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THE ORBITAL COUNTING PROBLEM FOR
HYPERCONVEX REPRESENTATIONS

by Andrés SAMBARINO (*)

ABSTRACT. — We give a precise counting result on the symmetric space of a
connected noncompact real-algebraic semisimple Lie group G, for a class of discrete
subgroups of G that contains, for example, representations of a surface group on
PSL(2,R) x PSL(2,R), induced by choosing two points on the Teichmiiller space
of the surface and representations on the Hitchin component of PSL(d, R). We also
prove a mixing property for the Weyl chamber flow in this setting.

RESUME. Nous trouvons un asymptotique pour le comptage orbitale dans
I'espace symétrique d’un groupe de Lie connexe, réel-algébrique, semisimple et
non-compact G, pour une classe des sous groupes discrets de G qui contient, par
exemple, representations d’un groupe de surface dans PSL(2,R) x PSL(2,R) in-
duites par la choix de deux éléments de l’espace de Teichmiiller de la surface et
les representations dans la composante de Hitchin de PSL(d, R). Nous démontrons
aussi, dans ce contexte, une propriété de melange pour le flot des chambres de
Weyl.

1. Introduction

The Orbital Counting Problem is: given a discrete subgroup A of a con-
nected noncompact real-algebraic semisimple Lie group G, find an asymp-
totic for the growth of

#{g€ A:dx(o,g-0) <t}

as t — 0o, where o = [K] is a basepoint on X = G /K, the symmetric space
of GG, endowed with a G-invariant Riemannian metric.

Keywords: Lie groups, higher rank geometries, Hitchin representations.

Math. classification: 22E40, 37D20.
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When the group A is a lattice, this problem has been studied by Eskin-
McMullen [9]. They prove that the number of points in A - 0N B(o,t), is
equivalent (modulo a constant) to the volume vol(B(o,t)) of the ball of
radius ¢. Hence, the asymptotic has a polynomial term together with an
exponential term. Similar results have been obtained by Duke-Rudnick-
Sarnak [7].

We will hence focus on subgroups of infinite covolume. An important
tool for such groups, in negative curvature, is the limit set of the group on
the visual boundary of the space in consideration. On higher rank, it turns
out to be more useful to consider the Furstenberg boundary.

Let P be a minimal parabolic subgroup of G, and denote by ¢ = .% =
G/ P the Furstenberg boundary of X. Benoist [2] has shown that the action
of A on % has a smallest closed invariant set, called the limit set of A on
7, and denoted by La .

The limit set is well understood for Schottky groups. These are finitely
generated free subgroups of G, for which one has a good control on the
relative position of the fixed points on .% of the free generators, together
with nice contraction properties.

This precise information allows Quint [23] to build an equivariant contin-
uous map, from the boundary at infinity of the group into .%. The limit set
is hence identified with a subshift of finite type. Quint [23] uses the Thermo-
dynamic Formalism on this subshift, to obtain an exponential equivalence
for the orbital counting problem.

This work consists in studying the orbital counting problem, for a class
of subgroups called hyperconvex representations, which we will now define.

The product .# x .Z has a unique open G-orbit, denoted by .Z (). For
example, when G = PGL(d, R), the space & is the space of complete flags
of R4, i.e. families of subspaces {V;}%_, such that V; C V;4; and dim V; = i;
and the set .#?) is the space of pairs of flags in general position, i.e. pairs
({Vi},{W;}) such that, for every i, one has

Vi W,_; = R%.

Let I' be the fundamental group of a closed connected negatively curved
Riemannian manifold (for any basepoint).

DEFINITION 1.0. — We say that a representation p : I' — G is hyper-
convex if there exists a Holder-continuous p-equivariant map ¢ : OscI' — Z,
such that the pair (¢(z),((y)) belongs to F?) whenever x,y € 0T are
distinct.

ANNALES DE L’INSTITUT FOURIER
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If G is a rank 1 simple group, then its Furstenberg boundary is the visual
boundary of the symmetric space, and the open orbit .#(?) is

{(z,y) € F x F :x +y}.

The classical Morse’s Lemma implies thus that a quasi-isometric embeding
I' — G is a hyperconvex representation (see Efremovich-Tichonirova [8]).

Hyperconvex representations where introduced by Labourie [16], in his
study of the Hitchin component. Consider a closed connected oriented sur-
face ¥ of genus g > 2. A representation 7 (3) — PSL(d, R) is Fuchsian if
it factors as

m1(X) — PSL(2,R) — PSL(d,R),

where PSL(2,R) — PSL(d,R) is induced by the irreducible linear action
of SL(2,R) on R? (unique modulo conjugation by SL(d,R)) and (%) —
PSL(2,R) is discrete and faithful. A Hitchin component of PSL(d,R), is
a connected component of the space hom(m(3), PSL(d,R)), containing a
Fuchsian representation.

THEOREM (Labourie [16]). — A representation in a Hitchin component
of PSL(d,R) is hyperconvex.

Finally, recall that if H is also a noncompact real-algebraic semisimple
Lie group, then the Furstenberg boundary of G x H is Fg x %#g. Hence,
if p: ' =5 G and n : ' — H are hyperconvex representations, so is the
product pxn:I' — G x H.

Denote by C(Z) the Banach space of real continuous functions on a
compact space Z (with the uniform topology), and by C*(Z) its topological
dual. Denote by X r the Furstenberg compactification of X (see Section 5).

THEOREM (See Section 5). — Let p: I' — G be a Zariski-dense hyper-
convex representation. Then there exist h,c > 0, and a probability measure
1 on X g, such that

ce” Z Op(7)-0 ® Op(y=1).0 = 1 O Ly
yeT:dx (0,p(7) 0)<t
for the weak-star convergence on C* (Y2F), ast — oo.

Considering the constant function equal to 1, one obtains the following
corollary.

COROLLARY. — Let p : I' = G be a Zariski-dense hyperconvex repre-
sentation. Then there exist h,c > 0, such that

ce My eT dx(o,p(7y)-0) <t} — 1,

TOME 65 (2015), FASCICULE 4



1758 Andrés SAMBARINO

ast — oo.

The exponential growth rate h in Theorem A is explicit: it is the topolog-
ical entropy of a natural flow we construct, associated to the representation
p. On the contrary, not much information is known about the constant c.

As first shown by Margulis [19] in negative curvature, in order to ob-
tain a counting theorem, one usually proves a mixing property of a well
chosen dynamical system. In closed manifolds with negative curvature, the
geodesic flow plays this role. In infinite covolume, for example for convex
cocompact groups, one should restrict the geodesic flow to its nonwander-
ing set. When A is a lattice in higher rank, Eskin-M cMullen [9] use the
mixing property of the Weyl chamber flow, to prove the counting result
previously mentioned.

Let 7 be the Cartan involution on g = Lie(G), whose fixed point set is
the Lie algebra of K. Consider p = {v € g : 7v = —v} and a, a maximal
abelian subspace contained in p. Denote by at a closed Weyl chamber,
and M the centralizer of exp(a) on K. The Weyl chamber flow is the right
action by translations of exp(a) on

A\G/M.

When A is a lattice on G, the mixing property of this action is due to
Howe-Moore [13].

In this article, we prove a mixing property of the Weyl chamber flow
for hyperconvex representations. Before stating the result, let us recall the
Patterson-Sullivan theory in higher rank.

Consider a G-invariant Riemannian metric in X, and || || the induced Eu-
clidean norm on a, invariant under the Weyl group. Consider the Cartan
decomposition G = K exp(a™)K, and a : G — a’ the Cartan projection,
then for every g € G, one has ||a(g)|| = dx ([K], g[K]). Hence, one is inter-
ested in understanding the growth of

#{g € A llalg)] <t}

as t — oo. Given an open cone ¢ in a™, consider the exponential growth

rate
1 A <
he = lim sup og#{g € A:alg) €F, |lalg)] 3},
$—00 S
The growth indicator of A, introduced by Quint [22], is the map ¥ : a —
R U {—o0}, defined by

YA (v) = ||v| inf he,
where the greatest lower bound is taken over all open cones % containing
v. Remark that A (tv) =t (v) if t > 0.

ANNALES DE L’INSTITUT FOURIER
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Benoist [2] has introduced the limit cone Za of A, as the closed cone
in at generated by {\(g) : ¢ € A}, where A : G — a' is the Jordan
projection. Quint [22] proves the following theorem.

THEOREM 1.0 (Quint [22]). — Let A be a Zariski-dense discrete sub-
group of G. Then ¥ is concave, upper semi-continuous and the space

{U ca: ,(/)A(U) > _00}7
is the limit cone £x. Moreover ¥ is nonnegative on £a, and positive on
its interior.

The growth indicator plays the role, in higher rank, of the critical expo-
nent in negative curvature. Denote by P the minimal parabolic group of
G, associated to the choice of a™. The set .# = G/P is K-homogeneous,
the group M is the stabilizer in K of [P] € .#. The Busemann cocycle
0 :G x F — ais defined to verify the equation

gk = lexp(a(g, kM))n,

for every ¢ € G and k € K, using Iwasawa’s decomposition of G =
K exp(a)N, where N is the unipotent radical of P.

THEOREM 1.0 (Quint [20]). — Let A be a Zariski-dense discrete sub-
group of G. Then for each linear form ¢, tangent to ¥ in a direction in
the interior of £, there exists a probability measure v, on %, supported
on L, such that for every g € A one has,

A9Tp (1) e=elola™ ).
dv,

The measure v, is called a (-Patterson-Sullivan measure of A. Denote
by uo the unique element of the Weyl group that sends a* to —at. The
opposition involution i : a — a is defined by i = —ug. One has i(a(g)) =
a(g™1), for every g € G, and thus 1A oi = ¥A. Moreover if ¢ € a* is tangent
to ¥, so is poi. Hence, in higher rank, Patterson-Sullivan’s measures come
in pairs.

As in negative curvature, one can use these measures to construct in-
variant measures for the Weyl chamber flow. Consider the action of G on
F ) x a, via Busemann’s cocycle, defined by

9(x,y,v) = (92, 9y,v — (g, y)).
Denote by P the opposite parabolic subgroup of P, associated to the choice
of a*, the stabilizer in G' of the point ([P], [P],0) € .#? x a is isomorphic
to M, and we get thus an identification G/M = .2 x qa. This is called
Hopf’s parametrization of G.

TOME 65 (2015), FASCICULE 4
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Using Tits’s [31] representations of G, one can define a vector valued
Gromov product % : .F?) — a (see Section 4) such that, for every g € G
and (z,y) € F3),

%H(gx, gy) - gﬂ(‘ra y) = 7(1 00(97 ZL') + U(ga y))
For a given ¢ € a* tangent to ¥)a, the measure
e*@(%n("'))ywoi ® Vg X Leba

in .#® x a is thus A-invariant and a-invariant. Denote by X the measure
induced on the quotient A\G/M. We call this measure the Bowen-Margulis
measure for , its support is the set

A\(LS xa),

where L(AQ) = (La)?N.Z®). This set is analogous, in higher rank, to the
nonwandering set of the geodesic flow in negative curvature. An important
contrast though, is that when A is not a lattice and G is simple (of higher
rank), the measure x,, is expected to have infinite total mass. For example,
Quint [21] has shown that if A\(L(AQ) xa) is compact, then A is a cocompact
lattice.

We prove the following mixing property, for hyperconvex representations,
inspired by the work of Thirion [30]. He proves an analogous mixing prop-
erty for ping-pong groups.

THEOREM (Theorem 4.0). — Let p : I' — G be a Zariski-dense hyper-
convex representation, and consider ¢ € a* tangent to A in the direction
u,. Then there exists k > 0 such that, for any two compactly supported
continuous functions fo, f1 : p(l)\G/M — R, one has

(2mt) (@@ =D/2y (fo - fir o exp(tuy,)) — KXo (fo) X (1),

as t — oo.

In Section 2, we recall results on Holder cocycles from [27], of particular
interest is the Reparametrizing Theorem 2.0. This theorem is crucial in
understanding the nature of

pO\(LE) xa),

when p : I' — G is hyperconvex (Proposition 3.0). In Section 3, we prove
a general mixing property that will imply Theorem B. This is shown in
Section 4. In the last section, we prove Theorem A by adapting a method
of Roblin [25] and Thirion [29)].

ANNALES DE L’INSTITUT FOURIER
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2. Holder cocycles

Reparametrizations. The standard reference for the following is Katok-
Hasselblat [15]. Let X be a compact metric space, ¢ = (¢¢):er a continuous
flow on X without fixed points (i.e. no point in X verifies ¢;x = x for every
t € R), and V a finite dimensional real vector space.

DEFINITION 2.0. — A translation cocycle over ¢ isamapk : X xR — V
that verifies the following two conditions:

- For every x € X and t,s € R, one has
Kz, t+5) = k(. t) + K(2, 5).

- For every t € R, the map k(-,t) is Holder-continuous with exponent
independent of t, and with bounded multiplicative constant when t
is bounded.

Two translation cocycles k1 and kg are LivSic-cohomologous, if there
exists a continuous map U : X — V| such that for all z € X and ¢t € R one
has
(2.1) k1(z,t) — ke(z,t) = U(drx) — U(x).

Denote by p(7) the period of a ¢-periodic orbit 7. If x is a translation
cocycle then the period of 7 for k, is defined by

LH(T) = K($7p(7—))7
for any = € 7. It is clear that L, (7) does not depend on the chosen point
x € 7, and that the set of periods is a cohomological invariant of .

The standard example of a translation cocycle is obtained by considering
a Holder-continuous map f : X — V, and defining sy : X x R = V by

(2.2) /if(:v,t):/o fl@sz)ds.

The period of a periodic orbit 7 for f is then

[=] " tou)ds,

We say that a map U : X — V is C* in the direction of the flow ¢, if for
every z € X, the map t — U(¢,z) is of class C', and the map

0
T e . U(pex)

is continuous. Two Holder-continuous maps f,g : X — V are Livsic-

cohomologous if the translation cocycles ky and sy are. If this is the case,

TOME 65 (2015), FASCICULE 4
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the map U of equation (2.1) is C! in the direction of the flow, and for all
x € X one has 5
@) —g@) = 5| Vo).
t=0
If f: X — R is positive, then, since X is compact, f has a positive
minimum and for every « € X, the function x(z, -) is an increasing home-
omorphism of R. We then have a map ay : X x R — R that verifies

(2.3) af(z,ky(z,t) = rp(x, ap(x,t) =1,
for every (z,t) € X x R.

DEFINITION 2.0. — The reparametrization of ¢ by f : X — R7 is
the flow ¢ = ¢/ = (Y;)ier on X, defined by ¢y (x) = Doy (1) (), for all
t € R and x € X. If f is Hélder-continuous, we will say that i is a Holder
reparametrization of ¢.

Remark 2.0. — If two positive continuous functions f,g : X — R are
Livsic-cohomologous, then the flows ¢/ and 19 are conjugated i.e. there
exists a homeomorphism h : X — X such that, for all z € X and ¢t € R,
one has™

h(fz) = ¥ (ha).

Denote by M? the set of ¢-invariant probability measures on X. The
pressure of a continuous function f: X — R is defined by

P(6,f) = sup h(ém)+ /X fdm,

meM?

where h(¢$, m) is the metric entropy of m for ¢. A probability measure m,
on which the least upper bound is attained, is called an equilibrium state
of f. An equilibrium state for f = 0 is called a probability measure of
maximal entropy, and its entropy is called the topological entropy of ¢,
denoted by hiop ().

If 7 is a periodic orbit of ¢, and g : X — R is continuous, then a standard
argument shows

kg (z,p(T)))
(2.1) / swlads = [ of

In fact, if m is a ¢-invariant probability measure on X, then the probability
measure m# | defined by
dm# f()

(22) 0= Tram

dm

(1 This is standard, see [26, Remark 2.2.] for a detailed proof.

ANNALES DE L’INSTITUT FOURIER
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is invariant under /.

LEMMA 2.0 ([27, Section 2]). — If h = hgop(10) < oo, then the map
m +— m¥ is a bijection between the set of equilibrium states of —hf, and
the set of probability measures of maximal entropy of 17 .

Anosov flows and Markov codings. Assume from now on that X is
a compact manifold, and that the flow ¢ is C'. We say that ¢ is Anosov,
if the tangent bundle of X splits as a sum of three bundles
TX =E*® E°® EY,

that are d¢s-invariant for every ¢t € R and, there exist positive constants C'
and c such that, E° is the direction of the flow, and for every ¢ > 0 one has
lldev|| < Ce<t|v]| for every v € E*, and ||dp_sv| < Ce ||| for every
v € E*, for any Riemannian metric on X.

We need the following classical result of Livsic [18]:

THEOREM 2.0 (Livsic [18]). — Let ¢ be an Anosov flow on X and k :
X xR — V a translation cocycle. If L. (t) = 0 for every periodic orbit T,
then k is Livsic-cohomologous to 0.

As the next lemma proves, one can always chose a translation cocycle of
the form k¢, in the cohomology class of a given translation cocycle .

LEMMA 2.0. — Let ¢ be an Anosov flow on X, and let K : X xR — V be
a translation cocycle, then there exists a Holder-continuous map f : X — V
such that the cocycles k and Ky are Livsic-cohomologous.

Proof. — Fix C' > 0, and consider the translation cocycle k¢, defined by

C
K@) =5 [ rou@).0as

The translation cocycles k¢ and & are Livsic-cohomolgous since they have
the same periods. One easily checks that £ (-, ) is of class C' in the direc-
tion of the flow and thus, k€ is the integral of a Holder-continuous function
along the orbits of ¢. O

The following lemma is useful.

LEMMA 2.0 ([27, Section 3]). — Consider a Hélder-continuous function

f+ X — R, such that
ol
— >k,
p(7) Tf

for some positive k and every periodic orbit 7 of ¢. Then f is Livsic-
cohomologous to a positive Hélder-continuous function.

TOME 65 (2015), FASCICULE 4
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In order to study the ergodic theory of Anosov flows, Bowen [5] and
Ratner [24] introduced the notion of Markov coding.

DEFINITION 2.0. — The triple (X, m,r) is a Markov coding for ¢, if 3
is an irreducible two-sided subshift of finite type, the maps w : ¥ — X and
r: ¥ — R% are Hélder-continuous and verify the following conditions: Let
0 : 3 — X be the shift, and let 7 : X x R — X X R be the homeomorphism
defined by

F(x,t) = (ox,t — r(x)),
then

i) the map II: ¥ x R — X defined by II(z,t) = ¢+(7(x)) is surjective
and 7-invariant,

ii) consider the suspension flow ¢" = (0} ):cr on (X x R)/#, then the
induced map II : (¥ x R)/# — X is bounded-to-one and, injective
on a residual set which is of full measure for every ergodic invariant
measure of total support of o”.

Remark 2.0. — 1If a flow ¢ admits a Markov coding then every repara-
metrization v of ¢ also admits a Markov coding, simply by considering the
new roof function r'(z) = for(w) flpsz)dz.

A Markov coding is a very accurate measurable model for a flow ¢.
If ¢ admits a Markov coding, then it has a unique probability measure
of maximal entropy, and the function II : (X x R)/# — X induces an
isomorphism between the set probability measures of maximal entropy of
0" and that of ¢. In particular the topological entropy of ¢ coincides with
that of o”.

Recall that a flow ¢ is transitive if it has a dense orbit.

THEOREM 2.0 (Bowen [4, 5]). — A transitive Anosov flow admits a
Markov coding.

The following is standard.

PROPOSITION 2.0 (Bowen-Ruelle [6]). — Let ¢ be a transitive Anosov
flow. Then, given a Hélder-continuous function f : X — R, there exists a
unique equilibrium state for f, moreover, the equilibrium state is ergodic.

The equilibrium state of the last proposition can be described as follows
(see Bowen-Ruelle [6, Proposition 3.1]). If (3,7, r) is a Markov coding for
the Anosov flow ¢, then consider the function F': ¥ — R defined by

r(x)
F(z) = / F(ou(m))t,

ANNALES DE L’INSTITUT FOURIER
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and consider the equilibrium state v, of F'—P(f). Then for every measurable
function G : X — R, one has

(2.1) /X def_f;ly /2 /O T(I)G(@(mv))dtdu(x).

We finish this subsection with the following classical result.

THEOREM 2.0. — Let M be a closed connected, negatively curved Rie-
mannian manifold. Then the geodesic flow on T'M is a transitive Anosov
flow.

Holder cocycles on O, I'. Let M be a closed connected negatively
curved Riemannian manifold M, and denote by M — M its universal
cover. The group I' = 71 (M) is hyperbolic, and the visual boundary of M
is identified with the boundary at infinity J,I" of the group, endowed with
its usual Holder structure (see Ghys-de la Harpe [10]). We will now focus
on Hélder cocycles on 9T

DEFINITION 2.0. — A Holder cocycle is a map ¢ : I' X 0" — V, such
that

c(v071, %) = (0, M1®) + ¢(71, 7)),
for any 9,71 € T and x € 05T, and such that ¢(v, -) is Holder-continuous,
for every v € T' (the same exponent is assumed for every v € T').

Recall that each v € T' — {e} has two fixed points on d,.I", 74+ and ~v_,
and that for every x € 0o — {y_} one has vz — v, as n — oo. We will
refer to 4 as the attractor of v. The period of v for a Holder cocycle c is
defined by

gc(’}/) = C(’Yv 7+)'
The cocycle property implies that for all n € N, one has £.(7") = nf.(v),
and £.(y) only depends on the conjugacy class [y] of 7.

Two Holder cocycles ¢ and ¢’ are cohomologous, if there exists a Holder-

continuous function U : 0, I' — V| such that for all v € I" one has

c(v,x) = d(y,2) =U(yz) - U().

One easily deduces from the definition that the set of periods of a Holder
cocycle is a cohomological invariant. The following theorem of Ledrappier
[17] relates Holder cocycles with Hélder-continuous maps T'M — V.

Recall that the set of periodic orbits of the geodesic flow of M is in
one-to-one correspondence with the set of conjugacy classes [I'] — {e} of
I'—{e}. If y € T, then [y] will freely represent its conjugacy class in T', and
its associated periodic orbit on T M.

TOME 65 (2015), FASCICULE 4
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THEOREM 2.0 (Ledrappier [17, page 105]). — For each Hélder cocycle
c¢: T x 0, — V, there exists a Holder-continuous map F, : T'M — V,
such that for every v € I' — {e}, one has

le(y) = /m F..

The map ¢ — F, induces a bijection between the set of cohomology classes
of V-valued Hélder cocycles and the set of Livsic-cohomology classes of
Hélder-continuous maps from T'M — V.

Two Holder cocycles ¢ and ¢ are dual cocycles if for every v € T' — {e},
one has fz(y) = £.(y~1). If this is the case we will say that the pair {c,c}
is a pair of dual cocycles.

Denote by 92T the set of pairs (z,9) € (95')? such that = # y. A
function

[,]: 02T =V
is a Gromov product for a pair of dual cocycles {c,¢}, if for every v € T'
and (z,y) € 02T one has

[z, ] — [z, y] = —(@(y,2) + (v, 9))-
Remark 2.0. — The existence of these objects, for a given Hoélder co-
cycle, is a consequence of Ledrappier’s Theorem 2.0, see [27, Section 2] for
details.

We will now focus on real valued Hoélder cocycles with non negative
periods, i.e. such that £.(y) > 0 for every v € T — {e}. The exponential
growth rate of such cocycle is defined by

1 Il — 2L, <
e — tim oy B € N = {e} 1 () <5}

5—00 S

(0, 00},

(it is a consequence of Ledrappier’s work [17] that a Holder cocycle ¢ with
non negative periods verifies h. > 0).

Remark 2.0. — A simple argument shows that two dual cocycles have
the same exponential growth rate, i.e. h. = hg.

For v € I'—{e}, denote by || the period of [y]. We will need the following
two lemmas.

LEMMA 2.0 (Ledrappier [17, page 106]). — Let ¢ be a Hélder cocycle
with nonnegative periods and finite exponential growth rate, then

o () Le(7)

X

i
m  yel—{e} |9 yel'—{e} ol

<m,

for a positive m.
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LEMMA 2.0 ([27, Section 2]). — Let ¢ : T’ X 0xI' = R be a Holder
cocycle with nonnegative periods and finite exponential growth rate, then
the function F, is Livsic-cohomologous to a positive function.

If ¢ has finite exponential growth rate then, following Patterson’s con-
struction, Ledrappier [17] proves the existence of a Patterson-Sullivan prob-
ability measure p on 0I" of cocycle h.c, this is to say, u verifies

d’Y*/U’(m) _ efhcc(fyfl,:c)
dp
for every v € I" and x € 0y T.

THEOREM 2.0 (Ledrappier [17] page 102). — Let ¢ be a Hélder cocy-
cle with nonnegative periods. If h, < oo there exists a unique Patterson-
Sullivan probability measure of cocycle h.c. Conversely, if for some positive
h, there exists a Patterson-Sullivan measure of cocycle hc, then h = h,.

Denote by p and 7 the Patterson-Sullivan probability measures associ-
ated to ¢ and € respectively and consider a Gromov product [, -], for the
pair {c¢,¢}. Remark that the measure

e~V dn(x)dp(y)

on 92 T', denoted from now on by e PelIG@p, is T-invariant. The following
theorem is crucial to understand the Weyl chamber flow.

THEOREM 2.0 (The Reparametrizing Theorem [27]). — Let ¢ be a Hélder
cocycle with nonnegative periods such that h,. is finite. Then:

(1) the action of T in 92T x R via ¢, that is,

V(@Y. 8) = (yz, 7y, s — (7, 9)),
is proper and cocompact. Moreover, the flow 1 on T'\(92,T x R),
defined by
’l/)tF(I, Y, S) = F(LE, Y,s — t);
is conjugated to a Hélder reparametrization of the geodesic flow on
TYM. The conjugating map is also Holder-continuous. The topo-

logical entropy of v is h..
(2) The measure

e_hc["']ﬁ R uRds

on 0% xR induces on the quotient T'\ (0%, T xR) a positive multiple
of the probability measure of maximal entropy of 1.
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Remark 2.0. — Consider F, : T* M — R given by Ledrappier’s Theorem
2.0 for the cocycle c¢. Lemma 2.0 implies that F, is Livsic-cohomologous to
a positive function. The reparametrization in Theorem 2.0 is given by this
positive function.

3. The action by translations of V on T'\(9%T x V)

Recall that M is a closed, connected, negatively curved Riemannian man-
ifold, T' is its fundamental group (for any base point), and V is a finite
dimensional real vector space.

Fix a Hélder cocycle ¢ : T' x 9,,I" — V, and denote by .Z. the smallest
closed, convex cone of V' that contains the periods {f.(y) : v € T — {e}}.
The dual cone of %, is the set of linear forms that are nonnegative on this
cone:

ZLr={peV*:ple =0}

A direct consequence of the Reparametrizing Theorem 2.0 applied to poc

is the following one.

COROLLARY 3.0. — If there exists ¢ € £, such that hy.. is finite, then
the action of T on O2.T' x V via c, that is,

Y(z,y,v) = (v&,vy,v — (7, y)),

is properly discontinuous.
Denote by int(.Z>) the interior of .£Z*. One has the following lemma.

LEMMA 3.0. — If @ € £} is such that hgo. < 00, then ¢ € int(.Z)), in
particular int(.Z) is nonempty. Moreover, for every 0 € int(.Z.), one has
hgoe < 00.

Proof. — Consider the map F, : T'*M — V associated to ¢ by Theorem
2.0. One has

o /m F) = o(ta(7)) > 0.

Moreover, since hyo. < 00, Ledrappier’s Lemma 2.0, applied to poc, implies
that there exists & > 0 such that

1 1
F)=—

[ Sy

for every v € I' — {e}. Anosov’s closing Lemma (c.f. Shub [28]) states that
the convex combinations of the Lebesgue measures on periodic orbits are
dense in M?, thus

o(
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- ([ F.dm) > k for every ¢-invariant probability measure m,
- the set

{/chm:m6M¢}

is compact and generates the cone .Z,.
Hence, ¢ is positive on the cone .Z. — {0}, i.e. ¢ € int(L}).
If § belongs to the interior of £, then 0| _ (o} > 0. Hence, there exists
a positive a such that p(v) < af(v), for all v € Z.. This implies that
hgoc < ahyoe < 0o. This finishes the proof. O

Assume from now on the existence of ¢ € £ with finite hyo.. We
then have a natural map between P(int(.£>)) and P(.Z.) as follows. Fix
F.: T'M — V associated to c.

DEFINITION 3.0. — For ¢ € int(.Z}), denote by m, the equilibrium
state, on T'M, of the function —hyecp o F, (recall Proposition 2.0). The
dual direction of R ¢, is the direction in £, given by the vector

/chmw,

and is denoted by u, € P(Z£,).

Remark 3.0. — A change in the Livsic-cohomology class of F, does not
change the value of the integral of F, over any ¢-invariant measure. Hence
u, is well defined, independently of the choice of F.. Remark also that
if t € Ry, then hipoe = hyoc/t, hence, the dual direction of Ry, only
depends on the direction given by ¢.

Fix also a dual cocycle ¢ of ¢, and a Gromov product [-,-] : 92T — V for
the pair {c,¢}. Denote by p, and M, the Patterson-Sullivan probability
measures of cocycles hyocy 0 ¢ and hyocp o € respectively. The function

['a ']AP =po ['7 ]

is a Gromov product for the pair {¢ o ¢, ¢ o¢}. Denote by Q,, the measure
on I'\(02T x V) induced by the measure

Q, = e el len @y @ Leby,

where Leby is a fixed Lebesgue measure on V. The measure €2, is called
the Bowen-Margulis measure of the pair {c,¢} for the linear form ¢.

Choose a vector u, € u, such that ¢(u,) = 1, and consider the flow
w? = (wf)er on T\ (02T x V) induced on the quotient by

(,y,v) = (z,y,v — tuy).
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PROPOSITION 3.0 (Straightening the action of V). — For every ¢ € £}
such that h,o. < 00, there exists a Hélder reparametrization of the geodesic
flow 1) = >, a Holder-continuous map f : T*M — ker ¢, with zero mean
for the probability measure of maximal entropy of v, denoted by mjff, ie.

fdm,# =0,
T'M

and a Hélder-continuous homeomorphism
E:T\(0AT x V) = T'M x ker ¢,

that conjugates the flow w¥ with the flow 12)\ = (TZt)te]R on T'M x ker ¢,
defined by

(3.1) i, v0) = (0(p), vo — / F(up)ds).

The map E also conjugates the actions of ker p, on T'\ (02T x V) and on
T'M x ker ¢ (by translation on the fibers), and is an isomorphism, up to
a multiplicative constant, between the measures €, and m¢# ® Lebyer ¢ -

Proof. — Consider the action of I on 92T x R via ¢ o c. Then one has a
I-equivariant fibration @ : 92T x V — 92T x R with fiber ker ¢, given by

e(x,y,v) = (z,y, 0(v)).
The measure ﬁ; disintegrates over the measure
e—h«poc[‘,']wﬁw [%4) joe X LebR

on 92T x R, with conditional measures the Lebesgue measure on ker ¢.

Since hgoc is finite, the Reparametrizing Theorem 2.0 applies and thus,
the action of I" on 92T x R via ¢ o ¢ is properly discontinuous. More-
over there exists a Holder-continuous homeomorphism E : T'\(0%2T x R) —
T M, that conjugates the translation flow with a reparametrization of the
geodesic flow. Denote this reparametrization by ¥. The image of the mea-
sure induced on the quotient by

e—hvoc['a‘]kpﬁw ® y @ Lebg,

is sent by F to a positive multiple of the (unique) probability measure of
maximal entropy of 1.

The functions ¢ o F, and F,o. are LivSic-cohomologous, since they have
the same period for every periodic orbit of the geodesic flow. Lemma 2.0
implies then that, o F, is Livsic-cohomolgous to a positive function, hence
we can (and will) assume that ¢ o F. > 0. Remark 2.0 states that the flow
1) can be taken as the reparametrization of the geodesic flow ¢ by ¢ o F,.
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The probability measure of maximal entropy of 1 is m,# (recall that m.,
is the equilibrium state of —hyocp © F. and use Lemma 2.0).
Abusing notation, denote again by

P:T\(0AT x V) = T\ (04T x R),

the map induced on the quotients by @ : 92T x V — 92T x R. For every
u € V, one has

Eo @(z,y,v - u) = ¢Lp(u)(E(‘T7y7 (p(’U))),

in particular the flow w? is (semi)conjugated to ¢ by F o o, i.e. for every
t € R one has

Eopow! =1;0FEo0p.

The action of the abelian group ker ¢ on 92" x V, commutes with the
action of I' and preserves the fibers $~!(z,y,t) of $. Hence we have an
action of ker ¢ on the quotient, and one finds that

Eop:T\(AT xV)—T'M

is a vector bundle with fiber ker ¢, and the group ker ¢ acts by Hoélder-
continuous homeomorphisms on I'\(§% ' x V) preserving the fibers, and
acting transitively on them. Using the zero section of a vector bundle, and
the action of ker , one can trivialize this bundle. Hence, I'\(02,T x V)
is (Holder) isomorphic to TTM x ker ¢, and this isomorphism is ker -
equivariant.

Denote by U = (U;);cr the flow on T'M x ker ¢, corresponding to the
flow w? via this last identification. Since w¥ commutes with the action of
ker ¢, the same occurs for ¥, and thus we can write

Wi (p,vo) = (Pu(p), vo — K(p, 1)),

where k : T'M x R — ker ¢ is a translation cocycle over 1. Lemma 2.0
implies the existence of a Holder-continuous map f : T*M — ker ¢, such
that the cocycles k and ky are Livsic-cohomologous (for the flow ). The
flow W is hence conjugated to the flow 12)\ = (@t)te]g on T' M x ker ¢, defined
by

D) = (W), v — / Fa(p))ds).

Denote by E : T\ (02T x V) — T*M x ker ¢ the composition of the trivi-
alization of I'\(0% " x V) defined above, with this last conjugacy between
¥ and 1Z By definition, E conjugates the flows w?® and 1Z, and is ker -
equivariant.
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We remark that the image by E of the measure Q, on T'M x ker ¢,
is a measure that disintegrates as a ker g-invariant measure on the fibers,
and a positive constant multiple of mw# on T'M. This measure is then a
positive constant multiple of m¢# ® Lebyer ¢ -

It remains to check that leM fdmﬁﬁ = 0. In order to do this, recall
that ¢(u,) = 1 and that u, is collinear to the vector [ F.dms, hence

(3.2) /chmqJ = uw/cp o Fodm,.

V(e ()

— )

fiber over p

Figure 1. If p € T*M belongs to the periodic orbit associated to [7],
the translation on the fiber ker ¢ by the flow 1), at the returning time,
is given by £9(7).

For every v € I — {e}, let £2(+) be the projection of the period £.(7) on
ker ¢, using the decomposition V' = ker ¢ @ u,,. Remark that, for any v € V
and v € I' — {e}, one has

Y= 74 v+ L)) = (7=, 7,V = Lpoc(Mug) = W) (7=, 74, 0).

This is to say, £9(v) is the displacement on ker ¢ of the flow w?, over a
point of the form (y_,v4,v), at the return time p(£c(7)) = Lpoc(y)-
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Consider also F, = F? + (¢ o F.)u,, using this same decomposition.
Equation (3.2) implies that

Fldm, =0,
TM

&w=/’w.
[v]

Since {/; and w? are conjugated one has, for p € T*M of the form (y_, vy, 1),

moreover one has

R Lpoc()
wwmmw:@wfl F@bap)ds) = (p,v + £2(7)).

Hence,

é«pOC(’Y)
E%wz—/' fpds=— | fooF.,
0

(]
by equation (2.1) with f therein equal to ¢ o F.. LivSic’s Theorem 2.0
implies that the functions F? and —fp o F, are LivSic-cohomologous for
the flow ¢, thus

0= /Fcodmgp = —/fgaochmw = —/fdmw#/cpochm¢.
This finishes the proof. O

Mixing properties of the action of V on I'\(02 T x V). Now that
we have a good description of T'\(0%T" x V), together with the action of
V, we can use Markov codings and a theorem of Thirion [30], to prove a
mixing property.

Consider ¢ € £}, with hyoe < 00, and u, € uy, such that ¢(u,) = 1.
For vg € ker p and t € RT, denote by w/"™ : T\ (92T x V) — T\ (02T x V)
the map induced on the quotient by

(z,y,v) = (2, y,v — tu, — Vtvy).

If | - | is a Euclidean norm on V, denote by I = II'l : kerp — R the
function defined by

2
*Jug|* = (v, up)

(3.3) I(v) =
THEOREM 3.0. — Let ¢ : I' X d5,I' — V be a Hdélder cocycle, such

that the group generated by its periods is dense in V. Fix a linear form
¢ € £} such that hyo. < 00. Then there exists ¢ > 0 and a Euclidean norm
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| - | on V such that given two compactly supported continuous functions
Jos f1 : T\(0AT x V) — R, one has, for every v € ker @,

(2rt) A V=D2Q(fo - frowf ™) — ce 020, (f0)Q0p(f1),
ast — oo.

The remainder of the section is devoted to the proof of Theorem 3.0.

Applying Proposition 3.0, we get a Holder reparametrization of the geo-
desic flow v, together with a Holder-continuous map f : T* M — ker ¢ and
E:T\(0%T x V) — T'M x ker ¢ that conjugates:

- the actions of ker ¢ on I'\(§%T x V) and on T M x ker ¢,
- the flow w? on I'\(94T x V) with the flow 1) = (¥;)ser on TTM x
ker ¢, defined by equation (3.1).

We will thus study mixing properties of

v@wwMM@m—AfW@m—ﬁny

Consider a Markov coding (3,7, r) for ¢ (Remark 2.0). According to
equation (2.1), there exists an equilibrium state of the shift ¢ : ¥ — X,
denoted by v,, corresponding to the measure mcp# via the Markov coding,
i.e. for every measurable function G : T*M — R one has

r(x)
(3.1) Gdm,* = frldl/gp/z/o G(¢s(mz))dsdv,(x).

TM

Define K : ¥ — V by

r(z)
K@) =r@ug + [ f(w.(r)ds
0
and K : 2 xV = X xV by K(z,v) = (0z,v — K(z)).
LEMMA 3.0. — Themap w: X x V — T'M x ker ¢, defined by

@(v)
E@%U)Z(¢¢@ﬂﬂxﬁv-—¢@ﬂuw—lé F (s (m))ds)

= Yoo (2,0 — P(v)uy),

is K -invariant, and induces a measurable isomorphism between the measure
induced on (¥ xV)/K by v, ®Leby and a positive multiple of the measure
m@# ® Lebyer », 0n TYM x ker ®.
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Proof. — Let’s show that 7 is K -invariant, the proof is an explicit com-
putation. Remark that Property i) in the definition of Markov coding states
that, for every x € ¥ and ¢ € R, one has ¢;_,(,)(7(0x))) = (7 (x)). Now,

A~

E(K(:C, ’U)) = @Z\@(U—K(I))(W(Ux)v v = K(‘r) - QP(IU - K(x))utp)
Observe that

—r(x) 0
- / F(a(m(o)))ds = — / F (s sy (o)) ds =
0 r(x)

0

r(x)
- f(Ys(mx))ds =/ f(s(m(ox)))ds.
r(z) 0

Recall that K (z) = r(z)ug + f; f(s(72))ds, hence

N —~ r(z)
x(K(2,0)) = Yo (v)—r(a) (T(02),0 = /0 f(s(mz))ds — p(v)uy) =

~ () —r(x)
Doty (@), 0 — (0t — / F (s (m)) s — / F(a(n(o)))ds.

This proves the K-invariance. The remaining statements follow from equa-
tion (3.1) and Property ii) of Markov codings. O

Hence, the flow 1Z is measurably conjugated to the translation flow on
(¥ x V)/K, in the direction given by u,. Remark that, since Proposition
3.0 states that [ fdmjf = 0, equation (3.1) applied to G = f yields

/Kdl/ga:(u¢+/fdmﬁ)/rdl/¢:u¢/rduw.
by b by

Moreover, this conjugation also conjugates the actions of ker ¢ on T'M x
ker ¢ and on (X x V)/K.

Observe that the periods of K are the periods of the Hélder cocycle c,
and remark that ¢ o K = r > 0. Theorem 3.0 is thus a consequence of
Proposition 3.0, and the following theorem due to Thirion [30], applied to
V=",

THEOREM 3.0 (Thirion [30]). — Let ¥ be a subshift of finite type and
K : ¥ — V a Hélder-continuous map such that the group generated by
its periods is dense in V. Assume there exists ¢ € V* such that ¢ o K is
Livsic-cohomologous to a positive function. Consider an equilibrium state
v of o and denote by

Tz/KdZ/EV.
b
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Define K : ¥ xV — £ x V by K(z,v) = (o(x),v — K(z)). Then there

exists a Euclidean norm |-| on V such that given two compactly supported

continuous functions fo, f1 : (X X V)/f( — R, and vy € ker ¢, one has
(2mt)(dimV—1)/2 / fo(@,v) fr(z,v —tT — VE vy )d(v @ Leby)

(ExV)/K
converges, as t — 0o, to

ce—1(wo)/2 / fod(u ® Lebv) / fld(lj ® Lebv),
(ExV)/K (ExV)/K

where ¢ > 0 is a constant and I(vy) = (|vo|?|7|2 = (vo, 7)%)/|7|2.

Proof. — Let us give some hints on the proof for completeness, the ba-
sic method is that of Guivarc’h-Hardy [11]. Consider a Holder-continuous
function g : ¥ — R, and the associated Ruelle operator, defined by

LyT)(@)= Y e *WT(y),
yEX:io(y)=x
where T : ¥ — R is Holder-continuous. It is a standard fact that g can be
assumed to be normalized such that the equilibrium state v, is the unique
probability measure on X such that Ly = v. One then considers the semi-
Markovian chain on 3 x V defined by

Pawy = D, € %80k
yeSio(y)=x
The proof then consists on explicitly verifying the hypothesis of Babillot
[1, Theorem 2.9], see Thirion [30] for details. O

4. Convex representations and the Weyl chamber flow

We are now interested in studying representations I' — G, of the fun-
damental group I' of a closed connected negatively curved Riemannian
manifold, admitting equivariant maps from J,,I' to some flag space of a
connected, noncompact real-algebraic semisimple Lie group G.

Let K be a maximal compact subgroup of GG, and consider 7, the Cartan
involution on g = Lie(G) whose fixed point set is the Lie algebra of K.
Consider p = {v € g : 7v = —v} and a a maximal abelian subspace
contained in p.

Let X be the set of roots of a on g. Consider a closed Weyl chamber
at, ¥ the set of positive roots associated to a™, and II the set of simple
roots determined by ¥%t. Let W be the Weyl group of ¥, and denote by
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ug : a — a the longest element in W, which is the unique element in W
that sends a®™ to —a™. The opposition involution i : @ — a is defined by
i= —Ug-.

To each subset 6 of II, one associates two opposite parabolic subgroups
of G, Py and ]59, whose Lie algebras are, by definition,

p=ae Pa.se P oo

aext ac(Il-0)
and
o= Po.e P oo
aext ae(I1-0)

where (0) is the set of positive roots generated by 6, and
o ={weg:|v,w] =alv)w Vv € a}.

Every pair of opposite parabolic subgroups of G is conjugated to (Pp, 159)
for a unique 6, and every opposite parabolic subgroup of Py is conjugated
to P, : the parabolic group associated to

i0={aoi:aecb}.

Fix from now on a nonempty subset of simple roots § C II and let

( ) = G/Py. The space g x Fy has a unique open G-orbit, denoted by
Z5.

DEFINITION 4.0. — A representation p : I' — G is f-convex if it admits

two Hélder-continuous p-equivariant maps, £ = £, : OscI' = Fy and n =

o Occl' = Fig, such that whenever x # y in OxI', the pair (n(z),{(y))
belongs to y{,@)

The space 11 = % is the Furstenberg boundary of the symmetric space
of G, hence, a II-convex representation is called hyperconvex.

We recall some definitions from Benoist [2]. An element g € G is proximal
in Zy if it has an attracting fixed point on .%y. This attractor is unique and
is denoted by gi. The element ¢ also has a fixed point ¢ on .%; ¢, which is
the attractor for g~ on % 4. For every x € %y such that (¢% ) € ,/0(2),
one has g"x — gi. The point g? is called the repelling hyperplane of g.

LEMMA 4.0 ([26, Section 3]). — Let p : T' — G be a Zariski-dense -
convex representation. Then for every v € T' — {e}, p(7) is proximal in %y,
&(y4) Is its attracting fixed point and n(vy-) is the repelling hyperplane.

The equivariant functions & and n of the definition are hence unique,
since attracting points v are dense in 0T
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Busemann cocycle of p. To a #-convex representation p : I' = G, one
associates a Holder cocycle on 0,,I'. In order to do so, we need Busemann’s
cocycle of G, introduced by Quint [20].

The set .# is K-homogeneous, denote by M the stabilizer of [P] in K.
One defines o1 : G X % — a to verify the following equation

gk = lexp(on(g, kM))n,

for every ¢ € G and k € K, using Iwasawa’s decomposition of G =
K exp(a)N, where N is the unipotent radical of P.

In order to obtain a cocycle only depending on the set %y (and G), one
considers

the Lie algebra of the center of the reductive group Py N Py. Consider also
P : @ — ag, the only projection invariant under the group Wy = {w € W :
w(v) = vV € ag}.

Remark 4.0. — One easily verifies the following relation: p;g = iopgoi.
Quint [20] proves the following lemma.

LEMMA 4.0 (Quint [20, Lemmas 6.1 and 6.2]). — The map py o on
factors trough a map og : G X %y — ag. The map oy verifies the cocycle
relation: for every g,h € G and x € %y, one has

09(9h7x) = 0—9(97}“)3) + O'@(h,l’)-

The cocycle associated to a f-convex representation 3) = 8p : ['x 0o ' —
ag is defined by

Bo(v,2) = oo(p(7),&(x)).
Denote by A : G — a™ the Jordan projection, and define \g : G — ay by
Ao(9) = po(Ag))-

LEMMA 4.0. — Let p: I' = G be a Zariski-dense §-convex representa-
tion. Then the period of By for v € T' — {e}, is

Bo(v:v+) = Aa(p(7))-

Proof. — The proof follows from Lemma 4.0. See [27, Lemma 7.5] for
details. 0

Remark that a f-convex representation is also (by definition), i #-convex.
Define then By : T' x 05" = ag by B¢ = iSig. One has the following.

LEMMA 4.0. — The pair {8, Bg} is a pair of dual cocycles.
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Proof. — The proof follows from Remark 4.0, together with Lemma 4.0,
and the fact that i(A(g)) = A(g™!), for every g € G. O

Consider .Z3,, the closed cone associated to By. Since £, is contained
in pg(a™), it does not contain any line, and thus the dual cone .,ngg has non
empty interior.

LEMMA 4.0. — Let p: I' = G be a Zariski-dense 6-convex representa-
tion, and consider ¢ in the interior of the dual cone £ , then the cocycle
wofs:I'x 0o = R has finite and positive exponential growth rate h,.

Proof. — The proof follows exactly as [27, Lemma 7.7]. O
Applying Corollary 3.0 to the cocycle Sy, one directly obtains:

COROLLARY 4.0. — Let p: I' — G be Zariski-dense 6-convex represen-
tation, then the action of ' on 0%T" x ag via 3y is properly discontinuous.

Even though we will not use it on this work, we remark that Lemma 4.0,
together with [27, Corollary 4.1], imply the following counting result:

COROLLARY 4.0. — Let p : I' = G be a Zariski-dense 0-convex repre-
sentation, and consider ¢ in the interior of £ . Then there exists hy > 0,
such that

hote "' #{[y] € [I] primitive : p(Ao(p7)) <t} — 1,

as t — oo.

Gromov product. The purpose of this section is to define a Gromov
product for the pair {3y, Bp}. We begin with the following result of Tits
[31] (see also Humphreys [14, Chapter XI]). Recall that a representation
A : G — PGL(d,R) is proximal if there exists ¢ € G such that A(g) is
proximal in P(R?).

PROPOSITION 4.0 (Tits [31]). — For each a € II there exists a finite
dimensional proximal irreducible representation A, : G — PGL(V,,), such
that the highest weight x, of A, is an integer multiple of the fundamental
weight w,,. Moreover, any other weight of A, is of the form

Xa—a—Zn,@,é’,

Bell

with ng € N.

Fix a nonempty subset 6 of IT and consider A, : G — PGL(V,), a
representation given by Tits’s proposition for a € . Since A, is proximal
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and «a € 6, the parabolic group Py is contained in the stabilizer of a line in
P(V,,). Thus one obtains a continuous equivariant map &, : %y — P(V,,).

The dual representation A% : G — PGL(V) is also proximal, and its
highest weight is x, i. Hence, one obtains another equivariant map 7, =
o Fio — P(VF). Moreover, if (z,y) € 976(2) then

Na(2)(€a(y)) # 0.

Consider a scalar product on V, invariant under A,(K) such that
Ay (expa) is symmetric. The Euclidean norm || ||, induced by this scalar
product verifies

log[[Aa(9)lla = xa(alg)),

for every g € G, where a : G — a* is the Cartan projection (observe that
the operator norm only depends on Ry || ||a)-

LEMMA 4.0 (Quint [20, Lemma 6.4]). — For every a € § and v € &, (x)
one has
A0(g)0ls

Xa(Ug(g,m)) :log HUH

The set {wqlq, : @ € 0} is a basis of aj; and hence s0 i {Xa/|ap }acs- Thus,
defining

lo(v)l
lellallvlla
for any ¢ € n,(z) and v € £,(y), provides a definition of ¥. Moreover, no-
tice that if (x,y) € 329(2) are such that &, (z) L kern,(y) for the Euclidean
norm || || and all @ € 0, then

Xa(%y(2,y)) = log

(4.1) Gy (x,y) = 0.
LEMMA 4.0. — For every g € G and (z,y) € 99(2), one has

Go(g2,9y) — Yo (x,y) = —(igi0(g, ) + 00(9,9))-

Proof. — For any norm || || on a vector space V, every g € PGL(V') and
every (p,v) € P(V*) xP(V) — {(¢,v) € P(V*) x P(V) : po(v) = 0}, one has

-1
log \soog_l(gv)\ e Je@ el llgell
leog=lgol lellol el [[o]
The lemma follows from this formula together with the definition of ¢ and
Quint’s Lemma 4.0. g

The following corollary is immediate.
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COROLLARY 4.0. — Let p : I' = G be a Zariski-dense §-convex repre-
sentation. The function [-,-] : 0T — ay defined by

[SC, y] = %(ﬂ(f)a f(y)),
is a Gromov product for the pair {3y, Bg}-

Mixing. We need the following theorem of Benoist [3]:

THEOREM 4.0 (Benoist [3, Main Proposition]). — Consider a Zariski-
dense subgroup A of G. Then the group generated by {\(g) : g € A} is
dense in a.

Recall that the Bowen-Margulis measure of the pair {8y, 3s} for ¢ €
int(Z5) is the measure Q, on T'\(93,T x ag), induced on the quotient by

e—hw[w]wm ® o ® Lebas’

where 1, and fi, are the Patterson-Sullivan probability measures with
cocycles hyp o By and hyp o Bg, respectively. Benoist’s theorem (and the
continuity of pp) guarantees the missing hypothesis of Theorem 3.0, applied
using ¢ = By, and we obtain the following result.

THEOREM 4.0. — Let p : I' — G be a Zariski-dense 0-convex repre-
sentation, and consider ¢ € int(Z3, ). Then there exists a Euclidean norm
| - | on a such that, for any two compactly supported continuous functions
fo, f1 : T\(0AT x ag) — R and any vy € ker ¢, one has

(2mt)(dimeo=D2Q (fo - frow ™) — e 12Q (f0)Q0(f1),

ast — oo.

The growth indicator function. Consider a G-invariant Riemannian
metric on X, and || || the induced Euclidean norm on a, invariant under the
Weyl group. Recall that if g € G, then ||a(g)| = dx ([K], g[K]). Consider a
Zariski-dense discrete subgroup A of G, and define

: <
ety P #1 € A Jalg)] < 5}
s—+00 S

Recall that in the introduction we have defined 1A, the growth indicator
of A.

LEMMA 4.0 (Quint [22, Corollaire 3.1.4]). — Let A be a Zariski-dense
subgroup of G, then one has
Ya(v)

sup = NA.
vea—{0} [Vl
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If p € a* is such that ¢(v) > a(v) for all v € a™ then ||p]| > ha. One
is thus interested in the convex set
Da={pe€a”:p>=9a}

This set is nonempty (Quint [22]) and the linear form O € Da closest to
the origin is called the the growth form of A. One has

(4.1) 1©all = ha.

Since 1 is concave (recall Theorem 1.0), and the balls of || || are strictly
convex, one obtains a unique direction Ryua in Za, which realizes the
upper bound

Ya(v)
sup y
vea—{o} IV

this is called the growth direction of A. Choose ua in the growth direction
such that Oa(ua) = 1.

A linear form ¢ € a* is tangent to ¥ at x if ¢ € Da and ¢(x) = Ya(x).
We say that ¢a has vertical tangent at x, if for every ¢ € Da, one has
o(z) > a(z).

The following remarks are direct consequences of the definitions:

Remark 4.0. — TFor every v € Riua, one has [Oa(v)| = [|Oallllv]] =
Pa(v)||v]], consequently ker © o and Riua are orthogonal for || ||, and ©a
is tangent to 1A at every point of the growth direction R una.

Remark 4.0. — The number of elements of a(A) that lie outside a given

open cone containing ua has exponential growth rate strictly smaller than
ha.

Fix from now on a Zariski-dense hyperconvex representation p: I' = G,
and denote by ¢ : 0I' = F its p-equivariant map. The image ((9-.T") is
the limit set L), and thus

¢x ¢ 020 - LI
is a p-equivariant Hoélder-continuous homeomorphism. Also, the cone £,
is the limit cone £,y of p(I'). One has the following results.

PROPOSITION 4.0 ([26, Corollary 3.13]). — The limit cone of a Zariski-
dense hyperconvex representation is contained in the interior of the Weyl
chamber.

THEOREM 4.0 ([26, Theorem A + Corollary 4.9]). — The growth indi-
cator of a Zariski-dense hyperconvex representation p is strictly concave,
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analytic on the interior of £y, and with vertical tangent on the bound-
ary. If p € int(.iﬂp*(r)) then h,p is tangent to v,y at every point of the
dual direction u,.

Remark 4.0. — Hence, Remark 4.0 and Theorem 4.0 imply that for
a Zariski-dense hyperconvex representation p of I', the growth direction
Ry u,ry is the dual direction (see Definition 3.0) of the growth form © .
Moreover, since 1,y has vertical tangent on the boundary of .Z,r), the
growth direction Ry u,r) is contained in the interior of the limit cone.

Recall that if ¢ is in the interior of f:(r), then the Holder cocycle o Sy
has finite and positive exponential growth rate h,. Ledrappier’s Theorem
2.0 guarantees the existence of a Patterson-Sullivan probability measure
e on O, with cocycle h,p o . The following corollary of Theorem 1.0
and Theorem 4.0 is hence direct.

COROLLARY 4.0. — Let p: I' — G be a Zariski-dense hyperconvex rep-
resentation. For each ¢ tangent to ¢,r), there exists a unique yp-Patterson-
Sullivan measure of p(T"), denoted by v,. Moreover, ¢ induces an isomor-
phism between p, and v,.

Consequently, the map

c1. 92 (2)
(xg><1d.8m1“><a%Lp(F)><a

is a p-equivariant homeomorphism, and induces on the quotients a map
still denoted by ¢ x ¢ x id : T\(92T x a) = p(D)\(L'g}, xa), which is a
measurable isomorphism between the @-Bowen-Margulis measures of p(T")

on each side:
(C X C X ld)*QLp = Xe>

where x,, is the ¢-Bowen-Margulis measure of p(I'), defined in the intro-
duction.

Theorem 4.0 together with Remark 4.0 imply the following mixing prop-
erty of the Weyl chamber flow. Recall that the rank of G is the dimension
of a, and that the Weyl chamber flow is the right action by translations
of exp(a) on p(T)\G/M. If f : p(T)\G/M — R and v € a we denote the
composition of f with the right action of exp(v) on p(I')\G/M by

f oexp(v).

THEOREM 4.0. — Let p: I' — G be a Zariski-dense hyperconvex repre-
sentation. Consider ¢ € int(Z;). Then there exists a Euclidean norm | - |
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on a such that, for all compactly supported continuous functions fy, f1 :
p(T\G/M — R and for all vy € ker ¢, one has

(27Tt)(rank(0)_1)/2xw(f0 - f1 0 exp(tu, + V)
converges to

ce™ T2 (fo)xe (f1)

ast — oo, for a constant ¢ > 0.
The following corollary will be most useful to us.

COROLLARY 4.0. — Let p : ' — G be a Zariski-dense hyperconvex
representation. Then there exists C > 0 such that given two compactly
supported continuous functions fy, f1 : p(T)\G/M one has

eIOmlT / €O W xg (fo- fi 0 exp(u))d Lebg(u)
B(0,T)Na+

— CXQP(F) (fO)X@p(F) (fl)a

asT — oo.

The proof of the corollary follows the exact same lines as Thirion [29,
§12.k] for Ping-Pong groups. We give a sketch of this proof for completeness.

Proof. — In order to simplify notation, denote by © = © 1), H = ker ©
and u, = u,r). Consider the change of variables G : R x H — a given by

Yp +Vtw.

(A

Since u, is orthogonal to H (see Remark 4.0), its Jacobian is (v/#)4m# =
t(rank(G)fl)

G(t,v) =t

/2. The integral we are interested in becomes

/6_”9“T /oz‘lgl‘t(ﬁ)dimHX@(fO'floeXp(G(taU)))lB(T)(t7U)dtdLebH(U)a
H 0

where B(T) = {(t,v) € R x H : G(t,v) € a*, [|G(t,v)|| < T}, and 14 is
the characteristic function of a subset A.
The conditions ¢ > 0 and |G(t,v)|| < T imply that

1
0 <t<5(VI"+ 477 ~ [v]]*) = R(T,v).

Note that R(T,v) — T — —||v||?/2 as T — oo, and observe that for every
v € H there exists to such that, for all t > t¢, one has G(t,v) € a*. This,
together with Theorem 4.0 applied to

v
G(t,0) = t]|O]lup + VO] —===

Vel
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implies the existence of a Euclidean norm |- | and ¢ > 0 such that

R(Tw) .
e—llenT/ P (VEYIm Hy g (fo - f1 0 exp(G(t,v))) 1 p(r) (t,v)dt
0
converges to
ce~(IONIVIP+ITIIO1=1/200)/2y o (£ )y g (f1)

as T' — oo.

We must now integrate both sides of this limit with respect to Leby, in
order to so we will apply the dominated convergence theorem. Hence, we
need to find an integrable function F': H — R, such that for every v € H
one has

(Tv)
e“@)”T/ el (VEY I o (fo- froexp(G(t,v))) gy (t, v)dt < F(v).
0

Remark that, since I(v) > 0 for all v € H, Theorem 4.0 implies that for all
large enough ¢, one has

(VEY Iy g (fo - f1 0 exp(G(t,v))) < K,

for a constant K independent of v.

Lemma 4.0 below states that there exists a constant x > 0 such that, for
all (t,v) € H x R, with G(¢t,v) € B(T) one has R(T,v) — T < —x|v||?/2.
Hence

R(T,v) )
e—ll@\lT/ el\@\lt(\/;)dlmHXG(fo - fi oeXp(G(t,v)))lB»(T) (t,v)dt <
0

R(T,v)
Kefu@nT/ IO 1 (1, v)dt < KelOIRTD-T) ¢ feo=rlOlIE/2,
0

for a constant K > 0. This last function is clearly integrable on H. This
finishes the proof.
O

LEMMA 4.0. — There exists k > 0 such that for every T > 0, if (t,v) €
B(T) then R(T,v) — T < —klv||?/2.

Proof. — Recall that the angle between two walls of a™ is at most 7/2,
hence, since u, € int a™, there exists 6y € (0,7/2) such that if G(¢,v) € at,
then the angle between G(t,v) and tu,/||u,| is at most fy, i.e.

”\/;‘;(U” < tan(@o).

From now on, standard computations imply the lemma, see Thirion [29,
page 184] for details.
|
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5. The orbital counting problem

General aspects. The standard reference for this subsection is the book
by Guivarc’h-Ji-Taylor [12]. Recall that G is a connected, noncompact real-
algebraic semisimple Lie group, X its symmetric space and I' is the funda-
mental group of a closed connected negatively curved Riemannian manifold.

Recall that we have denoted by a : G — a™ the Cartan projection of G.
We will define a new projection a : X x X — a® by a(g-0,h-0) = a(g'h).
Notice that g is G-invariant for the diagonal action of G on X x X, that
la(p, q)|| = dx(p, q) and that

(5.1) i(a(p,q)) = alq,p).

By definition, one has g € K, exp(a(p, q)) - p, where K, is the stabilizer in
G of p.

Remark 5.0. — Observe that there exists kg > 0 such that for every
g € G one has |la(p, g9) — a(g)|| < ko.

Similarly (and abusing notation), we will define the Busemann cocycle
0: % xXxX —aby

(,9-0,h-0)— oy(g9-0,h-0) = U(g_l,x) — o(h_l,a:).

A parametrized flat is a map f : a — X, defined by f(v) = gexp(v) o, for
some g € G. Observe that G acts transitively on the set of parametrized
flats and that the stabilizer of fy : v +— exp(v) - 0 is the group M of
elements in K commuting with exp(a). We will hence identify the space of
parametrized flats with G/M.

A maximal flat is the image on X of a parametrized flat i.e. the maximal
flat associated to f is defined by [f] = f(a) = {gexp(v)-0 : v € a}. The space
of maximal flats is naturally identified with G/MA = .Z?) (recall Hopf’s
parametrization of G on the Introduction). Denote by (Z,Z) : G/M —
F(2) = G/M A the canonical projection.

The following proposition is standard.

PROPOSITION 5.0 (see [12, Chapter III]). —
(1) Let f,g be two parametrized flats, then the function a — R, defined
by
v dx (f(v), g(v)),
is bounded on the Weyl chamber a™ if and only if Z(f) = Z(g).

(2) A pair (p,z) € X x # determines a unique parametrized flat f such
that f(0) = p and Z(f) = «.
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(3) A point (z,y) € F?) determines a unique maximal flat [f,,] such
that Z(f5y) = « and Z(fzy) = .

The usual relation between the Cartan projection and Busemann’s cocy-
cle is given by the following lemma of Quint [20]. Observe that if p,qg € X
are such that a(p,q) € int(at) then, there is a unique parametrized flat
fyq such that f,,(0) = p, and f,,(a(p,q)) = ¢. Denote by z,, = Z(f,,) and
recall that II is the set of simple roots of G.

LEMMA 5.0 (Quint [20, Lemma 6.6]). — Fix p,q € X, then
a(p, 2) —a(q, 2) = 0a,.(p,q) =0,
as minger a(a(p, 2)) - oo.
Given r > 0, define the shadow (on &) of q seen from p of size r, by
O,(p,q) ={Z(f) : f € G/M, £(0) = p, v € int(a™), dx(f(v),q) < r}.

Denote by Bx (p,r) the ball in X of radius r centered at p, and define by

ofme)= U Orpo )
po€Bx (p,r)
and
O;ma)= (] Orlpoa).
po€Bx (p,r)

Finally, for z € .# define the shadow of q seen from x of size r, by
O,(x,q) ={Z(f) : f € G/M, dx(F(0),q) <7, Z(f) = x}.

LeMMA 5.0 (Thirion [29, Proposition 8.66]). — There exists k > 0 such
that, if p,pg € X and r > 0, then for all z € O (p,pg) one has

oz (p, po) — a(p, po)|| < kr-.

Let A be a Zariski-dense discrete subgroup of G, and consider a linear
form ¢ € a* tangent to A on a direction in the interior of Za. Denote
by v, the p-Patterson-Sullivan measure of A (recall Quint’s Theorem 1.0).
Define the o-Patterson-Sullivan density (pp)pex by po = v and

Wp () = e=eloep0)),
dito
Since .# is K,-homogeneous and K, is compact, there is a unique K-

invariant probability measure on .%. This gives an embedding of X on the
space M(.F) of probability measures on .%. The closure of this embedding,
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denoted by X, is called the Furstenberg compactification of X. Observe
that if v € int(a™) and k € K, then

ke’ -0 — Spum

as t — oo, for the weak-star convergence on M(.%), where 0/ is the unit
Dirac mass at kM.

A pair (p,z) € X x Z is in good position (w.r.t. A) if the parametrized
flat f determined by p and z verifies Z(f) € La . Given a,b € R and € > 0,
we will say that a Sbifefa <b<efa.

LEMMA 5.0 (Thirion [29, Lemma 10.7]). — Fix a pair in good posi-
tion (p,z) € X x Z. Then for all but countably many r € Ry one has
Up (00, (z,p)) = 0. Moreover, given € > 0 there exists a neighborhood V,
of x in X such that for all z € V,, and all (but countably many) small
enough r one has

1p(Or(2,p)) ~ 11(Or (2, p))
and if z € V, N X then p1,(OF(2,p)) ~ pp(O,(x,p)).

Proof. — Indeed, the function R% — [0,1] defined by 7 +— 11,(O,(x,p))
is the distribution function of a probability measure in R* , and has only
a countable number of discontinuity points. See Thirion [29, Lemma 10.7]

for details.
O

If p = g -0 € X, define the ¢-Gromov product (or simply Gromov
product) based at p as the map [-,-], = [-,-]7" Z@) 5 R with

1

[, 9]0 = ¢(Gulg 'z, 97 'y)).

Remark 5.0. — Observe that [-, -]p is continuous, and that if p belongs
to the maximal flat determined by (z,y) € #® then [z,y], = 0 (recall
equation (4.1)).

Denote by (f,,)pex the ¢ oi-Patterson-Sullivan density of A. The follow-
ing remark follows from the definitions of (y1,)pex, (7#,)pex and Lemma
4.0.

Remark 5.0. — The measure 67["']Pﬁp ® pp ® Lebg is independent of p.
As said in the introduction, this measure is called the ¢-Bowen-Margulis
measure of A, and is denoted by X,.
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The main theorem. This section is devoted to the proof of the follow-
ing theorem. The method is that of Roblin [25]. Indeed, his method adapts
to our situation with minor arrangements, provided Corollary 4.0. This
was noticed by Thirion [29], who extended Roblin’s method to some higher
rank situations. We will explain here how to overpass the main difficulties
and refer the reader to Roblin [25, Chapitre 4] or Thirion [29, Chapitre 10]
for the minor details.

If p: T' = G is a Zariski-dense hyperconvex representation, denote by
© = O,r) its growth form. Recall that ||©| = h,r) and that © is i-
invariant and tangent to the growth indicator of p(I'). Denote by (up)pex
the ©-Patterson-Sullivan density of p(I'). Note that, with the above nota-
tion, f, = p, for all p € X.

THEOREM 5.0. — Let p : I' = G be a Zariski-dense hyperconvex rep-
resentation, and consider p,q € X, then there exists ¢ = ¢(p,q) > 0 such
that

—jel|T
e~ 19l E : Op(v)a ® Op(y=1)p = Clip @ fiq
yeldx (p,p(v)q)<T

as T — oo, for the weak-star convergence on C*(Xp X X ).

A Zariski-dense hyperconvex representation p : I' — G is fixed from now
on. In order to simplify notation, we will identify T" with p(T), i.e. if p € X

then yp means p(v)p.
For T € Ry, let AT (p, ¢) be the measure on X x X r defined by

Mp,g)=e IO > 5,06,
veTdx (p,yq)<T

If AC % and r > 0, consider the subset C;F(p, A) of X, defined as the
r-neighborhood of

{f(a®) : f € G/M, dx(f(0),p) <, Z(f) € A},
and consider the set C,” (p, A) defined by

{ye€ X:Bx(y,r) C N U f(a™)}.

{4€X:dx (0.p)<r} {FEG/M:f(0)=q, Z(f)€A}

The following proposition is the main step of the proof of Theorem 5.0.

PROPOSITION 5.0. — Consider p,q € X and z,y € .% such that (p,x)
and (q,y) are in good position. Then there exists ¢ > 0 that verifies the
following: for every € > 0 there exists a neighborhood W of (z,y) on
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Xr x Xp, such that for every Borel sets A,B C .F with A x B C W,
one has

limsup X (9. 0)(C5 (p, ) Ci 0, B) < ey (A (B)
— 00
and

liminf A (p, ) (CY (p, A) x €' (g, B)) > e cpup(A)uqg(B).

Proof. — If [f] is a maximal flat and p € X, denote by f? the parametrized
flat such that [f?] = [f], and such that f7(0) is the orthogonal projection of p
on [f]. If v € a, denote by tr, : a — a the translation by v, i.e. tr,,(u) = u+v.
For A C % and r > 0, consider the subsets of G/M defined by

Kt(p,A) = {fP otr, : v € Ba(0,7), dx(f?(0),p) <r, Z(f) € A}
and
K, (p,A) = {fPotr, 1 v € Ba(0,7), dx(fP(0),p) <7, Z(f) € A},

where Bg(0,r) is the ball on a of radius r centered at 0, for the Euclidean
norm || ||. Denote by K,(p) = K,F (p, ) = K, (p, #).

Fix e > 0. Lemma 5.0 applied to (p,x) and (g, y) provides neighborhoods
V; of x and V,, of y, such that for all (but countably many) small enough
r > 0 one has 1,(00,(z,p)) = (00, (y,q)) = 0 and if z € V,, then

11p(Or(2,p)) ~ p1p(Op(z, p))
and if w € V}, then

tp(Or(w, q)) ~ pp(Or(y,q))-
Moreover, for all z € V, N X and w € V;, N X, Lemma 5.0 states that

HP(O;E(Z,p)) ~ ,up(OT(:c,p))
and

11p(OF (w, @) ~ 11,(Ox(y, ).

Consider r < min{l,¢/||0||,e/k,e/||©]|x} such that the last paragraph
holds, where  is the constant given by Lemma 5.0, and such that |O(u)| <
for all u € B4(0,7).

We can assume also that r is small enough such that if z € V. and
w € O,(z,p) then, e~ s £ 1 (Remark 5.0) and similarly for Vy and gq.

We will show that V, x V,, is the desired neighborhood. Consider then
A, B Borel subsets of # such that Ax B C V xV,,. Let us simplify notation
and write KT = K (p,A) and K~ = K (¢, B).
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Given v € I" and T > 0, define Z(~, T') by
E(y,T) = / e®WYe(K - exp(v) Ny - K~ )dLebg(v).
Ba(0,T)Na*

Following Roblin’s [25] method (see also Thirion [29]), we will compute
e—lelr Z (v, T
~yeET
in two different ways. Observe first that Corollary 4.0 gives
e 19T "2(7,T) % eXo (K )Xo (K ™)
ver

for all big enough T and a constant ¢ > 0. Let’s compute then Yo (K™)
and Xe (K ). Remark 5.0 states that

%@ — e_["']P,U/p X Hp X Leba,

hence

Xo(KT) =

/ / / el 1x, (p)(fh o try)dpy(w)dp,(2)d Lebg (v).
vEBL(0,r) Jz€A JweO, (z,p)

Since w € O,.(z,p) (and by our choice of r) one has e 2l £ 1) thus
Ro(K™) & vol(Ba(0.7)) [ 1O, (2o (2)

Since z € A C V, and by the definition of V,, we have u,(O0,.(z,p)) ~
tp(Op(x,p)), hence

~ 2

R () % vol(Ba(0.1)1an (O (2, p) ity (A).

Analogous reasoning, using the equality Yo = e - ]quq ® g @ Lebg, gives
2e

Xo (K ™) ~ vol(Ba(0,7))1tq(Or(y, q)) 1tq(B). Hence, if we denote by
H = vol(Ba(0,7))*114(Or (y, @) 1p(Or (2, D)),

one has
_ — 4
(5.1) e~ 19T Z E(7,T) ~ cpp(A)pq(B)H,
vel

for all big enough T'. Notice that, since (p, z) and (g, y) are in good position,
one has H # 0. This will allow us later to divide by H

(2) Even though Corollary 4.0 is stated for continuous functions with compact support,
g y

a standard measure-theoretic argument permits to extend it to characteristic functions

of compact sets.
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We will now explicitly compute >_ . E(v,T).

Remark 5.0. — Denote by Vi = C{ (p, A)NV, and V5 = C; (¢, B)NV,,
and denote by V; = C{ (p, A) NV, and V; = C} (¢, B) N'V,,. Then there
exist constants L > 0, independent of ¢ and T, and C' > 0 independent of
T, such that for all big enough T one has

D EMT -2r) <C+e"HY 1,0 () 1ys (v 'p),
yel

where the sum is over all v € T' such that dx(p,vq) < T and (yq,7 " 'p) €
Ci (p, A) x Cf (¢, B), and moreover

= _ —Le -1
Y E(MT+2r) > -C+e ™ HY 1, (va)1,_ (v 'p),
~y€r
where the last sum is over all v €I such that dx (p,vq) < T and (yq,7 " 1p) €
Cy (p, A) x C1 (g, B).

Proof. — We will only show the upper bound (the lower bound being
analogous). Observe that, if for some v € T" one has Z(v,T — 2r) # 0, then
K" . exp(v)Ny- K~ # 0,
for some v € B4(0,T — 2r) Na™. This intersection is contained in

(O} (va.p) NB) x (O (p.7q) N A) x a,
and necessarily one has:

i) v € Bq(a(p,~q),2r), in particular dx (p,vq) < T, and
ii) (v¢,7"'p) € Cf (p. 4) x CY (¢, B).
Observe that Yo (K™ - exp(v) NyK ™) =

/ / / o—lw.al,
u€B4(0,r) J2€O0F (p,vg)NA JweOF (vq,p)NyB

X 1g, (yq) (f2y, © trugy ) dpty (2)dpy (w)d Lebg (u).

For (z,w) € (O (p,vq) N A) x (O (v¢,p) N yB), one has e~ £ 1 and

/ eOW v, 1k, (yq) (fl,0truty)d Lebg(v) < 39@P9) yol(B,(0,7)).
Ba(0,T—2r)

One concludes that > E(7,T —2r) <
C + "¢ vol (B4 (0, 1))?

> @D, (OF (74, 0))1p(OF (. 70)) Ly (V@) Ly (v '),
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for some Ly > 0 independent of T, where the sum is over all v € T" that
verify i) and ii) above, and C is a constant independent of T, determined
by the (finitely many) v € T" such that

(va:v~'p) € CF (p, A) x CF (g, B) = Vo x V,
(which is bounded in X x X). Since v¢ € V, one has u,(OF (vq,p)) ~
tp(Or (2, p)) and the right hand side of the last equation becomes
C + €™ vol(B,4(0, r))Q,up(Or(x,p))
O(alp,79)) + -1
xY e 1p(OF (0, 70) 1y (V) 1y (7 'P).
Using Lemma 5.0 and the fact that g belongs to V,{ C V., one obtains

eOalpya)) £ Oo=(p7a))

for any z € O (p,vq). Applying the definition of (i,,)mex, one has that

OalP10)y (OF (p,vq)) ~ / PP qp, (2) = 11y (OF (9, 74))
O (p.vq9)

= 11g(OF (v 'p, @) ~ 1q(Or(y, ),
since v~ lp € VB+ C Vy. Hence, for some constant L > 0
D ST —2r) CHeMHY 1+ (y9)Lyz (v 'p),
yel

where the sum is over all v € T' that verify i) and ii) above. This finishes
the proof of the remark. a

The proof of the proposition will be completed when we compute
e~ IeI(T—2r) Z (v, T — 2r),
yel
assembling equation (5.1) and Remark 5.0. For all big enough T', one has
e epp(A)pg(BIH < e IOIT=20 % "= (5, T — 2r) <
el
—lelr Loe -1
1917 (Co +e"°HY "1+ (va) Ly (v 'p)),
for some Lg independent of ¢ and T (recall that r < £/||©]) and C inde-

pendent of T, where the sum is over all v € T' that verify i) and ii) above.
Since Cj is independent of T" and since H # 0, one obtains

timinf 7 (p, ) (CF (p, A) x Cf (4, B)) > €™ cpy (A)pg(B).
—00

The other inequality follows similarly. (|
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We continue with the proof of Theorem 5.0. For &/ C a¥, define the
measure A\ (p,q,o7) on X x X by

N (p,q, ) = e I®IT > Byg ® 641,
vela(p,vq)€, dx (p,yq)<T

Observe that AT (p,q) = AT (p, ¢, a™).
We will need the following lemma.

LEMMA 5.0. — Let A be a Zariski-dense subgroup of G. Consider a
continuous function f: Xp X Xp — R and an open cone € with up € €.
Then

e "N " f9q,97'p) = 0
as t — oo, where the sum is over all g € A such that dx(p,gq) < t and
a(p.99) ¢ ¢

Proof. — The lemma follows directly from Remark 4.0 together with
Remark 5.0. ]

In our current notation, the last lemma reads as follows.
LEMMA 5.0. — Let 6 C a™ be an open cone with ur € €, then
M(p,q,€) = X (p,q) = 0,
for the weak-star convergence on C(Xr x Xf), as T — oo.

Proof of Theorem 5.0. — It remains to overpass the good position hy-
pothesis on Proposition 5.0.

Notice that if z € % then one can choose z € JI" such that (z,{(z)) €
F2) | where ¢ : 0, — Z is the equivariant map. Fix then (z,y) in
F x Z and consider (z,w) € ((0xI')? such that (z,2) and (y,w) belong
to .# ). Choosing po on the maximal flat determined by (z, z), and gy on
the maximal flat determined by (y,w), one gets that (pg, z) and (qo,y) are
both in good position.

Applying Proposition 5.0 to the pairs (pg,z) and (go,y) and a given
€ > 0, one obtains a neighborhood W of (z,y) € Y; such that if A x B is
a Borel set contained in %2 N W, then

(5:1)  Timinf A (po, o) (CY (po, A) ¥ C1 (g0, B)) > €™ iy (A) gy (B)-

Discarding finitely many v € T', we can assume that if vgy € C; (po, A)
and yv~'p € Cf (¢, B), then (yqo,7 'p) € W. Moreover, if W is small
enough, Quint’s Lemma 5.0 together with Proposition 4.0 imply that for
all such v € T" one has

lla(po, va0) — a(p, vq0) — 0= (po,p)|| < e
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and
la(go, 7~ 'p) — alg,7~'p) — oy(q0, )|l < e
Equation (5.1) and G-invariance of a imply that a(qo,y~'p) = i(a(p,7q0)),
and since i2 = id one has
lla(p, ¥q0) — a(p,vq) —ioy(qo, )|l < €.

Consequently,
lla(po, va0) — alp,va) — (02(po, p) +1i0y(q0, )| < 2e.
Hence,

O(a(po,790)) < O(a(p,7q)) + O(ox(po,p) +icy(qo,q)) + 9,

for some ¢ (O is continuous at 0).
Recall that if v € R-u,ry then |©(v)| = [|©]|[|v|| (Remark 4.0). Consider
then a closed cone ¢, with u,r) € int ¢, such that for all v € ¢ one has

O(v) =[0()| ~ [Oll]v]l.

Notice that, since a(po,yqo) is at bounded distance from a(p,vq) (inde-
pendently of v € T', see Remark 5.0), we can consider an open cone %’
with w,ry € €', such that if v is big enough, and a(p,vq) € €', then
a(po,vq0) € €. Hence, for all big enough v € T' such that a(p,vq) € €’ one
has

dx (o, 1d0) < dix (p7q) + @@wpo,p) Loy (g0,0)) + )-

Lemma 5.0 together with equation (5.1), imply that
hTHi}OI(l_’f )\T(pOa qo0, Cg) (C;’_ (poa A) X Oi‘r (qu B) P eigciu‘po (A):U‘QU (B)
Denoting by

, 1 .
T =T+ M@(Ux(p(bp) + I(O'y(CIO,C_I))) + 6’

one concludes that (using again Lemma 5.0) for all big enough T one has
M (p, a)(CF (p, A) x Cf (¢, B)) 2 AT (p,q,¢")(C{ (p,A) x Cf (¢, B)) — ¢ =

e~ Pop)+i(oy (@, \T" (0 g0 @) (CiF (po, A) x Cf (qo, B)) — &.
Thus, lim infr AT (p, ¢)(Cf (p, A) x Cf (¢, B)) >
€28 02 (0 (po,p)+i oy(qo,q)))MpO (A)pig,(B) —e.
Finally, by definition of (tt,)mex, one has
e@(o'w(P()vp))upo (A) 5 Mp(A)7
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and
ePlou(@a)y (BY & p,(B).

One concludes that
liminf X (. q) (CF (b, 4) x Cf (4. B)) > ¢~ *eity (A)py(B) — <.
— 00

as desired. The other inequality is analogous, and a standard partition of
unity argument finishes the proof of the theorem (see Roblin [25, pages
62-63] for more details). O
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