) and φ(t⊕t0) = ℘b(z+z0)|z=λ(t) where z0 is
an image of t0 by G[p]→ E[p]→ 1

pΓ/Γ (see for example, [2], Lemma 2.18).
From this fact and the previous lemma, we have

φ(t)− 1
q

∑
t0∈G[p]

φ(t⊕ t0) = (℘b(z)− ℘b(pz)) |z=λ(t),

ψ(t)− 1
q

∑
t0∈G[p]

ψ(t⊕ t0) = (ζb,c(z)− p−1ζb,c(pz)) |z=λ(t).

Hence

$n
p

∫
O×

K

xndµφ = ∂nG

φ(t)− 1
q

∑
t0∈G[p]

φ(t⊕ t0)

∣∣∣∣
t=0

= ∂z(℘b(z)− ℘b(pz))|z=0 = (1− pn)(1− bn+2)B(n).

The other equality is also shown similarly. �

We put

c(n) = (1− pn)(1− bn+2)BH(n+ 2)
n+ 2 .

Corollary 5.6.
i) We have ∣∣∣∣c(n)

$n
p

∣∣∣∣ 6 p.
Furthermore, if n ≡ 0 mod q − 1, then∣∣∣∣c(n)

$n
p

∣∣∣∣ 6 p p
q−1 .

ii) Suppose that m ≡ n mod pl(q − 1). Then
c(m)
$m
p

≡ c(n)
$n
p

mod pl−
p

q−1OCp .

Furthermore, if n 6≡ 0 mod q − 1, then
c(m)
$m
p

≡ c(n)
$n
p

mod plOCp
.

If n ≡ 0 mod q − 1, then
c(m)
m$m

p

≡ c(n)
n$n

p

mod pl+1− 2p
q−1 .
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Proof. — For i), the first inequality follows from Proposition 5.3 i) for
µφ. The second inequality follows from Proposition 5.3 ii) for l = 0. Note
that

∫
O×

K
dµφ = 0. For ii), the first and third congruences follow from

Proposition 5.3 for φ, and the second inequality for ψ. �

Next, we compare c(n) with L(n).

Lemma 5.7. — We choose u ∈ Cp so that $q−1
p = ppuq−1. Then u is a

unit of OCp
and (

u

γ

)q−1
≡ 1 mod p.

Proof. — Simple calculation shows the valuation of u is zero. We have
λ(t) = t+θtq+ · · · with θ = 1/ε(pq−p). The q-th coefficient of the integral
power series exp($pλ(t)) is

$q
p

q! +$pθ = $pθ

(
$q−1
p

θq! + 1
)
.

Since $pθ is not integral, the valuation vp(($q−1
p /θq!) + 1) > 1. Thus

$q−1
p

θq! + 1 ≡
(
u

γ

)q−1 (1− pq−1)
(q − 1) + 1 ≡ −

(
u

γ

)q−1
+ 1 mod p.

must be congruent to zero. �

Let n = n′(q−1)+ r with 0 6 r < q−1 and put cr = u−rp−[pr/(q−1)]$r
p.

Then
$n
p = crp

[pn/(q−1)]un.

Hence we have

L(n) = cr

(
u

γ

)n
c(n)
$n
p

.

Therefore by Corollary 5.6 i), we have |L(n)| < p (note that if n 6≡ 0
mod q − 1, then |cr| < 1). Since L(n) is contained in the unramified field
K, we have L(n) ∈ OK . Similary, for m ≡ n mod pl(q − 1), the fact
L(n) ∈ OK , Lemma 5.7 and Corollary 5.6 ii) imply the congruence

L(m) ≡ L(n)
(
u

γ

)m−n
≡ L(n) mod pl−

p
q−1 .

Since this is a congruence between elements of OK , we have

L(m) ≡ L(n) mod pl.

Similarly, from Corollary 5.6, we obtain the congruences originally proved
by Katz [7, Theorem 3.1] and Chellali [4, Théorème 1.1].
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Theorem 5.8.
i) We have L(n) ∈ OK .
ii) Suppose that m ≡ n mod pl(q − 1). Then

L(m) ≡ L(n) mod pl.

Furthermore, if n 6≡ 0 mod q − 1, then

L(m) ≡ L(n) mod pl+1.

If n ≡ 0 mod q − 1, then

L′(m) ≡ L′(n) mod pl+1.
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