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TENSENESS OF RIEMANNIAN FLOWS

by Hiraku NOZAWA & José Ignacio ROYO PRIETO (*)

Abstract. — We show that any transversally complete Riemannian foliation
F of dimension one on any possibly non-compact manifold M is tense; namely,
M admits a Riemannian metric such that the mean curvature form of F is basic.
This is a partial generalization of a result of Domínguez, which says that any
Riemannian foliation on any compact manifold is tense. Our proof is based on
some results of Molino and Sergiescu, and it is simpler than the original proof by
Domínguez. As an application, we generalize some well known results including
Masa’s characterization of tautness.
Résumé. — On montre que tout feuilletage riemannien F de dimension un

transversalement complet sur une variété M , éventuellement non compacte, est
étiré ; c’est à dire, il existe une métrique riemanniene sur M pour laquelle la forme
de courbure moyenne de F est basique. Ceci est une généralisation partielle d’un
résultat de Domínguez, qui dit que tout feuilletage riemannien sur une variété com-
pacte est étiré. La preuve s’appuie sur certains résultats de Molino et Sergiescu, et
elle est plus simple que la première démonstration de Domínguez. Comme appli-
cation, on généralise certains résultats bien connus, comme la caractérisation des
feuilletages tendus par Masa.

1. Introduction

1.1. Background

A foliated manifold (M,F) is called taut if M admits a metric g such
that every leaf of F is a minimal submanifold of (M, g); in other words,
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M admits a metric such that the mean curvature form of F is trivial.
The tautness of foliated manifolds has been studied from the dynamical or
geometric point of view after the characterization of tautness in terms of
foliation cycles due to Sullivan [33]. For Riemannian foliations, tautness is
remarkably of topological nature, and its relation to cohomology has been
studied by many authors [16, 7, 11, 13, 23, 9, 19, 2]. In particular, as con-
jectured by Carrière [7] and finally proved by Masa [19] using Sarkaria’s
smoothing operator [31], an oriented and transversally oriented Riemann-
ian foliation is taut if and only if the top degree component of the basic
cohomology is nontrivial. Álvarez López [2] defined the so-called Álvarez
class to characterize tautness of Riemannian foliations and removed the
assumption of the orientability from Masa’s characterization.
Based on these works on tautness of Riemannian foliations, Domínguez

proved the following result.

Theorem 1.1 ([8, Tenseness Theorem in p. 1239]). — Any Riemannian
foliation on a closed manifold is tense.

Here, recall that a foliated manifold (M,F) is called tense ifM admits a
metric such that the mean curvature form of F is basic. Theorem 1.1 can be
regarded as a generalization of Masa’s characterization of tautness, and has
many applications in the study of geometrical and cohomological properties
of Riemannian foliations (see, for example, [17, 18, 34, 27, 28, 29]).

1.2. Main result

In this article we will generalize Theorem 1.1 to Riemannian foliations
of dimension one on possibly non-compact manifolds.

There is one remarkable difference between the non-compact and the
compact cases. By [17, Eq. 4.4], the mean curvature form κ of a Riemannian
foliation with a tense metric on a compact manifold is always closed. On the
other hand, there exists a Riemannian foliation on a non-compact manifold
with a tense metric whose κ is not closed [4, Example 2.4]. Based on this
fact, we say that a foliated manifold (M,F) is strongly tense if M admits
a Riemannian metric such that the mean curvature form of F is basic and
closed.
The main result of this paper is the following.

Theorem 1.2. — Any transversally complete Riemannian foliation of
dimension one is strongly tense.
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TENSENESS OF RIEMANNIAN FLOWS 1421

We refer to Definition 2.1 for the definition of transversally completeness
of Riemannian foliations. Note that some authors use this terminology with
a different meaning.

Remark 1.3. — For Riemannian foliations of any dimension which can
be suitably embedded into a singular Riemannian foliation on a compact
manifold, strongly tenseness was proved in [28, 29] by the application of
Domínguez’s theorem. For any Riemannian foliation such that the space
of leaf closures is compact, the strongly tenseness was proved in [25, The-
orem 1.9].

Based on Theorem 1.2 we ask the following question.

Question. — Is any complete Riemannian foliation strongly tense?

Here a Riemannian foliation is called complete if the holonomy pseu-
dogroup is complete as a pseudogroup. Due to Salem [22, Appendix by
Salem], it is the largest known class of Riemannian foliations for which
Molino’s structure theorems hold.

The first essential point in the proof of Theorem 1.2 is the following di-
chotomy, which is specific for dimension one (see Remark 3.1 for a preceding
result of Molino).

Theorem 1.4. — Let M be a connected manifold with a transversally
complete Riemannian foliation F of dimension one. Then, one of the fol-
lowing holds:

(i) (M,F) is an R-bundle or
(ii) the closure of every leaf of F is compact.

Since Theorem 1.2 is clearly true for R-bundles, it is essential to prove
Theorem 1.2 in the case where the closure of every leaf is compact. In
turn, Molino’s structure theorem remains true in this case even if M is
non-compact (Theorem 4.2). Thus we can apply some results of Molino
and Sergiescu involving reductions of the structure group of torus bundles
(Section 4.3) to show Theorem 1.2. Even in the case where M is compact,
our proof is new and simpler than the original proof of Theorem 1.1 due
to Domínguez, as we make no use of Sarkaria’s smoothing operator [31].

1.3. The Álvarez class

For a Riemannian foliation F on a closed manifold M with a bundle-
like metric g, the orthogonal projection κb of the mean curvature form κ

TOME 64 (2014), FASCICULE 4



1422 Hiraku NOZAWA & José Ignacio ROYO PRIETO

to the space of basic 1-forms with respect to the natural inner product is
closed [2, Corollary 3.5]. The cohomology class [κb] ∈ H1(M/F) is inde-
pendent of g ([2, Theorem 5.2]) and called the Álvarez class of (M,F).
The triviality of the Álvarez class of (M,F) characterizes tautness [2, The-
orem 6.4]. In turn, the example [4, Example 2.4] of a Riemannian foliation
on a non-compact manifold with basic but non-closed κ shows that the
Álvarez class is not defined in general for Riemannian foliations on non-
compact manifolds. Nevertheless, Theorem 1.4 implies the following result
for Riemannian foliations of dimension one (see Section 4.5 for the proof).

Theorem 1.5. — Let (M,F) be a connected manifold with a transver-
sally complete Riemannian foliation of dimension one with a strongly tense
metric g. If (M,F) is not an R-bundle, then the cohomology class of the
mean curvature form κ is given by the logarithm of the holonomy homomor-
phism π1M → R of the determinant line bundle of the Molino’s commuting
sheaf of (M,F). In particular, [κ] is independent of g.

We will use the following terminology below, which is well-defined by
Theorem 1.5.

Definition 1.6. — For a connected manifold M with a transversally
complete Riemannian foliation F of dimension one which is not an R-
bundle, the cohomology class [κ] of the mean curvature form of any strongly
tense metric is called the Álvarez class of (M,F).

Remark 1.7. — It is easy to see that an R-bundle is always taut. But
there exists an R-bundle with a strongly tense metric such that the coho-
mology class of the mean curvature form is nontrivial (see [25, Proposi-
tion 9.3]). Below the Álvarez class of an R-bundle is defined as the trivial
class for a conventional reason.

Remark 1.8. — For Riemannian foliations of any dimension which can
be suitably embedded into a singular Riemannian foliation on a compact
manifold, the Álvarez class is well-defined as shown in [28, 29] by the ap-
plication of Domínguez’s theorem.

1.4. Applications

1.4.1. Characterization of tautness

The basic cohomology is the de Rham cohomology of the leaf space in
a sense (see, for example, [22, Appendix B]), and its relation to tautness
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of Riemannian foliations was studied by many authors mentioned in the
introduction.
First, we state the twisted Poincaré duality of the basic cohomology,

which is a consequence of a theorem of Sergiescu and the dichotomy the-
orem (Theorem 1.4). In [18, Theorem 3.1], Kamber-Tondeur proved that
any orientable and transversally oriented tense Riemannian foliation F of
codimension q on a compact manifold M satisfies

(1.1) H•c (M/F) ∼= Hq−•
κ (M/F)∗ ,

where the κ-twisted basic cohomologyH•κ(M/F) stands for the cohomology
of the basic de Rham complex with the twisted differential dκω = dω −
κ∧ω [17, p. 121]. In [32, Section 1], Sergiescu defined the orientation sheaf
P of (M,F) and proved the Poincaré duality [32, Théorème I] on basic
cohomology of (M,F). His argument shows the isomorphism

(1.2) H•c (M/F) ∼= Hq−•(M/F ;P∗)∗

for any complete Riemannian foliation on a possibly non-compact mani-
fold whose closures of leaves are compact (see [13, Proposition 3.2.9.1]).
Here a Riemannian foliation is called complete if the canonical transverse
parallelism of its lift to the orthonormal frame bundle consists of com-
plete vector fields [22, Remark on p. 88]. In the case where M is compact,
H•κ(M/F) ∼= H•(M/F ;P∗) by [8, Theorem 5.9 (iii)]. So (1.2) coincides
with (1.1) if M is compact. The twisted duality (1.1) for Riemannian fo-
liations of any dimension which can be suitably embedded into a singular
Riemannian foliation on a compact manifold was proved in [29]. Note that,
it is not clear if (1.1) always follows from (1.2) in the case where M is
non-compact.
A priori, a transversally complete Riemannian foliation may not be com-

plete in the sense of [22, Remark on page 88], but we get the following
result from Theorems 1.4, 1.5 and [32, Théorème I].

Corollary 1.9. — For a transversally oriented and transversally com-
plete Riemannian foliation F of dimension one and codimension q on a
possibly non-compact manifold M , we have the isomorphisms (1.2) and

(1.3) H•c (M/F) ∼= Hq−•
κ (M/F)∗ ,

where κ is a representative of the Álvarez class of (M,F).

Proof. — If (M,F) is an R-bundle, then κ is trivial and (1.3) follows
from the Poincaré duality of the leaf space M/F . So, by Theorem 1.4,
we can assume that the closure of each leaf of (M,F) is compact. In this
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case, Molino’s structure theorems remain valid (see Theorem 4.2). Thus the
proof of [32, Théorème I] for the compact case can be applied to show (1.2).
Note that the holonomy homomorphisms of Sergiescu’s orientation sheaf
P and the determinant line bundle of Molino’s commuting sheaf are equal
up to sign by definition of P. Thus the latter part of Theorem 1.5 implies
H•κ(M/F) ∼= H•(M/F ;P∗). Hence we get (1.3). �

Theorem 1.2 and Corollary 1.9 give us the following characterization of
tautness in terms of basic cohomology (see Section 4.5 for the proof).

Corollary 1.10. — Let F be a transversally oriented and transver-
sally complete Riemannian foliation of dimension one and codimension q

on a possibly non-compact manifold M . Let κ be a representative of the
Álvarez class of (M,F). Then, the following are equivalent:

(i) F is taut;
(ii) Hq

c (M/F) ∼= R;
(iii) H0

κ(M/F) ∼= R;
(iv) the image of the holonomy homomorphism π1M → Aut(R) ∼= R×

of Sergiescu’s orientation sheaf of (M,F) is contained in {±1}.
(v) the image of the holonomy homomorphism π1M → Aut(R) ∼= R×

of Molino’s commuting sheaf of (M,F) is contained in {±1}.
Otherwise, Hq

c (M/F) = 0.

Corollary 1.10 generalizes [23, Théorème A] and [19, Minimality Theo-
rem] to Riemannian foliations of dimension one on possibly non-compact
manifolds. For Riemannian foliations of any dimension which can be suit-
ably embedded into a singular Riemannian foliation on a compact manifold,
the equivalence of the first three statements of Corollary 1.10 are shown
in [28, 29] by the application of Domínguez’s theorem.

1.4.2. The Euler class and the Gysin sequence

In [27], the Euler class and the Gysin sequence of Riemannian flows
on compact manifolds were obtained by using Domínguez’s tenseness the-
orem. Theorems 1.2 and 1.4 allow us to obtain the Euler class and the
Gysin sequence of transversally complete Riemannian flows on possibly
non-compact manifolds.

Corollary 1.11. — Let F be an oriented transversally complete Rie-
mannian flow on a possibly non-compact manifold M . Then, we get the
following long exact sequence:

· · · → Hi(M/F) −→ Hi(M) −→ Hi−1
κ (M/F) ∧e−→ Hi+1(M/F)→ · · · ,
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TENSENESS OF RIEMANNIAN FLOWS 1425

where κ is a representative of the Álvarez class of (M,F) and the connecting
morphism is the multiplication by the Euler class e defined in the (−κ)-
twisted basic cohomology H2

−κ(M/F).

Outline of the proof. — If (M,F) is an R-bundle, then the Euler class
and the Gysin sequence of (M,F) are trivial. Thus, by Theorem 1.4, it is
essential to construct them in the case where the closure of every leaf of F
is compact. In this case, with Theorem 1.2, the construction of [27] of the
Euler class and the Gysin sequence can be carried out without any modi-
fication. Note that, since the closure of every leaf is compact, any leaf has
a good saturated neighborhood described by Carrière in [7, Proposition 3],
which is called a Carrière neighborhood in [27]. �

1.4.3. Generalization of Tondeur’s theorem

By Theorem 1.2, we obtain the generalization of the main result of [34].

Corollary 1.12. — Let F be a foliation of dimension one on a possibly
non-compact manifold M . Then F is transversally complete Riemannian
if and only if there exists a complete metric g on M such that the tangent
bundle of F is locally generated by Killing vector fields on (M, g).

Outline of the proof. — The “if” part is proved by an argument similar
to [34] with Theorem 1.2. To prove the “only if” part, note that, by Theo-
rem 1.4, any transversally complete Riemannian foliation of dimension one
admits a complete bundle-like metric. �

Organization of the article

Section 2 is devoted to recall the definition of fundamental notions. In
Section 3, the dichotomy result (Theorem 1.4) is proved. In Section 4, we
analyze the special case of linearly foliated torus bundles. In Section 5, the
main result (Theorem 1.2) is proved based on Theorem 1.4 and the results
in Section 4.

2. Fundamental notions

2.1. Foliations and metrics

We recall some notions on foliated manifolds and metrics on them. A
Haefliger cocycle (of codimension q) on a manifold M is a triple ({Ui},
{πi}, {γij}) consisting of

TOME 64 (2014), FASCICULE 4



1426 Hiraku NOZAWA & José Ignacio ROYO PRIETO

(i) an open covering {Ui} of M ,
(ii) submersions πi : Ui → Rq,
(iii) local diffeomorphisms γij : πj(Ui ∩ Uj) → πi(Ui ∩ Uj) such that

πi = γij ◦ πj .
Two Haefliger cocycles onM are said to be equivalent if their union becomes
a Haefliger cocycle on M after considering the necessary additional maps
γij . Recall that a codimension q foliation ofM is defined by an equivalence
class of Haefliger cocycles of codimension q.
A foliation F is called Riemannian if there exist Riemannian metrics hi

on πi(Ui) such that γ∗ijhi = hj . Let νF denote the normal bundle TM/TF
of (M,F). Here (πi)∗ : νxF → Tπi(x)Rq is an isomorphism at each point
x ∈ Ui. By pulling back the metric hi by (πi)∗ to νxF at each point x ∈ Ui,
we get a metric on νF|Ui . This gives rise to a well-defined metric g on νF .
Such metric on νF constructed from {hi} is called holonomy invariant.
We will say that a metric g on (M,F) is bundle-like if the metric induced
on νF via the identification νF ∼= (TF)⊥ is holonomy invariant.
It is easy to see that any manifold with a Riemannian foliation admits

a bundle-like metric. In [26, Proposition 2] (see also [22, Proposition 3.5]),
Reinhart proved that a metric on (M,F) is bundle-like if and only if a geo-
desic whose initial vector is orthogonal to F is orthogonal to F everywhere.
The following is the notion of completeness in the transverse direction of
Riemannian foliations.

Definition 2.1. — A Riemannian foliation F on a connected manifold
M is transversally complete if there exists a Riemannian metric g which is
both bundle-like and transversally complete; namely, at every point, on any
maximal geodesic that is orthogonal to the leaves, the natural parameter
changes from −∞ to ∞.

Remark 2.2. — The definition of transversally completeness we use here
is different from the one adopted in [22, Definition 4.1].

2.2. Tautness and tenseness

For a given Riemannian metric g on a foliated manifold (M,F), the
mean curvature form κ ∈ Ω1(M) of F at x is the mean curvature form
of the leaf which goes through x (see, for example, [5, Section 10.5] for
formulas of κ in terms of g).
Recall that, on a foliated manifold (M,F) represented by a Haefliger

cocycle ({Ui}, {πi}, {γij}), a k-form α is called basic if, for every i, there
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TENSENESS OF RIEMANNIAN FLOWS 1427

exists a k-form αi on πi(Ui) such that α|Ui = π∗i αi. Let us recall the
following terminologies.

Definition 2.3. — A Riemannian metric g on a foliated manifold
(M,F) is said to be tense (resp., taut) if the mean curvature form κ is
basic (resp., trivial).

We similarly define the following notion according to strongly tenseness
of foliated manifolds.

Definition 2.4. — A Riemannian metric g on a foliated manifold
(M,F) is said to be strongly tense if the mean curvature form κ is ba-
sic and closed.

Strongly tenseness can be considered as a variant of tautness twisted
with a real line bundle (see [25, Proposition 7.5]).

Remark 2.5. — By a result of Kamber-Tondeur [17, Eq. 4.4], if M is
compact, then any tense metric on (M,F) is strongly tense.

2.3. Characteristic forms

For a Riemannian manifold (M, g) with an oriented p-dimensional folia-
tion F , the characteristic form χ ∈ Ωp(M) is defined by

(2.1) χ(X1, . . . , Xp) = det(g(Xi, Ej)ij) , ∀X1, . . . , Xp ∈ C∞(TM) ,

where {E1, . . . , Ep} is a local oriented orthonormal frame of TF .
The mean curvature form is determined by the characteristic form by

Rummler’s formula [30]:

(2.2) κ(Y ) = −dχ(Y,E1, . . . , Ep) , ∀Y ∈ C∞((TF)⊥g) ,

where {E1, . . . , Ep} is a local oriented orthonormal frame of TF . Notice
that χ is determined by the orthogonal complement (TF)⊥g and the metric
along the leaves, hence so is κ.

Definition 2.6. — The characteristic form χ of an oriented foliation
F on a Riemannian manifold (M, g) is said to be tense, strongly tense or
taut if g is tense, strongly tense or taut, respectively.

TOME 64 (2014), FASCICULE 4
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3. A dichotomy on leaves

Let M be a smooth manifold with a transversally complete Riemannian
foliation F of dimension one. We show the following dichotomy.

Theorem 1.4. — Let M be a connected manifold with a transversally
complete Riemannian foliation F of dimension one. Then, one of the fol-
lowing holds:

(i) (M,F) is an R-bundle or
(ii) the closure of every leaf of F is compact.

Remark 3.1. — A result [21, Lemme 3] of Molino implies that the leaves
of any Lie foliation of dimension one which is transversally complete in the
sense of [22, Definition 4.1] are either all closed or all have compact closures.
Theorem 1.4 is its generalization proved by a similar argument.

We will need the following lemma to prove Theorem 1.4.

Lemma 3.2 ([22, Proposition 6.6]). — Let M be a connected manifold
with a Riemannian foliation F and a transversally complete bundle-like
metric g. Let P be a plaque of a leaf of F . The foliation naturally induced
on the normal bundle νF|P restricted to P is denoted by GP . Then, the
following properties hold:

(i) The exponential map exp: (νF|P ,GP )→ (M,F) is a well defined
foliated map.

(ii) If P is relatively compact, then there exists an open neighborhood
U of the zero section of νF|P such that exp |U is a diffeomorphism.

Proof of Theorem 1.4. — Let L be a non-compact and non-proper leaf
of F . We will prove that L is compact. Let T be a transversal of F con-
taining a point x ∈ L. Consider the metric on T induced by the transverse
metric on (M,F). Let K be an open disk in T centered at x whose ra-
dius is small enough so that K is compact. We identify L with R. Since
x ∈ int(K) ∩ L and L is non-proper, we can assume that there exists a
strictly monotonically increasing sequence {xi}i∈Z>0 in L ∩ K such that
limi→∞ xi =∞.
First, by reductio ad absurdum, we will show that there exists a strictly

monotonically increasing sequence {xi}i∈Z<0 in L ∩ K such that
limi→−∞ xi = −∞. Assume that such {xi}i∈Z<0 does not exist. Then there
exists z in L ∩ K such that K ∩ {y ∈ L | y < z} = ∅. For r > 0, let
D(r) be the disk in T centered at z of radius r. Take a small r so that

ANNALES DE L’INSTITUT FOURIER
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D(r) ⊂ K. Without losing generality we can assume that D(r) is orthogo-
nal to F and that x0, x1 and x2 belong to D(r/2). Clearly, at each point y
in D(r/2), the image of the disk of radius r/2 centered at 0 in νyF under
the exponential map at y is contained in D(r). Let J be the closed segment
in L which connects x0 and x2. Then, by Lemma 3.2-(i), a leaf of νF|J is
mapped onto a closed neighborhood S of z in L by the normal exponential
map along J . By construction, S intersects D(r) at its endpoints. Thus it
contradicts with the hypothesis K∩{y ∈ L | y < z} = ∅. Thus, there exists
a strictly monotonically increasing sequence {xi}i∈Z in L ∩K such that

lim
i→−∞

xi = −∞ , lim
i→∞

xi =∞ .

Since K is compact, both {xi}i∈Z>0 and {x−i}i∈Z>0 have an accumulation
point inK. By taking subsequences, we can assume that both {xi}i∈Z>0 and
{x−i}i∈Z>0 are Cauchy sequences in K. Let Ji be the segment in L which
connects xi and xi+1. We fix r0 > 0. By the transversally completeness of F
and Lemma 3.2-(ii), we can take a subset Ui ofM by Ui = ∪y∈Ji expy(Ay),
where expy : νyF → M is the normal exponential map at y and Ay is the
disk of radius r0 centered at 0 in νyF (note that expy |Ay may not be a
diffeomorphism, but it is not important here). Then {Ui}i∈Z covers L∩K.
Since L ∩ K is compact, we choose a finite subset I ⊂ Z so that {Ui}i∈I
covers L ∩K. Then, by construction, L is contained in ∪i∈IUi, which is a
relatively compact subset of M . So L is compact.

We will show that if F admits a leaf L whose closure is compact, then
so is the closure of any leaf L′ of F . Let d denote the metric on M in-
duced by g. Here l = d(L,L′) is bounded by the connectivity of M . The
transversally completeness implies that, for any point y ∈ L′, there exists
a geodesic which connects y and L of length l (see [26, Lemma 4] for the
transport of orthogonal geodesics along leaves). Thus L′ is contained in the
l-neighborhood of L, which implies compactness of L′.
To complete the dichotomy, assume that F admits a non-compact proper

leaf. Then, by the preceding arguments, every other leaf must be non-
compact and proper. Moreover, by a theorem of Z̆ukova [35, Theorem 1],
any non-compact proper leaf L of F admits an open tubular neighborhood
U such that (U,F|U ) is an R-bundle. Thus, F is an R-bundle. �

A trivial R-bundle is taut with a product metric constructed with a triv-
ialization. Any R-bundle admits a flat connection whose holonomy group
is {±1} whose double cover is a trivial R-bundle. Such an R-bundle is taut
with a metric whose lift to the double cover is a product metric. Thus, any
R-bundle is taut. We get the following corollary:
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Corollary 3.3. — If F admits a leaf whose closure is non-compact,
then F is taut.

Below we will consider the case where the closure of every leaf is compact.

4. Linearly foliated torus bundles

4.1. Definition of (Tk,Fv)-bundles

Let v be a nonzero vector in Rk. Let Fv be the linear flow of slope v on
the torus Tk.

Definition 4.1. — A linearly foliated torus bundle, or a (Tk,Fv)-
bundle is a torus bundle equipped with a defining 1-cocycle valued in
Diff(Tk,Fv).

We will always assume that the leaves of Fv are dense in Tk. Notice
that the total space of a (Tk,Fv)-bundle has a one dimensional foliation,
which is Riemannian. This foliation is called the canonical foliation of the
(Tk,Fv)-bundle.

4.2. Reduction to linearly foliated torus bundles

The importance of the linearly foliated torus bundles comes from the
following version of Molino structure theory for Riemannian foliations such
that the closures of leaves are compact.

Theorem 4.2. — Let (M,F) be a manifold with a Riemannian foliation
of dimension one and codimension q such that the closure of each leaf is
compact. Let p : M1 → M be the orthonormal frame bundle of νF . We
have:

(i) There exists an O(q)-invariant one dimensional Riemannian folia-
tion F1 on M1 such that the restriction of p to each leaf of F1 is
a covering map to a leaf of F .

(ii) There exists a smooth O(q)-equivariant (Tk,Fv)-bundle πb : M1 →
W whose fibers are the closures of the leaves of F1.

Outline of the proof. — We refer to [22, Chapters 4 and 5] or [20, Chap-
ter 4] for the terminologies on the Molino theory. The part (i) is a general
construction valid for any Riemannian foliation. We give an outline of the
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proof of the part (ii). (M1,F1) has a transverse parallelism {X1, . . . , Xm}
given by the basic connection on νF and the canonical 1-form. Since the
closure of each leaf of F is compact, each Xi is complete on an open neigh-
borhood of the closure of each leaf of F1. This implies that (M1,F1) is
homogeneous. In particular, the closures of leaves of F1 define a foliation
F1 of M1 whose leaf space W = M1/F1 is a smooth manifold. The re-
striction of F1 to a fiber F of M1 →W is a Lie foliation of dimension one.
Thus, a theorem of Caron-Carrière [6] implies that (F,F1) is diffeomorphic
to (Tk,Fv). �

Remark 4.3. — Theorem 4.2 and the following lemma reduce the proof
of Theorem 1.2 to the case of linearly foliated torus bundles with a compact
Lie group action.

Let (M ],F ]) be (M1,F1) if F1 is oriented, and otherwise a double cover
of (M1,F1) such that F ] is oriented. Let G be O(q) if F1 is oriented, and
otherwise O(q) n Z/2Z.

Lemma 4.4. — If (M ],F ]) admits a G-invariant strongly tense metric
g] such that the G-orbits are orthogonal to F ], then (M,F) admits a
strongly tense metric.

Proof. — We have a g]-orthogonal decomposition TM ] = kerπ∗⊕TF ]⊕
D, where D = (TF ])⊥g] ∩ (kerπ∗)⊥g

] . As g] is G-invariant and π is a
principal G-bundle, there exists a Riemannian metric g on M such that
g](v, w) = g(π∗v, π∗w) for every v, w ∈ TxF ] ⊕Dx. Notice that

(4.1) π∗(TF ]) = TF and π∗D = (TF)⊥g .

We now show that g is strongly tense. Let U ] be an open set of M ] and
U = π(U ]). We assume that U ] and U are simply connected, and hence
F|U] and F|U are orientable. We fix compatible orientations of F|U] and
F|U . Let χU] and χU be characteristic forms. Then (2.1) and (4.1) imply
that π∗χU = χU] . By Rummler’s formula (2.2), we get π∗(κ|U ) = κ]|U] ,
and thus the proof is concluded. �

4.3. Retracting the structure groups of (Tk,Fv)-bundles

We consider the following group:

GLv(k;Z) = {A ∈ GL(k;Z) | Av = λv,∃λ ∈ R}.

We have a standard injection

ι : GLv(k;Z) n Tk −→ Diff(Tk,Fv)
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where ι(A, y)(x) = Ax+ y where + is the sum of Tk ≡ Rk/Zk. We denote
the linear part GLv(k;Z)→ Diff(Tk,Fv) of ι by ι1.

Lemma 4.5. — The map π0(ι1) : GLv(k;Z)→ π0(Diff(Tk,Fv)) induced
by ι1 is bijective.

Proof. — Consider the natural map

ρ0 : π0(Diff(Tk,Fv)) −→ Aut(H1(Tk;Z)) ∼= GL(k;Z) .

Since ρ0◦π0(ι1) is injective as shown in the proof of [23, Lemma III.2], π0(ι1)
is injective. We will show that π0(ι1) is surjective. It suffices to show that
the image of ρ0 is contained in GLv(k;Z). For every f ∈ π0(Diff(Tk,Fv)),
we consider the following commutative diagram

H1(Tk;R)
ψ //

ρ0(f)
��

H1(Tk/Fv)∗

ρ0(f)∗∗

��
H1(Tk;R)

ψ
// H1(Tk/Fv)∗ ,

where ψ is the map induced from the canonical pairing H1(Tk;R)×
H1(Tk/Fv)→ R. Since the kernel of ψ is generated by v and both vertical
arrows are isomorphisms, it follows that v is an eigenvector of ρ0(f). �

Proposition 4.6. — Diff(Tk,Fv) retracts to GLv(k;Z) n Tk.

Proof. — By Lemma 4.5, the injection GLv(k;Z) n Tk → Diff(Tk,Fv)
induces the bijection on the groups of connected components. Then it suf-
fices to show that the identity component Diff0(Tk,Fv) retracts to the
identity component Tk of GLv(k;Z)nTk. Since Diff0(Tk,Fv) acts trivially
on the homology of Tk, this is a direct consequence of [23, Lemmas II.2
and III.2]. �

4.4. Tenseness of linearly foliated torus bundles

Let π : M → W be an oriented (Tk,Fv)-bundle with canonical folia-
tion F . Assume that the structure group of π is reduced to GLv(k;Z)nTk,
namely, π is associated to a 1-cocycle σ on W valued in GLv(k;Z) n Tk.
By the discreteness of GLv(k;Z), the 1-cocycle σ yields a homomorphism
hσ : π1M → GLv(k;Z). Here, clearly hσ is trivial if and only if σ yields
a structure of a principal Tk-bundle on π. Thus, restricting σ to a simply
connected open set U of W , we get a principal Tk-action ρU on π−1(U).

ANNALES DE L’INSTITUT FOURIER



TENSENESS OF RIEMANNIAN FLOWS 1433

We denote ρU by ρU (σ), since ρU is determined only by σ up to the change
of coordinates on Tk by GLv(k;Z).
The following holds for an oriented (Tk,Fv)-bundle π : M → W with

canonical foliation F .

Lemma 4.7. — A characteristic form χ of (M,F) is strongly tense if and
only if there exists a reduction σ of the structure group of π to GLv(k;Z)n
Tk such that, for any simply connected subset U of W , the characteristic
form χ|π−1(U) is ρU (σ)-invariant. If π has a structure of principal Tk-bundle
and χ is invariant under the principal Tk-action, then χ is taut after a
multiplication of a positive function.

Proof. — Let x be a point of W and take a simply connected neighbor-
hood U of x in W . Let X be a vector field on π−1(U) tangent to F|π−1(U)
such that the closure of the flow generated by X is equal to a principal
Tk-action on π−1(U). The “if” part follows from the following local com-
putation. By Rummler’s formula (2.2), we get

(4.2) κ = ι 1
χ(X)X

dχ = 1
χ(X) ιXdχ = − 1

χ(X)d(χ(X)) = −d log |χ(X)| .

Since log |χ(X)| is a basic function and each π−1(U) is saturated, κ is basic
and closed in M .
We show the “only if” part. Assume that χ is strongly tense. Since

κ = ι 1
χ(X)X

dχ is basic and closed, there exists a basic function h on
(π−1(U),F|π−1(U)) such that dh = κ. The Rummler’s formula implies that
the mean curvature form of a characteristic form e−hχ is zero. Thus the
closure of the flow generated by the vector field X tangent to F such that
e−hχ(X) = 1 is a principal Tk-action ρU which preserves e−hχ. By covering
W with simply connected open subsets {Ui}, these ρUi yield a reduction
σ of the structure group of π into GLv(k;Z) n Tk such that ρUi(σ) = ρUi .
Since e−h is basic, ρUi(σ) preserves χ.

The latter part of the statement follows, because (4.2) implies that the
mean curvature form of e−χ(X)χ is zero. �

4.5. Molino’s commuting sheaf of linearly foliated
torus bundles

Let π : M → W be a (Tk,Fv)-bundle with canonical foliation F whose
structure group is a subgroup of GLv(k;Z)nTk. The Molino’s commuting
sheaf C of (M,F) is determined by the structure group as follows (we refer
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to [22, Section 5.3] for the definition of the Molino’s commuting sheaf). The
following proposition is a direct consequence of [24, Proposition 6]:

Proposition 4.8. — The holonomy homomorphism hol(C) of C is de-
termined by

π1M −→ GLv(k;Z) r−→ GL(k − 1;R),
where the first arrow is the holonomy homomorphism hσ of π described in
the first paragraph of the last section and the second arrow r is defined by
sending A ∈ GLv(k;Z) to the map Rk/Rv → Rk/Rv induced by A.

We will prove Theorem 1.5 by using Proposition 4.8.
Proof of Theorem 1.5. — By Theorem 1.4, it suffices to prove the the-

orem in the case where the closure of each leaf is compact. Let M1 → W

be the oriented linearly foliated torus bundle in Theorem 4.2. If we have a
strongly tense metric on (M,F) with mean curvature form κ, then we can
construct a strongly tense characteristic form on (M1,F1) with mean cur-
vature form κ1 such that κ1 = π∗κ. Thus it suffices to prove the theorem
in the case where (M,F) is an oriented linearly foliated torus bundle. Let
γ : S1 →W be a loop in W . The pull-back of the oriented linearly foliated
torus bundle to S1 is a mapping torus N = Tk × [0, 1]/(A(x), 0) ∼ (x, 1)
for some A ∈ GLv(k;Z). By Lemma 4.7, the restriction of χ to Tk × {t} is
linear with respect to the standard coordinate on Tk. By [24, Example 7.3],
the class [κ] is determined by [κ]|Tk×{t} = 0 and

∫
S1 κ = log λ, where λ is

the eigenvalue of A with respect to v. Thus [κ] is determined by (M,F).
The latter part follows from Proposition 4.8. �

Let det C be the determinant line bundle of C. Since we are assuming that
the linear flow Fv tangent to v is dense in Tk, there exists no non-trivial
Z-linear relation on the entries of v. It follows that the composite of

GLv(k;Z) r−→ GL(k − 1;R) det−→ GL(1;R),

is injective. We get the following consequence of Proposition 4.8, which is
necessary in the proof of Corollary 1.10.

Corollary 4.9. — The image of the holonomy homomorphism of det C
is contained in {±1} if and only if so is the image of the holonomy homo-
morphism of C.

Proof of Corollary 1.10. — The equivalence of the first three assertions
is a formal consequence of Theorem 1.10 and Corollary 1.9 (see the proof
of [29, Theorems 3.3 and 3.5]). We will show the equivalence of (iii) and (iv).
If (M,F) is an R-bundle, then both (iii) and (iv) are true. By Theorem 1.4,
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we can assume that the closure of each leaf of (M,F) is compact. The
equivalence of (iii) and (iv) follows from (1.2). Finally, since the holonomy
homomorphisms of Sergiescu’s orientation sheaf P and the determinant
line bundle of Molino’s commuting sheaf are equal up to sign by definition
of P, the equivalence of (iv) and (v) follows from Corollary 4.9. �

The Molino’s commuting sheaf and the Álvarez class are illustrated with
Carrière’s example [7].

Example 4.10. — Take A ∈ SL(2;Z) such that trA > 2, let λ be one of
its eigenvalues and denote by v = (a, b) ∈ R2 the corresponding eigenvector.
Notice that A induces a diffeomorphism A on T2 = R2/Z2. Consider the
manifold T3

A = (T2 × [0, 1])/(Ax, 0) ∼ (x, 1), which is a T2-bundle over S1.
Here T3

A admits the structure of a (T2,Fv)-bundle whose structure group
is the infinite cyclic subgroup of SLv(2;Z) generated by A. Let F be the
canonical foliation. Taking the standard coordinates (x, y, t) on T3

A, we have
the parallelism

X = λt(a∂/∂x+ b∂/∂y) , Y = λ−t(−b∂/∂x+ a∂/∂y) , T = ∂/∂t .

Let g be the Riemannian metric on T3
A such that {X,Y, T} is an orthonor-

mal parallelism. It is straightforward to check that g is bundle-like and that
its mean curvature form κ is given by (log λ)dt in the standard coordinates.
So, g is strongly tense, while the Álvarez class [κ] of F is not trivial. Thus F
is not taut.

5. Invariant tense metrics on linearly foliated
torus bundles

Let π : M →W be a (Tk,Fv)-bundle and G a compact Lie group acting
on M preserving the canonical foliation F . We assume that F is oriented.
In this section, we will prove the following result, which completes the proof
of Theorem 1.2 (see Remark 4.3):

Theorem 5.1. — (M,F) admits a G-invariant strongly tense metric.
Moreover, if the G-action is locally free and F is not tangent to any G-orbit,
then we can take a G-invariant strongly tense metric so that the G-orbits
are orthogonal to F .

By Proposition 4.6, we can assume that the structure group of π is
GLv(k;Z) n Tk. Let φM be the composite of

(5.1) π1M −→ GLv(k;Z) −→ R,
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where the first arrow is the holonomy homomorphism hσ of π described in
the first paragraph of Section 4.4 and the second arrow maps A ∈ GLv(k;Z)
to the logarithm of the eigenvalue of A with respect to v.

Lemma 5.2. — Let K be a G-orbit in M and iK : π1K → π1M be the
map induced by the inclusion. Then, φM ◦ iK is trivial.

Proof. — Let E be the vector subbundle of νF defined by the kernel
of π∗ : νF → TW . Here E is invariant under the G-action, because G
preserves F and the fibers of π are closures of the leaves of F . Then E has
a G-invariant metric by compactness of G. Thus, for any loop γ in K, the
holonomy map associated to π∗γ preserves a metric on E. This implies the
triviality of φM ◦ iK . �

The key of our proof of Theorem 5.1 is the following lemma, which was
already used in [2, Lemma 6.3].

Lemma 5.3. — Let χ be a characteristic form of (M,F). Let χ1 be
defined by

χ1 =
∫
g∈G

ε(g)(g∗χ)dg ,

where dg is a Haar measure of G and ε(g) = 1 if g preserves the orientation
of F and ε(g) = −1 otherwise. Then χ1 is a characteristic form of F .
Moreover, if χ is taut, then so is χ1.

Proof. — It is easy to see that χ1 is positive on TF and kerχ = kerχ1,
which implies the first part. The latter part follows from Rummler’s for-
mula (2.2) and dχ1 =

∫
g∈G ε(g)(g∗dχ)dg. �

Remark 5.4. — As we saw in the last lemma, the sum of two taut char-
acteristic forms is taut, while the sum of two tense characteristic forms may
not be tense. We can use this phenomenon to show Theorem 5.1 by tak-
ing a covering of (M,F) which is taut. Strongly tenseness of characteristic
forms is not linear in a direct way. But there is a certain way to make the
sum of two strongly tense characteristic forms to obtain a strongly tense
one by using the interpretation of strongly tenseness as a twisted version
of tautness (see [25, Proposition 7.8]).

Proof of Theorem 5.1. — By Proposition 4.6, the structure group of
π can be reduced to Γ n Tk, where Γ is a subgroup of GLv(k;Z). Let
p : (M ′,F ′)→ (M,F) be the covering of (M,F) such that π1M

′ ∼= kerφM ,
whose covering group is identified with Γ. For any G-orbit K inM , we have
π1K ⊂ π1M

′ by Lemma 5.2. Thus the G-action on M lifts to a G-action
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ψG on M ′. The Γ-action on M ′ via deck transformations commutes with
ψG.
By construction, M ′ has a structure of a principal Tk-bundle such that

F ′ is the orbit foliation of a dense R-subaction of the principal Tk-action
ρ0. Let X be a vector field which generates the dense R-subaction of ρ0. Let
χ be a ρ0-invariant characteristic form of (M ′,F ′) such that χ(X) = 1. The
latter part of Lemma 4.7 implies that χ is taut. Let χ1 be the characteristic
form of (M ′,F ′) obtained from χ like in Lemma 5.3. Let X1 be the vector
field tangent to F ′ such that χ1(X1) = 1. Since χ is taut, by Lemma 5.3,
so is χ1. Thus X1 is a Killing vector field with respect to a Riemannian
metric on M ′. Then the closure of the flow generated by X1 is a principal
Tk-action ρ1 on M ′. Since X1 is G-invariant up to sign determined by ε in
Lemma 5.3, ψG and ρ1 yield a (GnTk)-action onM ′, where the semidirect
product is defined by ε : G→ {±1}. Here ρ1 and the Γ-action on M ′ yield
a (Γ n Tk)-action on M ′, because the commutativity of the Γ-action with
ψG implies, for h ∈ Γ,

h∗X1 =
∫
g∈G

(h∗g∗X)dg =
∫
g∈G

(g∗h∗X)dg

= φM (h)
∫
g∈G

(g∗X)dg = φM (h)X1.

In total, we get a
(
(G × Γ) n Tk

)
-action on M ′ such that F ′ is the orbit

foliation of a dense R-subaction of the principal Tk-action ρ1.
Let χ2 be a Γ-invariant characteristic form of (M ′,F ′). Using the

(
(G×

Γ) n Tk
)
-action on M ′ obtained in the last paragraph, let

χ3 =
∫
u∈GnTk

ε′(u)(u∗χ2)du ,

where du is a Haar measure of GnTk and ε′(u) = 1 if u preserves the orien-
tation of F ′ and ε′(u) = −1 otherwise. Then χ3 is a (ΓnTk)-invariant char-
acteristic form, which is strongly tense by Lemma 4.7. Thus, (M ′,F ′) ad-
mits a (G×Γ)-invariant strongly tense metric, which induces a G-invariant
strongly tense metric on (M,F).
We show the latter part. Assume that F is nowhere tangent to G-orbits.

Then we can take a characteristic form χ2 on (M,F) so that every G-orbit
is tangent to kerχ2. We conclude the proof of the latter part by constructing
χ3 from this χ2 like in the last paragraph. �
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