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POLYGONAL BILLIARDS WITH ONE SIDED
SCATTERING

by Alexandra SKRIPCHENKO & Serge TROUBETZKOY

Abstract. — We study the billiard on a square billiard table with a one-sided
vertical mirror. We associate trajectories of these billiards with double rotations
and study orbit behavior and questions of complexity.
Résumé. — Nous étudions le billard sur une table carrée avec un miroir vertical

à une face. Nous associons les trajectoires de ces billards à des doubles rotations
et étudions le comportement des orbites et des questions de complexité.

1. Introduction

The table Π we consider consists of the square [0, 1/2] × [0, 1/2] with a
vertical wall I connecting the points (a, 0) and (a, b). We play billiard on
this table, with I acting as a one-sided mirror. That is, we consider a point
particle in Π and a direction θ in S1, the particle moves at unit speed in the
direction until it reaches the boundary of the table. If it arrives at the left
side of I it passes through it unperturbed, while if it arrives at the right
side of I or at the boundary of the square it is reflected with the usual
law of geometric optics, the angle of incidence equals the angle of reflection
(see Figure 1.1). Polygonal billiards with one-side straight mirrors were
briefly described by M. Boshernitzan and I. Kornfeld [2] in connection with
a special kind of piecewise linear mapping of a semi-interval, called interval
translation mappings (ITMs). Interval translation mappings are a natural
generalization of interval exchange transformations.

In this article we prove that billiard flow on such table can be associated
with special interval translation mappings called double rotations (Propo-
sition 1). The term double rotations was introduced in [12], they have also

Keywords: Polygonal billiard, interval translation mapping, spy mirror, complexity.
Math. classification: 37C35, 03B10, 68R15.
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Figure 1.1. The dark gray side is transparent while the light gray side
is reflective.

been studied in [3], [4] and [5]. We show that up to a natural involution there
exists a bijection between double rotations and billiard map we work with,
and therefore almost all of our billiard map are of finite type due to the
corresponding results for double rotations (Theorem 2.2 part 2) (see [12]
and [5]). In the other parts of Theorem 2.2, we collect various interest-
ing implications of this result on unique ergodicity, non-unique ergodicity,
and the Hausdorff dimension of the attractor (concretizing a suggestion of
Boshernitzan and Kornfeld [2]). Our main result is an exact linear formula
for complexity of billiard trajectories in a given direction in the case a = 1

4
(Theorem 2.4), we also give a linear estimate in case of other rational val-
ues of a (Theorem 2.9). The main result also generalizes to certain other
rational polygons with one sided scatterers located at an axis of symmetry
(Theorem 2.7). The proof is based on an extension of combinatorial argu-
ments introduced by J. Cassaigne ([8]) for languages with bispecial words
(Theorem 3.1) and also uses a certain symmetry of orbits of the unfolded
billiard.

2. The results

A double rotation is a map T : [0, 1)→ [0, 1) of the form:

Ty =
{
y + α (mod 1) if y ∈ [0, c)
y + β (mod 1) if y ∈ [c, 1).

ANNALES DE L’INSTITUT FOURIER



POLYGONAL BILLIARDS 1883

Consider the billiard in the table Π described in the Introduction. There
is a well known construction of unfolding the billiard in a rational poly-
gon to a translation surface (see for example [10]). The same construction
applied to our setting yields a unit torus consisting of four copies of the
billiard table Π with slits corresponding to I which are identified according
to the billiard flow: when we hit a right copy of I (depicted in light gray)
we jump to the corresponding left copy of I (depicted in dark gray), while
the left (dark gray) copies of I are transparent. With these identifications
our billiard is equivalent to the linear flow on the unit slitted torus (see
Figure 2.1).

x = a x = 1− a

Figure 2.1. First return map Tθ is a double rotation

Consider the first return map to the vertical section x = a in the un-
folded slit torus (see Figure 2.1). We denote this map by T(a,b,θ) : {(x, y) :
x = a} → {(x, y) : x = a}. We identify its domain of definition with
the circle [0, 1). It is easy to check that there are only two possibilities
for our trajectories (here we assume that the the trajectory is not verti-
cal: θ 6∈ {±π2 }): either the orbit of the point hits the light gray wall, and
immediately goes back to the section (this is depicted by the bold dark
gray line in Figure 2.1); or the orbit of the point does not touch the light
gray wall (such an orbit is depicted by the bold gray line in Figure 2.1).
In the first case T(a,b,θ)(y) = (1− 2a) tan θ+ y (mod 1); in the second case
T(a,b,θ)(y) = tan θ + y (mod 1). Therefore, we have the following:

TOME 65 (2015), FASCICULE 5



1884 Alexandra SKRIPCHENKO & Serge TROUBETZKOY

Proposition 2.1. — First return map on the vertical section x = a is
a double rotation with the following values of parameters:

α = (1− 2a) tan θ (mod 1),
β = tan θ (mod 1),
c = b.

Let us consider the cubic polynomial P (x) = x3 − x2 − 3x+ 1 and let γ
be the unique root of P (x) in [0, 1]. Let us consider the following values of
parameters of our billiard:

a = (1− γ)
2 ,

b = γ

θ = arctan γ.

The map T(a,b,θ) is then the double rotation introduced by Boshernitzan
and Kornfeld in [2], the first example of an ITM whose dynamics differs
from that of an interval exchange. To explain this difference, and to collect
the most interesting implications of known results to our situation, we need
to introduce some notation. For any (α, β, c) the attractor of T is the set

Ω := J ∩ TJ ∩ T 2J ∩ · · · ,

where J = [0, 1). If there exists n ∈ N such that J∩TJ∩T 2J∩· · ·∩TnJ =
J ∩TJ ∩T 2J ∩ · · · ∩Tn+1J then we say that T is of finite type. Otherwise
T is of infinite type. Informally, the interval translation map being of finite
type means that it can be reduced to interval exchange transformations; if
it is of infinite type, then the attractor is a Cantor set. The Boshernitzan–
Kornfeld example given above is of infinite type.
Fix the parameters a, b and a direction θ. Let T := T(a,b,θ) be the associ-

ated double rotation. Let X0 := [0, c) and X1 := [c, 1) be the two intervals
of continuity of T . The code ω(y) ∈ {0, 1}N of the T orbit of y is the se-
quence of intervals it hits, i.e. w(y)n = i if and only if Tny is in the interval
Xi. The language L := La,b,θ is the set of all infinite codes obtained as y
varies, and L(n) is the set of different words of length n which appear in
L. Let p(n) := pa,b,θ(n) := #La,b,θ(n). Note that one could also consider
p∞(n) 6 p(n) the number of different words of length n which appear in L
as x varies in the attractor.
We must exclude directions for which there is a billiard orbit from an

end point of I to an end point of I. We call such directions exceptional.
There are at most a countably many exceptional directions since for any

ANNALES DE L’INSTITUT FOURIER



POLYGONAL BILLIARDS 1885

positive constant N , there is a finite number of billiard orbits which start
and end at end points of I and have length at most N .

The following theorem follows directly from several known results about
double rotations, interval translation mappings and piecewise continious
interval maps.

Theorem 2.2.
(1) For all (a, b, θ) with θ non-exceptional the billiard/double rotation

is minimal.
(2) For almost all (a, b, θ) the double rotation is of finite type.
(3) There exists an uncountable set of (a, b, θ) so that the Hausdorff

dimension of the closure of the attractor is zero, in particular the
double rotation is of infinite type.

(4) For each (a, b, θ) with θ non-exceptional the billiard/double rotation
has at most two ergodic invariant measures.

(5) There exists an uncountable set of (a, b, θ) with θ non-exceptional
such that the billiard/double rotation is not uniquely ergodic.

(6) For all (a, b, θ) with θ non-exceptional the complexity p(n) grows
at most polynomially with degree 3.

In [2] it was suggested that there may exist configurations on a rational
billiard table with mirrors which force the light to get concentrated in some
arbitrarily small portions of the table. This suggestion is confirmed by Part
3) of the theorem.

Proof. — It is easy to check that varying the parameters (a, b, θ) we can
obtain all double rotations with only one restriction: α 6 β. There exists
an involution between two parts of parameter space (α 6 β and β 6 α) and
the orbit behavior of ITM from these two parts are completely the same:
the involution is measure preserving and does not change the dynamics.
Thus all known results on double rotations hold in our setting.We think of
a double rotation as an ITM defined on an interval. First suppose that this
interval is [0, 1) (in the coordinates of the definition of double rotation).
Either this is an ITM on with 3 intervals of continuity, or it has 4 intervals
of continuity. In the later case we choose the origin to be the point c, and
the double rotation now has at most 3 intervals of continuity, thus we can
always choose coordinates so that the ITM has at most 3 intervals and
part 1) follows from Theorem 2.4 of [11]. Part 2) follows from [12] Theorem
4.1 or from Theorem 1 of [5], part 3) follows from Theorem 10 of [4], part 4)
follows from Theorem 3 of [6], part 5) follows from Theorem 11 of [4], and
part 6) follows Theorem 1 of [1] (see also Corollary 8 of [6]). �

TOME 65 (2015), FASCICULE 5
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The billiard flow φt is defined on the phase space Π̃ := Π × S1, with
proper identifications on the boundary, and the attractor of the billiard
flow is ⋂

t>0
φtΠ̃.

An immediate application of the Fubini Theorem to Theorem 2 part 2)
yields
Corollary 2.3. — For almost every a, b the billiard attractor has full

measure.
Question. — For which polygons with one sided mirrors does the bil-

liard attractor have full measure? Positive measure? Zero measure?
The main results of this article are improvements of part 6) of the theo-

rem. We begin with the case a = 1
4 , i.e. the one sided mirror is in the middle

of the square, where we get a complete description of the complexity. We
define three sets of directions, in the below definitions all the parameters
ki and li are integers.

Ã1 :=
{
θ : ∃k1, k2, l1, l2 : ∀k̃1 6 k1, k̃2 6 k2, l̃1 6 l1, l̃2 6 l2 :

tan θ ∈
(

2l1
1 + 2k1

,
2l1 + 4b
2k1 + 1

)
∩
⋂
k̃1,l̃1

(
l̃1 + 2b
k̃1 + 1

,
l̃1 + 1
k̃1 + 1

)
∩

(
2l2 + 2− 4b

1 + 2k2
,

2l2 + 2
2k2 + 1

)
∩
⋂
k̃2,l̃2

(
l̃2 + 1
k̃2 + 1

,
l̃2 + 2− 2b
k̃2 + 1

)}
,

Ã2 :=
{
θ : ∃k1, k2, l1, l2 : ∀k̃1 6 k1, k̃2 6 k2, l̃1 6 l1, l̃2 6 l2 :

tan θ ∈
(

2l1
1 + 2k1

,
2l1 + 4b
2k1 + 1

)
∩
⋂
k̃1,l̃1

(
l̃1 + 2b
k̃1 + 1

,
l̃1 + 1
k̃1 + 1

)
∩

(
1 + l2 − 2b

1 + k2
,

1 + l2
k2 + 1

)
∩
⋂
k̃2,l̃2

(
2l̃2

k̃2 + 1
,
l̃2 + 2− 4b
k̃2 + 1

)}⋃
{
θ : ∃k′1, k′2, l′1, l′2 : ∀k̃′1 6 k′1, k̃′2 6 k′2, l̃′1 6 l′1, l̃′2 6 l′2 :

tan θ ∈
(
l′1 + 1
1 + k′1

,
1 + l′1 + 2b
k′1 + 1

)
∩
⋂
k̃′

1,l̃
′
1

(
2l̃′1 + 2b
2k̃′1 + 1

,
2l̃′1 + 2
2k̃′1 + 1

)
∩

(
2l′2 + 2− 4b

1 + 2k′2
,

2l′2 + 2
2k′2 + 1

)
∩
⋂
k̃′

2,l̃
′
2

(
l̃′2 + 1
k̃′2 + 1

,
l̃′2 + 2− 2b
k̃′2 + 1

)}
,
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Ã3 :=
{
θ : ∃k1, k2, l1, l2 : ∀k̃1 6 k1, k̃2 6 k2, l̃1 6 l1, l̃2 6 l2 :

tan θ ∈
(
l1 + 1
1 + k1

,
1 + l1 + 2b
k1 + 1

)
∩
⋂
k̃1,l̃1

(
2l̃1 + 2b
2k̃1 + 1

,
2l̃1 + 2
2k̃1 + 1

)
∩

(
1 + l2 − 2b

1 + k2
,

1 + l2
k2 + 1

)
∩
⋂
k̃2,l̃2

(
2l̃2

k̃2 + 1
,
l̃2 + 2− 4b
k̃2 + 1

)}
,

For i = 1, 2, 3 let Ai := Ãi \{θ exceptional}. The set are pairwise disjoint
and

3⋃
i=1

Ai = S1 \ {θ exceptional}.

We give a geometric description of these sets. We work in the unfolded
model (Figure 2.1) and consider the two singular points of the forward
billiard map. We consider the backward trajectories of these two singular
points, the sets are distinguished by the fact which part of the boundary of
the semi-transparent mirror is first touched by the backwards trajectory,
the transparent side or the reflecting side. This identifies how many preim-
ages a corresponding point of the orbit has (none or two). In particular,
A3 corresponds to the case when both of the trajectories first touched the
reflecting side, A1 to the case when both of the trajectories first touched
the transparent side and A2 is the intermediate case, one trajectory first
touches the reflecting side and the other tranjectory first touches the trans-
parent side.

Theorem 2.4. — Suppose a = 1
4 and that θ is non-exceptional. Then

either, θ ∈ A1, and

p(n) = n+ 1 for all n > 0,

or there exists a positive integer constant Cθ so that
(1) for θ ∈ A2, p(n) = 2n− Cθ for all sufficiently large n, or
(2) for θ ∈ A3, p(n) = 3n− Cθ for all sufficiently large n.

Remark, in cases 1 and 2 the double rotation Tθ is of infinite type where
by Tθ we mean T1/4,b,θ for any arbitrary b. The behavior of the complexity
for small n will also be described in the proof. Since the map Tθ is minimal,
we can apply a theorem of Boshernitzan, a minimal symbolic system with
limn→∞ supp(n)

n < 3 is uniquely ergodic ([9, Theorem 7.3.3]) to conclude
that

Corollary 2.5. — If θ ∈ A1 ∪A2 then Tθ is uniquely ergodic.

TOME 65 (2015), FASCICULE 5
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Note that Ã2 is open, and exceptional directions are countable, thus we
have shown that for all but countably many θ in an open set of θ the map
Tθ is of infinite type, uniquely ergodic and of linear complexity.

Corollary 2.6. — In the case a = 1
4 , the billiard attractor has posi-

tive, but not full measure.

Except for the exact computation of the sets Ai, Theorem 2.4 is a special
case of a more general result. Take any rational polygon, reflect it in one
side. Erase part of the side, make the other part a one sided mirror (which
will be part of the line x = 0 to be concrete), to produce a table P . Consider
the slitted flat surfaceM := M(P ) associated with P (see for example [10])
with the slits identified as in the square case. For the moment consider P
without the one-sided mirror, and M without the slits, let mi

ni
π be the

angles between the sides of P , and let N be the least common multiple of
the ni. Then a standard computation shows that M(P ) has R := N

∑ 1
ni

vertices (not counting the endpoints of the slits) [10].
Consider the section x = 0 as a subset of P . In M there are 2N copies

of this section. If we fix θ non-exceptional (no orbit from any vertex of P
to any vertex of P ) then there are N copies of the section for which the
linear flow on M jumps via an identification (the linear flow goes through
the other N copies of the section as if they where not there). We consider
the first return map Tθ to the N copies which produce a jump. The top
and bottom of the section have already been counted as vertices of P . The
map Tθ is an interval translation map with R + N intervals of continuity,
the R coming from the R singular points on M , and the N from the end
point of the one-sided mirror (which we assume starts at the bottom of P ).

We assign a symbol to each of these intervals and code the billiard orbit
by these R symbols. Let p(n) be the complexity of the associated language.

Theorem 2.7. — If P as above and θ is non-exceptional then there
exists a positive constant Cθ and k ∈ {0, 1, 2, · · · , R + N} so that p(n) =
(R+N − 1 + k)n− Cθ for all sufficiently large n.

POLYGONAL BILLIARDS 7

produce a jump. The top and bottom of the section have already been counted as
vertices of P . The map Tθ is an interval translation map with R + N intervals of
continuity, the R coming from the R singular points on M , and the N from the
end point of the one-sided mirror (which we assume starts at the bottom of P ).
We assign a symbol to each of these intervals and code the billiard orbit by these

R symbols. Let p(n) be the complexity of the associated language.

Theorem 7. If P as above and θ is non-exceptional then there exists a positive
constant Cθ and k ∈ {0, 1, 2, · · · , R+N} so that p(n) = (R+N − 1+ k)n−Cθ for
all sufficiently large n.

Figure 3. Polygons with linear complexity.

Example 1: In the double hexagon (Figure 3) all angles have ni = 3, so N =
3, R = 18. In this case all mi �= 1, so we do not have any removable singularities.
Example 2: In the U shaped figure (Figure 3) one can calculate N = 2, R = 12.

However, on M only 4 of these singularities are actual singularities (the two points
with angle 3

2π and the two copies of the end point of the one sided mirror on M),
the others are removable singularities. We also remark that in the original case of
the square N = 2, R = 4 and there are 4 removable singularities.
We remind the reader of two results: an aperiodic ITM with r intervals of conti-

nuity has at most {r/2} minimal components (Theorem 2.4 in [ST]) and if K ≥ 3 is
an integer, then a minimal symbolic system satisfying limsupn→∞

p(n)
n < K admits

at most K-2 ergodic invariant measures (Theorem 7.3.4 in [FM]). Combining these
two results with Theorem 7 yields

Corollary 8. There are at most [(R + N)/2] minimal components and on each
minimal component the number of ergodic invariant measures for the ITM/billiard
is at most 2N + 2R− 2.

We turn to the question of complexity for rational position of the mirror in the
square case, i.e. a ∈ Q. Suppose a = p

q . We consider the return map to the vertical
sections x = k

q with k ∈ {0, 1, . . . q − 1}. The first return map S to these vertical
sections is given by

S(i, y) =

{
(p, y + tan θ/q (mod 1)) if i = q − p and y ∈ [−b, b],
(i+ 1 (mod q), y + tan θ/q (mod 1)) otherwise.

We code orbits of this map by a 3 letter alphabet, 2 letters for the section x = a
(where the map is discontinuous) and a third letter for all the other sections.

Theorem 9. If a = p
q , θ is non-exceptional then pθ(n) ≤ (2 + 2q)n for all n.

Figure 2.2. Polygons with linear complexity.
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Example 1. — In the double hexagon (Figure 2.2) all angles have ni = 3,
so N = 3, R = 18. In this case all mi 6= 1, so we do not have any removable
singularities.

Example 2. — In the U shaped figure (Figure 2.2) one can calculate
N = 2, R = 12. However, on M only 4 of these singularities are actual
singularities (the two points with angle 3

2π and the two copies of the end
point of the one sided mirror onM), the others are removable singularities.
We also remark that in the original case of the square N = 2, R = 4 and
there are 4 removable singularities.

We remind the reader of two results: an aperiodic ITM with r inter-
vals of continuity has at most {r/2} minimal components (Theorem 2.4
in [11]) and if K > 3 is an integer, then a minimal symbolic system satis-
fying limsupn→∞ p(n)

n < K admits at most K-2 ergodic invariant measures
(Theorem 7.3.4 in [9]). Combining these two results with Theorem 7 yields

Corollary 2.8. — There are at most [(R+N)/2] minimal components
and on each minimal component the number of ergodic invariant measures
for the ITM/billiard is at most 2N + 2R− 2.

We turn to the question of complexity for rational position of the mirror
in the square case, i.e. a ∈ Q. Suppose a = p

q . We consider the return map
to the vertical sections x = k

q with k ∈ {0, 1, . . . q − 1}. The first return
map S to these vertical sections is given by

S(i, y) =
{

(p, y+tan θ/q (mod 1)) if i= q−p and y∈ [−b,b],
(i+1 (mod q) , y+tan θ/q (mod 1)) otherwise.

We code orbits of this map by a 3 letter alphabet, 2 letters for the section
x = a (where the map is discontinuous) and a third letter for all the other
sections.

Theorem 2.9. — If a = p
q , θ is non-exceptional then pθ(n) 6 (2 + 2q)n

for all n.

Theorem 2.4 in [11] and Theorem 7.3.4 in [9] imply that

Corollary 2.10. — There are at most q minimal components and on
each minimal component the number of ergodic invariant measures for the
ITM/billiard is at most 1 + 2q.

TOME 65 (2015), FASCICULE 5
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3. Cassaigne’s formula

The main technical tool will be a variant of Cassaigne’s formula [8]. Let A
be a finite alphabet, L ⊂ AN be a language, L(n) the set of words of length
n which appear in L, and p(n) := #L(n). Note that p(0) = #{∅} = 1. For
any n > 0 let s(n) := p(n+ 1)− p(n), and thus

p(n) = 1 +
n−1∑
i=0

s(i).

For u ∈ L(n) let

ml(u) := #{a ∈ A : au ∈ L(n+ 1)},
mr(u) := #{b ∈ A : ub ∈ L(n+ 1)},

mb(u) := #{(a, b) ∈ A2 : aub ∈ L(n+ 2)}.

We remark that while mr(u) > 1 the other two quantities can be 0. A
word u ∈ L(n) is called left special if ml(u) > 1, right special if mr(u) > 1
and bispecial if it is left and right special. Let BL(n) := {u ∈ L(n) :
u is bispecial}. Let Lnp(n) := {v ∈ L(n) : ml(v) = 0}.
In this section we show that

Theorem 3.1.

s(n+1)−s(n) =
∑

v∈BL(n)

(
mb(v)−ml(v)−mr(v)+1

)
−

∑
v∈Lnp(n)
mr(v)>1

(
mr(v)−1

)
.

Remark. — Cassaigne proved this theorem in the case of recurrent lan-
guages (i.e. Lnp(n) = ∅) [8] (see [7] for a English version of the proof). We
use the same strategy of proof.

Proof. — Since for every u ∈ L(n + 1) there exist b ∈ A and v ∈ L(n)
such that u = vb we have

s(n) =
∑

u∈L(n)

(mr(u)− 1).

Thus

s(n+ 1)− s(n) =
∑

u∈L(n+1)

(
mr(u)− 1

)
−

∑
v∈L(n)

(
mr(v)− 1

)
.
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Now, for u ∈ L(n+ 1) we can write u = av with a ∈ A and v ∈ L(n). Let
Lp(n) := {v ∈ L(n) : ml(v) > 1}. Thus

s(n+ 1) =
∑

v∈Lp(n)

 ∑
av∈L(n+1)

(
mr(av)− 1

) .
Let Lnp(n) := L(n) \ Lp(n), and thus s(n+ 1)− s(n) equals

∑
v∈Lp(n)

 ∑
av∈L(n+1)

(
mr(av)− 1

)
−
(
mr(v)− 1

)− ∑
v∈Lnp(n)

(
mr(v)− 1

)
.

For any word v ∈ Lp(n) with av ∈ L(n+1) any legal prolongation to the
right of av is a legal prolongation to the right of v as well thus if mr(v) = 1
then mr(av) = 1. Thus words with mr(v) = 1 do not contribute to any of
the above sums. Thus s(n+ 1)− s(n) is equal to the above sum restricted
to those v such that mr(v) > 1. For the left sum, if furthermore ml(v) = 1
then there is only a single a such that av ∈ L(n + 1). For this a we have
mr(av) = mr(v) thus such words do not contribute to the left sum. Thus
the only terms which contribute to the left sum are the bispecial words, and
to the right the words for which mr(v) > 1; in other words s(n+ 1)− s(n)
equals

∑
v∈BL(n)

 ∑
av∈L(n+1)

(
mr(av)− 1

)
−
(
mr(v)− 1

)− ∑
v∈Lnp(n)
mr(v)>1

(
mr(v)− 1

)
.

For any v ∈ BL(n) we have

mb(v) =
∑

av∈L(n+1)

mr(av)

and

ml(v) =
∑

av∈L(n+1)

1,

thus s(n+ 1)− s(n) equals

∑
v∈BL(n)

(
mb(v)−ml(v)−mr(v) + 1

)
−

∑
v∈Lnp(n)
mr(v)>1

(
mr(v)− 1

)
.

�
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4. The proofs

Proof of Theorem 2.4. — We use Theorem 3.1. In our case mr(v) = 1 or
2, so the second term of the equation reduces to #{v ∈ Lnp(n) : mr(v) >
1}, thus s(n+ 1)− s(n) equals∑

v∈BL(n)

(
mb(v)−ml(v)−mr(v) + 1

)
−#{v ∈ Lnp(n) : mr(v) > 1}.

We have p(0) = 1 and p(1) = 2. Suppose that y has two preimages, and
that Tnθ (y) is in the boundary of one of the two intervals of continuity of
Tt, i. e. the billiard orbit of y arrives at the top of the reflecting side of I
after n steps. Consider the code v of length n. Clearly ml(v) = mr(v) = 2.
Since θ is non-exceptional then mb(v) = 4. (Note that if θ is exceptional
then mb(v) = 3 and thus the orbits would not contribute to the sum.) Thus
for non-exceptional directions

s(n+ 1)− s(n) = #BL(n)−#{v ∈ Lnp(n) : mr(v) > 1}.

We switch back and forth between the language of double rotations and
that of the billiard. Let {e, f} be the two (common) endpoints of X0 and
X1 (in the original definition of double rotations these points are called 0
and c). Let {e(n)

i = T−nθ (e) be the collection of nth-preimages of e which we
will denote by Te(n) for short. Then we will define the tree Te of preimages
of e to be the set

Te = ∪n>0Te(n),

with a directed arrow from eni to en−1
j if Tθeni = en−1

j . We define similarly
the preimage tree Tf .

Any right special word corresponds to a billiard orbit which hits e or
f , thus we can decompose s(n + 1) − s(n) into two parts, those words
contributing to this difference corresponding to a billiard orbit arrives at
e, and those which arrive at f ; we note these two contributions by

(s(n+ 1)− s(n))e = #BLe(n)−#{v ∈ Lnp(n) : mr(v) > 1}e

for the point e, and similarly for the point f . This formula can be seen
as counting the number of leaves at level n of a weighted tree, a vertex
eni has weight +1 if it has two preimages (contributing one element to
BLe(n)), weight 0 if it has one preimage, weight −1 if it has no preimages
(contributing one element in Lnp(n)) (Figure4.1).
For any n such that each of the enj has a unique preimage, we have

#BLe(n) = #{v ∈ Lnp : mr(v) > 1}e = 0 and thus (s(n0+1)−s(n0))e = 1.
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definition of double rotations these points are called 0 and c). Let {e(n)i = T−n
θ (e)

be the collection of nth-preimages of e which we will denote by Te(n) for short.
Then we will define the tree Te of preimages of e to be the set

Te = ∪n≥0Te(n),

with a directed arrow from eni to en−1
j if Tθe

n
i = en−1

j . We define similarly the
preimage tree Tf .

Any right special word corresponds to a billiard orbit which hits e or f , thus
we can decompose s(n+ 1)− s(n) into two parts, those words contributing to this
difference corresponding to a billiard orbit arrives at e, and those which arrive at
f ; we note these two contributions by

(s(n+ 1)− s(n))e = #BLe(n)−#{v ∈ Lnp(n) : mr(v) > 1}e
for the point e, and similarly for the point f . This formula can be seen as counting
the number of leaves at level n of a weighted tree, a vertex eni has weight +1 if
it has two preimages (contributing one element to BLe(n)), weight 0 if it has one
preimage, weight −1 if it has no preimages (contributing one element in Lnp(n))
(Figure4).

e +1

0

0

−1

Figure 4. The preimage tree of e.

For any n such that each of the enj has a unique preimage, we have #BLe(n) =
#{v ∈ Lnp : mr(v) > 1}e = 0 and thus (s(n0 + 1)− s(n0))e = 1.

Now consider an n so that at least one point en−1
j has two preimages. The first

time this happens, n0 := ne
0, if this never happens then set n0 := +∞. Thus

#BLe(n0) = 1 and #{v ∈ Lnp(n0) : mr(v) > 1}e = 0. This implies (s(n0 + 1) −
s(n0))e = 1. By the symmetry, the next time, ne

1 one of these backwards orbits hits
the mirror, the other one will also hit the mirror from the other side. Thus one of
the orbits will have two preimages and the other will be non-left-extendable. Thus
#BLe(n

e
1) = #{v ∈ Lnp(n

a
1) : mr(v) > 1}e = 1. The same holds for all times ne

k

for which #BLe(n
e
k) > 0. We have thus shown that ne

0 is the unique time for which
(s(n+ 1)− s(n))e �= 0. The same holds for (s(n+ 1)− s(n))f �= 0, but ne

0 and nf
0

are not necessarily equal.
If ne

0 = nf
0 =: n0 then

s(n+ 1)− s(n) =

{
0 if n �= n0,
2 if n = n0.

Figure 4.1. The preimage tree of e.

Now consider an n so that at least one point en−1
j has two preimages. The

first time this happens, n0 := ne0, if this never happens then set n0 := +∞.
Thus #BLe(n0) = 1 and #{v ∈ Lnp(n0) : mr(v) > 1}e = 0. This implies
(s(n0 + 1)− s(n0))e = 1. By the symmetry, the next time, ne1 one of these
backwards orbits hits the mirror, the other one will also hit the mirror from
the other side. Thus one of the orbits will have two preimages and the other
will be non-left-extendable. Thus #BLe(ne1) = #{v ∈ Lnp(na1) : mr(v) >
1}e = 1. The same holds for all times nek for which #BLe(nek) > 0. We have
thus shown that ne0 is the unique time for which (s(n+1)−s(n))e 6= 0. The
same holds for (s(n + 1) − s(n))f 6= 0, but ne0 and nf0 are not necessarily
equal.
If ne0 = nf0 =: n0 then

s(n+ 1)− s(n) =
{

0 if n 6= n0,
2 if n = n0.

By definition p(0) = 1 and thus s(0) = p(1) − p(0) = 2 − 1 = 1. Then
s(n) = s(0) = 1 for all n 6 n0 and s(n) = 3 for all n > n0. Thus

(4.1) p(n) =
{
n+ 1 if n 6 n0,
3n+ (1− 2n0) if n > n0.

In particular if n0 =∞, i.e. if the preimages of both points e and f disap-
pear before being doubled, then

p(n) = n+ 1 for all n > 0.

It is easy to check that n0 =∞ happens exactly when θ ∈ A1.
On the other hand if ne0 6= nf0 , if follows that

s(n+ 1)− s(n) =
{

0 if n 6∈ {ne0, n
f
0},

1 if n ∈ {ne0, n
f
0}.
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Set N−0 := min(ne0, n
f
0 ) and N+

0 := max(ne0, n
f
0 ). We have s(n) = s(0) = 1

for all n 6 N0, s(n) = 2 for all n ∈ (N−0 , N
+
0 ], s(n) = 3 otherwise. Thus

(4.2) p(n) =


n+ 1 if n 6 N−0 ,
2n+ (1−N−0 ) if n ∈ (N−0 , N

+
0 ],

3n+ (1−N−0 −N
+
0 ) otherwise.

If N+
0 = ∞ then exactly one of the two points e or f disappears before

being doubled, thus θ ∈ A2, the ITM is of infinite type and

p(n) =
{
n+ 1 if n 6 N−0 ,
2n+ (1−N−0 ) if n > N−0 .

If N+
0 < ∞ then neither preimage disappers before being doubled, thus

θ ∈ A3. �

Proof of Theorem 2.7. — The main difference with Theorem 2.4 is that
instead of two points {e, f} which produce right special words, there are
now R+N points. Call these point {g1, g2, . . . , gR+N}. The other difference
is that there are R+N intervals of continuity, thus p(1) = R+N and thus
s(0) = p(1)− p(0) = R+N − 1.
Otherwise the proof is identical, for each of the gi we construct its preim-

age tree. We consider the first time ngi
when the preimage is doubled.

The symmetry argument is identical to the square case, once a gi has two
preimages at some time, it has two preimages for larger times. The k in the
statement of the theorem then corresponds to the number of gi which have
two-preimages at a certain time, while for the other R+N − k points the
preimages disappear before being doubled. As before, Cθ is responsible for
the events that happened before the moment when the first preimage was
doubled. We conclude that s(n+ 1)− s(n) = k for n sufficiently large and
thus p(n) = (s(0) + k)n− Cθ = (R+N − 1 + k)n− Cθ. �

Proof of Theorem 2.9. — Remember that in this case the map S is the
first return map to the union of vertical sections x = k

q described before
the Theorem. The proof follows the same line as the the case a = 1

4 , in
which we argued that by symmetry that once there are two preimages of
e, each time one disappears a new one appears. This is no longer true in
the general rational case. As in the case a = 1

4 we need to consider the
preimage tree under the map S of the points e and f (which as in case
a = 1

4 are the points of discontinuity on the circle x = a = p
q ), the map

being continiuos on the other circles.
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As mentioned in the proof of Theorem 4, the difference (sn−s0)e counts
the number of leaves of level n, but since all points in the set {S−n(i, y)}
have the same second coordinate, we have #{S−n(i, y)} 6 q, for any n > 0,
for any point (i, y). Thus

(s(n+ 1)− s(n))e 6 q

for all n.
Taking into account the contribution of e and f yields

s(n)− s(0) 6 2q

and since s(0) = p(1)− p(0) = 3− 1 = 2, we conclude that

p(n) = 1 +
n−1∑
i=0

s(i) = 3 +
n−1∑
i=1

s(i) 6 3 + (2 + 2q)(n− 1) < (2 + 2q)n.

�

Proposition 4.1. — If {a, b} ∩ Ω = ∅ then p∞(n) = n+ 1.

Proof of Proposition 4.1. — By assumption there are no right special
words, thus no bispecial words. Thus s(n) = const. We have s(0) = p(1)−
p(0) = 3 − 1 = 2, thus s(n) = 1 and p(n + 1) = p(n) + 1. It follows that
p∞(n) = n+ 1. �
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