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THE CENTRALIZER OF A CLASSICAL GROUP AND
BRUHAT-TITS BUILDINGS

by Daniel SKODLERACK

Abstract. — Let G be a unitary group defined over a non-Archimedean local
field of odd residue characteristic and let H be the centralizer of a semisimple
rational Lie algebra element of G. We prove that the Bruhat-Tits building B1(H)
of H can be affinely and G-equivariantly embedded in the Bruhat-Tits building
B1(G) of G so that the Moy-Prasad filtrations are preserved. The latter property
forces uniqueness in the following way. Let j and j′ be maps from B1(H) to B1(G)
which preserve the Moy–Prasad filtrations. We prove that if there is no split torus
in the center of the connected component of H then j and j′ are equal, and in
general if both maps are affine and satisfy a mild equivariance condition they differ
up to a translation of B1(H).
Résumé. — Soit G un groupe unitaire défini sur un corps local non-Archimé-

dien de caractéristique résiduelle impaire et soit H le centralisateur d’un élément
rationnel semi-simple de l’algèbre de Lie de G. Nous démontrons qu’il existe une
application affine injective H-équivariante de l’immeuble de Bruhat-Tits B1(H)
de H vers l’immeuble de Bruhat-Tits B1(G) de G qui préserve les filtrations de
Moy-Prasad. La dernière propriété implique l’unicité comme suit : soient j et j′

des applications de B1(H) vers B1(G) qui préservent les filtrations de Moy-Prasad.
Nous démontrons que j et j′ sont égales s’il n’y a pas de tore deployé dans le centre
de la composante connexe de H. En général, les deux diffèrent par une translation
de B1(H) si elles sont affines et vérifient une autre conditon faible.

1. Introduction

The subject of this article is a functoriality question for maps between
Bruhat-Tits buidlings which is connected with the representation theory of
classical groups. Embeddings of buildings of reductive groups have previ-
ously been studied for example by Landvogt [11] and Prasad and Yu [15].
The aim of this article is to show to what extend the property of preserving

Keywords: Building, classical group over a local field, centralizer.
Math. classification: 11E57, 11E95, 14L35, 20E42, 20G25.



516 Daniel SKODLERACK

the Moy-Prasad filtrations determines the choice of an embedding uniquely.
It completes recent works of Broussous, Lemaire and Stevens [2], [4], which
have applications in representation theory.
More precisely Bushnell’s and Kutzko’s strategy in their theory of types

for the classification of irreducible smooth representations of GLn(k) in [9]
is applied to other classical groups defined over a non-Archimedean local
field k. In [17], [18], [19], [20], [3] and [21] Sécherre together with Brous-
sous and Stevens gave the classification for GLn(D), where D is a central
finite division algebra over k. Further in [22] Stevens constructed types for
unitary groups. He applied a result of his paper with Broussous [4], i.e. he
used an embedding of Bruhat-Tits buildings for a certain subgroup of a
unitary group to apply an induction. The important property of this map
is the compatibility with the Lie algebra filtrations (CLF) which by [12]
correspond to the Moy-Prasad filtrations [13]. In [4] the quaternion algebra
case is missing and the authors proposed a uniqueness and generalization
conjecture to the reader.
Let k be a non-Archimedean local field with valuation ν and of residue

characteristic 6= 2, and let D be a division algebra central and finite-
dimensional over k equipped with an involution ρ, whose set of fixed points
in k is denoted by k0. To the classical group G := U(h), i.e. the unitary
group of an ε-hermitian form h on a finite-dimensional right D-vector space
V, is attached the Bruhat-Tits building B1(G, k0) which can be described
in terms of lattice functions. To every point of B1(G, k0) there is attached
a Lie algebra filtration gx which is exactly the Moy-Prasad filtration. More
precisely if x is a point of B1(G, k0) seen as a lattice function it can be
interpreted as a point of B(GLD(V ), k) which has a Lie algebra filtration
g̃x in EndD(V ). If one identifies Lie(G)(k0) with the set of skew-symmetric
elements of EndD(V ) with respect to the adjoint involution of h, the filtra-
tion gx of x coincides with

t 7→ g̃x(t) ∩ Lie(G)(k0).

Now we take an element β ∈ Lie(G)(k0) whose k-algebra k[β] is a product
of field extensions Ei of k. In this introduction let us assume k[β] to be
separable over k.
Its centralizer in G is an algebraic group H defined over k0 which is

a product of restrictions of scalars to k0 of classical groups Hi which are
either general linear groups or unitary groups. In the manner of [4] we
prove the existence of an injective affine H(k0)-equivariant and toral map
jβ from B1(H, k0) to B1(G, k0) using lattice function models. In addition
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ON CENTRALIZERS OF CLASSICAL GROUPS AND BUILDINGS 517

jβ has the CLF-property, i.e.

Lie(H)(k0) ∩ gjβ(y)

is the Lie algebra flitration hx of x. This article solves the following problem:
To what extent does the CLF-property determine jβ?
In order to give an answer to this question we consider two cases.
(a) If only unitary groups appear among the Hi, none of which is k0-

isomorphic to the isotropic orthogonal group of rank one, then jβ
is uniquely determined by CLF.

(b) If there are no restrictions on the Hi then jβ is unique up to a
translation of B1(H, k0) in being affine, Z(H0(k0))-equivariant and
having the CLF-property.

For the proofs we use the decomposition of k[β] as a product of fields to
restrict to the cases where k[β] is a field or a product of two fields inter-
changed by the adjoint involution of h. Let us call these cases atomic cases.
The map jβ is now induced by j−1

E constructed in [2]. In (a) k[β] is a field in
the atomic case. If β is non-zero we follow the strategy of [4]. The statement
follows essentially from a uniqueness statement for j−1

E given in [4, 10.3].
If β is zero we prove that for all unitary groups except for the isotropic or-
thogonal group of rank one the Moy-Prasad filtration determines the point
completely. For (b) to restrict to the atomic case we need further a rigidity
proposition for Euclidean buildings, stated in 10.2. We use (a) to finish the
proof of (b).
The whole strategy and the proofs do not require β to be separable.

In that case we define the building of ZG(k0)(β) in view of [4] using lat-
tice functions and we work mainly with the rational points instead of the
algebraic groups.
The article is structured in the following way. After preliminary notation

in §2 the model of the Bruhat-Tits building of G over k0 in terms of lattice
functions is explained in §3. In §4 we introduce the Moy-Prasad filtration
for our purposes. We give the building of the centralizer in §5 and introduce
the notion of CLF in §6 followed by the existence theorem in §7. The
uniqueness theorems in §9, where no GLm is involved, and §11, for the
general case, are prepared in the preceding sections. Lastly in §12 we show
that the constructed map respects apartments.
I thank very much P. Broussous, Prof. S. Stevens and Prof. E.-W. Zink

for useful hints and fruitful communications. I want to express my gratitude
to the German Research Foundation, who supported this work within the
framework of BMS and SFB 878.
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518 Daniel SKODLERACK

2. Notation

We are given a division algebra D of finite index d and central over a
non-Archimedean local field k of odd residue characteristic. The valuation
on k and its unique extension to D are denoted by ν. We assume that
the image of ν|k× is Z. Further let ρ be an involution on D, i.e. a skew
field isomorphism from D to Dop of order one or two, in particular ρ is an
isometry. The fixed field of ρ in k is denoted by k0.

Remark 2.1 ([16], 10.2.2). — The existence of ρ implies d 6 2. If k 6= k0,

then d = 1.

We fix an element ε ∈ {1,−1} and a non-degenerate ε-hermitian form h

on an m-dimensional right D-vector space V, i.e. a Z-bi-linear map h on
V × V with values in D such that

h(v1λ1, v2λ2) = ερ(λ1)ρ(h(v2, v1))λ2

for all λ1, λ2 ∈ D and v1, v2 ∈ V. Further ρ|k extends to the adjoint in-
volution σ of h on EndD(V ). For a skew field D′ with discrete valuation
the symbols oD′ and pD′ denote the valuation ring and its maximal ideal
respectively. We fix an algebraic closure k̄ of k.
By a Bruhat-Tits building we always understand the extended one [6,

4.2.16.]. The set

G := U(σ) :=
{
f ∈ EndD(V ) | σ(f)f = idV

}
is the set of k0-rational points of an algebraic group U(σ) defined over k0.

We also write U(h) for U(σ). We denote U(h) by G and Lie(G)(k0) by
g and identify the latter with the set Skew(EndD(V ), σ) of skew-symmetric
elements of EndD(V ) with respect to σ. The Bruhat-Tits buildingB1(G, k0)
is also denoted by B1(G). We repeat the strategy in [4] to describe the
building as a set of self-dual lattice functions based on the description us-
ing norms, see [8].

3. Norms and lattice functions

The description of the Bruhat-Tits building in terms of norms and lattice
functions needs some basic properties which are collected in this section.
Proofs and more details for norms can mainly be found in [7], [8]. For lattice
functions we refer to [4] and [2].
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Definition 3.1 ([7], 1.1). — A D-norm on V is a map α : V → R∪{∞}
such that

• α(v) =∞ if and only if v = 0,
• α(vλ) = ν(λ) + α(v),
• α(v + w) > inf{α(v), α(w)},

for all v, w ∈ V and λ ∈ D. Fix a D-norm α on V. The dual α# of α with
respect to h is defined to be the D-norm

v ∈ V 7→ inf
{
ν(h(v, w))− α(w) | w ∈ V, w 6= 0

}
.

One calls α self-dual with respect to h if it is equal to his dual. The set
of D-norms and self-dual D-norms of V are denoted by Norm1

D(V ) and
Norm1

h(V ) respectively. Given a further right D-vector space V ′ and a
norm α′ ∈ Norm1

D(V ′) the direct sum of α and α′ is defined by

(α⊕ α′)(v + v′) := inf
{
α(v), α′(v′)

}
, v ∈ V, v′ ∈ V ′.

We consider a setR ofD-subspaces of V whose direct sum is V.We callR
a frame if all elements ofR are one dimensional. An element α ∈ Norm1

D(V )
is split by R if α is the direct sum of the α|W , W ∈ R. If in addition R
is a frame and (wi)i is a D-basis of V consisting of elements of

⋃
W∈RW

one calls (wi)i a splitting basis of α.

Remark 3.2 ([7], 1.26). — Every pair of D-norms on V has a common
splitting basis.

Given two norms α, γ ∈ Norm1
D(V ) with common splitting basis (vi)

and a real number λ ∈ [0, 1] the convex combination of α with γ with λ is
defined to be the D-norm on V split by (vi) whose value at vi is

λα(vi) + (1− λ)γ(vi).

This definition does not depend on the choice of the splitting basis and we
get an affine structure on Norm1

D(V ). The AutD(V )-action on Norm1
D(V ),

more precisely
(g · α)(v) := α(g−1v),

restricts to a U(σ)-action on Norm1
h(V ).

The family of balls of a D-norm α leads to the idea of a lattice function:

Λα(t) := {v ∈ V | α(v) > t}, t ∈ R.

Before we give the definition we want to remark that by an oD-lattice in V
we mean a finitely generated oD-submodule of V which contains a D-basis
of V, i.e. we omit the word “full”.

TOME 63 (2013), FASCICULE 2



520 Daniel SKODLERACK

Definition 3.3 ([2], I.2.1). — A family (Λ(r))r∈R of oD-lattices in V is
said to be an oD-lattice function in V if

(1) Λ(r) ⊇ Λ(s),
(2) Λ(r) =

⋂
t<r Λ(t) and

(3) Λ(r)pD = Λ(r + 1
d ),

for all r, s ∈ R with r < s. The set of oD-lattice functions in V is denoted
by Latt1

oD (V ). For the right limit of Λ at s we write Λ(s+), i.e.

Λ(s+) :=
⋃
t>s

Λ(s).

For t ∈ R we define dte to be smallest integer not smaller than t.

Proposition 3.4 ([2], I.2.4). — The map

α 7→ Λα
is a bijection from Norm1

D(V ) to Latt1
oD (V ). Its inverse is given by

αΛ(v) := sup
{
t ∈ R | v ∈ Λ(t)

}
.

All notions for norms carry over to lattice functions in the following way.
The dual of a lattice function Λ is the lattice function which corresponds
to α#

Λ . A lattice function is called split by a given basis if the correspoding
norm is split by this basis. The AutD(V )-action on Norm1

D(V ) defines an
AutD(V )-action on Latt1

oD (V ) via push forward.

Proposition 3.5 ([4], 3.3, [2], I.2.4). — Let Λ be an oD-lattice function
in V. Let g be an element of AutD(V ) and let R be a set of D-subspaces
of V whose direct sum is V.

(1) The function Λ is split by R if and only if, for all real numbers t, the
lattice Λ(t) is the direct sum of the oD-modules W ∩Λ(t), W ∈ R.

(2) If (vi)i is a splitting basis of Λ, then there are real numbers ai, 1 6
i 6 m, such that, for all t, we have

Λ(t) =
⊕
i

vip
d(t−ai)de
D .

We call (ai)i the coordinate tuple of Λ with respect to (vi). The
map which assigns the coordinate tuple to a lattice function split
by (vi) is an affine bijection onto Rm.

(3) We have (g · Λ)(t) = g(Λ(t)).
(4) The dual Λ# of Λ with respect to h is the oD-lattice function whose

value at t ∈ R is{
v ∈ V | h(v,Λ((−t)+)) ⊆ pD

}
.
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ON CENTRALIZERS OF CLASSICAL GROUPS AND BUILDINGS 521

Proof. — All statements except for 4 can be found in part I of [2]. Point 4
has been proven in [4, 3.3] for the case D = k, but the proof is valid for
the general case if one replaces oF by oD. �

The set of self-dual oD-lattice functions is denoted by Latt1
h(V ).We recall

that we have fixed an ε-hermitian form h on V.

Theorem 3.6 ([8], 2.12). — There is a unique affine and G-equivariant
bijection from B1(G) to Norm1

h(V ).

Propositions 3.4 and 3.5 imply the existence of a unique affine and G-
equivariant bijection from B1(G) to Latt1

h(V ). It defines on Latt1
h(V ) a

system of apartments which correspond to the Witt-decompositions of V.

Definition 3.7. — A set of one dimensional h-isotropic D-subspaces
Wl of V, l ∈ L, is said to be a Witt decomposition of V if:

(1) for every l ∈ L there is exactly one index l′ ∈ L such that h(Wl,Wl′)
is non-zero,

(2) the sum of the Wl is direct, and
(3) the orthogonal complement W of the sum of the Wl is anisotropic.

A lattice function is said to be split by a Witt decomposition {Wl | l ∈ L} if
it is split by {Wl | l ∈ L}∪{W}. A D-basis of V is adapted to {Wl | l ∈ L}
if all basis elements lie in the union of W and all Wl. Further we assume
0 6∈ L and denote W by W0.

Witt decompositions always exists, and even more, for every element of
Latt1

h(V ) there is a splitting Witt decomposition. A proof for the latter in
terms of norms can be found in [8, 2.13].
Remark 3.8 ([8], 2.9).
(1) The system of apartments of Latt1

h(V ) is the system of sets

Latt1
h,S(V ) :=

{
Λ ∈ Latt1

h(V ) | Λ is split by S
}
,

where S runs over the set of Witt decompositions of V with respect
to h.

(2) A self dual D-norm α split by a Witt decomposition {Wl | l ∈ L}
satisfies

α(w0) = 1
2ν
(
h(w0, w0)

)
,

for all w0 ∈W0 (see [8, 2.9]).

Proposition 3.9. — If α is a self dual D-norm on V and {Wl | l ∈ L}
is a Witt decomposition splitting α, then every orthogonal D-basis of W0
splits α|W0 .

TOME 63 (2013), FASCICULE 2



522 Daniel SKODLERACK

Proof. — Let w′ and w′′ be elements ofW0 which are orthogonal to each
other, then we have

α (w′) = α
( 1

2 (w′ + w′′) + 1
2 (w′ − w′′)

)
> inf

{
α
( 1

2 (w′ + w′′)
)
, α
( 1

2 (w′ − w′′)
)}

= α (w′ + w′′) ,

and the last equality follows from

h
( 1

2 (w′ + w′′) , 1
2 (w′ + w′′)

)
= h

( 1
2 (w′ − w′′) , 1

2 (w′ − w′′)
)

and ν(2) = 0. �

4. The Moy-Prasad filtrations

An oD-lattice function Λ gives rise to an ok-lattice function in A :=
EndD(V )

g̃Λ(t) :=
{
a ∈ A | a(Λ(s)) ⊆ Λ(s+ t), ∀s ∈ R

}
called the square lattice function of Λ in A. It defines a Lie algebra filtration
of Λ in g by intersection

gΛ(t) := g̃Λ(t) ∩ g.

In [13] Moy-Prasad attached to every point x of B1(G′, k′) a filtra-
tion (ax,t)t∈R of Lie(G′)(k′) for a reductive group G′ defined over a non-
Archimedean local field k′. The next theorem states that in our special
situation of unitary groups we do not need the quite involved description.

Theorem 4.1 ([12]). — The Lie algebra filtration of a point of B1(G)
is exactly its Moy-Prasad filtration.

In this article the square lattice functions are the key for the rigidity of
Lie algebra filtrations because of the following proposition.

Proposition 4.2 ([4], 3.5). — Let Λ be an oD-lattice function in V.
(1) The ok-lattice function (σ(g̃Λ(t)))t∈R is the square lattice of Λ# and

we denote it by g̃σΛ. Square lattice functions fixed under σ are said
to be self-dual.

(2) The map
Λ ∈ Latt1

h(V ) 7→ g̃Λ

is injective and onto to the set Latt2
σ(A) of self-dual square lattice

functions.

Proof. — The proof in [4, 3.5] is valid if one replaces F by D. �
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5. The centralizer

In the following the symbol Z∗(?) denotes the centralizer of ? in *, and
Z(?) denotes the center of ?. Let us fix an element β ∈ Skew(EndD(V ), σ),
such that the k-algebra k[β] is a product of fields Ei, i ∈ I, with identity
element 1i. We call β separable if Ei|1ik is separable for all i. The central-
izers ZG(β) and ZG(β) are denoted by H and H. If β is separable then the
algebraic group H is reductive and defined over k0 and its set of k0-rational
points is H (see appendix A).

Notation 5.1. — There is an action of σ on I via σ(1i) =: 1σ(i). We
denote by I0 the fixed point set of the action of σ on I, and we divide the
set I r I0 into two disjoint parts, i.e. we choose a positive part I+ and a
negative part I−, such that

σ(I+) = I−.

We define −i := σ(i) and put Vi := 1iV. For i ∈ I0 we denote by (Ei)0 the
set of fixed points of σ in Ei, and for i ∈ I+ we put (Ei)0 := Ei.

The group H is the product of sets of rational points of classical groups
over the (Ei)0. More precisely, for i ∈ I, the Ei-algebra EndEi⊗kD(Vi)
is Ei-algebra isomorphic to EndD′

i
(V ′i ), for some finite-dimensional vector

space V ′i over some skew field D′i central and of finite index over Ei. We
define

Hi :=

U(σ|EndD′
i
(V ′
i
)), i ∈ I0

GLD′
i
(V ′i ), i ∈ I+

and Hi := Hi((Ei)0). There is a canonical group isomorphism from H to∏
i∈I+∪I0 Hi which motivates the following definition for the Bruhat-Tits

building of H :
B1(H) :=

∏
i∈I+∪I0

B1(Hi, (Ei)0).

Remark 5.2. — If β is separable the above isomorphism extends to a
k0-isomorphism

H ∼=
∏

i∈I0∪I+

Res(Ei)0|k0(Hi).(5.1)

Thus there is a isomorphism of affine buildings from B1(H, k0) to B1(H).

The Lie algebra of H is isomorphic to⊕
i∈I0

Skew(EndEi⊗kD(Vi), σ)⊕
⊕
i∈I+

EndEi⊗kD(Vi)

TOME 63 (2013), FASCICULE 2
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and we denote the ith factor by gi. We define the Lie algebra filtration of
x = (xi)i∈I0∪I+ to be the direct sum of the Lie algebra filtrations of the xi,
i.e.

hx(t) :=
⊕

i∈I0∪I+

(gi)xi(t).

where we take the square lattice function for i ∈ I+ and identify
EndEi⊗kD(Vi) with EndD′

i
(Vi).

6. Compatibility with the Lie algebra filtrations
Definition 6.1.
(1) A set with Lie algebra filtrations (LF-set) is a pair (X,L) such that

X is a set, L is a Lie algebra, and for each x ∈ X, there is Lie
algebra filtration ((Lx)(t))t∈R, i.e. a decreasing sequence of subsets
of L.

(2) Given two LF-sets (X,L) and (X ′, L′) and a map φ : L→ L′

(a) a map f : X → X ′ is compatible with the Lie algebra filtrations
(CLF) if

φ(Lx(t)) = im(φ) ∩ L′f(x)(t)

holds, for all x ∈ X and all real numbers t.
(b) g : X ′ → X is compatible with the Lie algebra filtrations (CLF)

if
φ(Lg(x′)(t)) = im(φ) ∩ L′x′(t)

holds, for all x′ ∈ X ′ and all real numbers t.

In this article we consider buildings together with the set of rational
points of a Lie algebra of an algebraic group. Mostly φ is a canonical in-
clusion. An example of a CLF-map is given in [2]. The theorems in this
section are valid without the assumption on the residue characteristic and
the existence of an involution on D. Firstly, we introduce two important
LF-sets after the following theorem.
Definition 6.2.
(1) Two oD-lattice functions Λ and Λ′ on V are equivalent if there is a

real number t such that

Λ(s) = Λ′(s− t) =: (Λ′ + t)(s),

for all s ∈ R. The set of equivalence classes of elements of Latt1
oD (V )

is denoted by LattoD (V ). A map f on Latt1
oD (V ) of the form

f(Λ) = Λ + t

ANNALES DE L’INSTITUT FOURIER



ON CENTRALIZERS OF CLASSICAL GROUPS AND BUILDINGS 525

is called a translation. For a map g, such that f ◦g exists, we define

g + t := f ◦ g.

(2) An action of AutD(V ) on LattoD V is given by

a.[Λ] := [a.Λ], where (a.Λ)(t) := a(Λ(t)).

(3) The affine structure on Latt1
oD (V ) induces an affine structure on

LattoD (V ).

Let us consider the non-extended buildingB(AutD(V )) and the extended
building B1(AutD(V )).

Theorem 6.3 ([2], I.2.4, [7], 2.13, [7], 2.11(iii)). — The extended build-
ing of AutD(V ) is in affine and AutD(V )-equivariant bijection with the set
Latt1

oD (V ). For two such AutD(V )-equivariant affine bijections f and g,
there is a real number t, such that

f = g + t,

and the map f induces via

[x] 7→ [f(x)]

a unique affine and AutD(V )-equivariant bijection from B(AutD(V )) to
LattoD (V ).

Remark 6.4. — For x ∈ B1(AutD(V )), we attach to x and to [x]
the square lattice function of a correspoding oD-lattice function. By the
above theorem both LF-sets (B1(AutD(V )),EndD(V )) and (B(AutD(V )),
EndD(V )) are well-defined, i.e. do not depend on the choices made. In
(B(AutD(V )),EndD(V )), a point is uniquely determined by its Lie algebra
filtration (see [2, I.4.5]), whereas in (B1(AutD(V )),EndD(V )) two points
with the same Lie algebra filtration are translates of each other.

Theorem 6.5. — [2, II.1.1] Let E|k be a field extension in EndD(V ),
G̃ := AutD(V ) and H̃ := Z

G̃
(E). We consider the non-extended buildings

B(G̃) and B(H̃) as LF-sets as constructed in the above remark. Then there
is a unique CLF-map jE fromB(G̃)E× toB(H̃). The map has the following
properties.

(1) It is bijective.
(2) It is H̃-equivariant.
(3) It is affine.

The map jE := (jE)−1 is the unique map satisfying 2. and 3..

In the above setting the CLF-property of jE implies uniqueness.
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Theorem 6.6 ([4], 10.3). — Under the assumptions of Theorem 6.5,
suppose that the points y ∈ B(G̃) and x ∈ B(H̃) satisfy

g̃y ∩ EndE⊗kD(V ) ⊇ h̃x.

Then jE(x) = y.

Proof. — In [4, 10.3] this theorem was proven for the case where D = k

and E is generated by one element. The proof did not use the second
assumption, and it carries over to D 6= k without changes. �

The map jE is induced from a map between the extended buildings. We
fix an E-algebra isomorphism from EndE⊗kD(V ) to EndD′(V ′) where D′
is a central skew field over E and V ′ is a right D′-vector space.

Theorem 6.7 ([2], II.3.1,II.4, [7], 2.11(iii)). — There is a bijective affine
H̃-equivariant CLF-map

j̃
E

: Latt1
oD′

(V ′)→ Latt1
oD (V )E

×

such that
[j̃

E
(Λ)] = jE([Λ])

for all Λ ∈ Latt1
oD′

(V ′). The image is the set of oD-lattice functions which
are in addition oE-lattice functions. For every other bijective affine H̃-
equivariant map j from Latt1

oD′
(V ′) to Latt1

oD (V )E× the composition j−1 ◦

j̃
E

is a translation of Latt1
oD′

(V ′).

Proof. — The existence of j̃
E
is stated in Lemma [2, II.3.1]. The affine-

ness is proven in [2, II.4] for jE , but the proof actually shows that j̃
E

is affine. The H̃-equivariance follows from the formula given in [2, II.3.1].
The fact that the image of jE is the set of E×-fixed points implies that
im(j̃

E
) only consists of oE-lattice functions and contains a representative

for every element of im(jE). Being E×-equivariant and convex, the image of
j̃
E
must contain every oE-lattice function of Latt1

oD (V ). The last assertion
follows directly from [7, 2.11 (iii)]. �

7. CLF-map from B1(H) to B1(G)

We are now returning to the situation of section 5. Before we state the
first theorem we give a definition in analogy with the set of fixed points in
the building.
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Definition 7.1. — An oE-oD-lattice function of V is an oD-lattice func-
tion in V which splits under (Vi) such that, for every i, the function

t 7→ Λ(t) ∩ Vi
is an oEi-lattice function in Vi.We denote the set of oE-oD-lattice functions
by Latt1

oE ,oD (V ).

The next theorem has been proven for D = k in [4].

Theorem 7.2. — There is an injective, affine and H-equivariant CLF-
map

j : B1(H)→ B1(G)
whose image in terms of lattice functions is the set of self-dual oE-oD-lattice
functions in V.

Proof. — The product decompositionH =
∏
i∈I+∪I0 ZU(hi|(Vi+V−i)2 )(βi+

β−i) leads us to three steps:
(1) the case where E is a field;
(2) the case where I+ has cardinality one;
(3) the general case.
Step 1: We use the map jE from Theorem 6.5 and the following diagram.

LattoD′ (V
′) jE−→ LattoD (V )x x

B1(H) B1(G)

We have to prove that, for x ∈ B1(H), the square lattice function of jE(x)
is self-dual. The latter follows from Theorem 6.6 because the square lattice
function of x is self-dual and jE is a CLF-map. The assertion about the
image of jE |B1(H) follows from 6.5 and the CLF-property.
Step 2: To prove the lemma we denote the unique element in I+ by i and

we define
Λ#−i(t) :=

{
v ∈ V−i | h(v,Λ((−t)+)) ⊆ pD

}
for Λ ∈ Latt1

oD (Vi). The map

(7.1) g ∈ AutD(Vi) 7→ (g, 0) + σ((g−1, 0)) ∈ AutD(Vi)⊕AutD(V−i)

defines a k-embedding from GLD(Vi) to G mapping ZGLD(Vi)(βi) onto H.
An injective, affine and AutD(Vi)-equivariant CLF-map from
B1(GLD(Vi), k) to B1(G) in terms of lattice functions is given by

(7.2) Λ ∈ Latt1
oD (Vi) 7→ (Λ⊕ Λ#−i) ∈ Latt1

h(V ).

Now we apply Theorem 6.7 to finish step 2.
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Step 3: We take the direct sum of the maps constructed in the steps
before. �

8. Factorization

In order to analyze the set of CLF-maps from B1(H) to B1(G) this
section reduces the problem to the case Where I0 ∪ I+ has cardinality one.

Lemma 8.1. — There is at most one index i ∈ I such that βi = 0 and
if such an index exists, it has to be in I0.

Proof. — Assume that βi and βj are zero for two different indices i and j.
Taking a polynomial P with coefficients in k such that 1i = P (β) we obtain
firstly

1i = 1i1i = 1iP (β) = 1iP (0)
and secondly

0 = 1i1j = P (β)1j = P (0)1j
which is a contradiction. The second assertion follows from −β−i = σ(βi)
and the uniqueness. �

Let us recall that the embedding of h into g is realized by mapping an ele-
ment (ai)i∈I0∪I+ of (

∏
i∈I0 Skew(EndEi⊗kD(Vi), σ))×(

∏
i∈I+ EndEi⊗kD(Vi))

to (
∑
i∈I0 ai) + (

∑
i∈I+(ai − σ(ai))).

Assumption 8.2. — For the rest of the section we fix elements y ∈
B1(G) and x ∈ B1(H) such that

gy ∩ h = hx.

The element x is given by a tuple (xi)i∈I0∪I+ . The set Lie(Hi)((Ei)0) is
denoted by hi. For i ∈ I0, we write hxi and h̃xi for the Lie algebra filtration
and the square lattice function of xi, respectively.

Lemma 8.3. — The lattice function corresponding to y splits under {Vi |
i ∈ I}.

Proof. — The assertion is equivalent to the fact that all idempotents 1i
are elements of g̃y(0).
Case 1: We first consider an index i ∈ I+. Then 1i is an element of hxi(0)

and thus 1i − 1−i is an element of gy(0) by 8.2. Therefore

1i + 1−i = (1i − 1−i)2 ∈ g̃y(0).

Hence 1i and 1−i are elements of g̃y(0), since 2 is invertible in ok.
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Case 2: We take an index i ∈ I0 and we assume that βi is not zero. Since
βi is skew-symmetric and central, we have, for all t ∈ R,

βih̃xi(t) = h̃xi(t+ ν(βi))

and
βihxi(t) = h̃xi(t+ ν(βi)) ∩ {w ∈ h̃i | σ|̃hi(w) = w}.

By the invertibility of 2 in ok, every element of h̃(t) is a sum of a skew-
symmetric and a symmetric element of h̃xi(t), which implies

h̃xi(0) = hxi(0) + βihxi(−ν(βi))
⊆ gy(0) + gy(ν(βi))gy(−ν(βi))
⊆ g̃y(0).

Thus the ith idempotent 1i is an element of g̃y(0).
Case 3: If there is an index i0 such that βi0 = 0, it is unique by Lemma 8.1

and the two cases above imply

1i0 = 1−
∑
i 6=i0

1i ∈ g̃y(0).

�

The idea of the proof of case 2 is taken from [4, 11.2]. We define Gi :=
U(h|(Vi+V−i)2), for i ∈ I0 ∪ I+.

Corollary 8.4. — For non-negative indices there are elements yi ∈
B1(Gi, k0), such that the direct sum of the lattice functions of the yi is the
lattice function of y.

Analogous to the definitions for G we use gi and gyi for Lie(Gi)(k0) and
the Lie algebra filtration of yi, respectively.

Lemma 8.5. — For all i ∈ I0 ∪ I+ we have

hxi = hi ∩ gyi .

Proof. — For t ∈ R we have⊕
i

hxi(t) = h(t) = gy(t) ∩ h =
(
gy(t) ∩

(⊕
i

gi
))
∩ h

=
(⊕

i

gyi(t)
)
∩
(⊕

i

hi

)
=
⊕
i

(
gyi(t) ∩ hi

)
,

where i runs over I0 ∪ I+, and we obtain the assertion. �
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The last two lemmas lead to a factorization of any CLF-map. More pre-
cisely we prove the following proposition.

Proposition 8.6. — Let ψI denote the canonical map from B1(
∏
i Gi,

k0) toB1(G, k0) which maps a tuple of self-dual lattice functions to its sum.
Every CLF-map j from B1(H) to B1(G) factors under ψI , i.e. there is a
unique map

τ : B1(H)→ B1
(∏

i

Gi, k0

)
such that j = ψI ◦ τ.

The map τ is
(1) a CLF-map,
(2) affine if j is affine, and
(3) H-equivariant if j is H-equivariant.

Proof. — The image of j is contained in the image of the injective,
affine and

∏
i∈I0∪I+ Gi(k0)-equivariant map ψI by Corollary 8.4. The CLF-

property of τ is a consequence of Lemma 8.5. This proves the proposi-
tion. �

9. The case where I+ is empty

We denote the following algebraic group{(
λ 0
0 λ−1

)
,

(
0 λ

λ−1 0

) ∣∣∣ λ ∈ k̄×}
by Ois

2 . It is a form of O2 over the prime field of k.

Remark 9.1.
(1) The group U(h) is k0-isomorphic to Ois

2 if and only if D = k = k0,

V is two-dimensional over k and isotropic with respect to h and σ
is orthogonal.

(2) The connected component of Ois
2 is k-isomorphic to Gm, implying

that B1(Ois
2 , k) is affinely isomorphic to R.

(3) All points of B1(Ois
2 , k) have the same Lie algebra filtration. Espe-

cially all of its affine endomorphisms are CLF-maps.

The remark forces us to exclude Ois
2 from the factors.

Theorem 9.2. — There exists only one CLF-map fromB1(H) toB1(G)
if I+ is empty and no group Hi is (Ei)0-isomorphic to Ois

2 .

For the proof we need the following operations on square matrices.
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Definition 9.3. — For a square matrix B = (bi,j) ∈Mr(D) the matrix
B̃ is defined to be (br+1−j,r+1−i)i,j , i.e. B̃ is obtained from B by a reflection
along the antidiagonal. We define further

Bρ := (ρ(bi,j))i,j .

Proof. — Applying Lemma 8.5 we can assume that E is a field.
Case 1: β is not zero. Compare with [4, 11.2]. We fix an arbitrary CLF-

map j from B1(H) to B1(G) and an arbitrary element x of B1(H). By the
same argument as in case 2 of Lemma 8.3 we obtain

h̃x(t) ⊆ g̃j(x)(t)

for all real numbers t. Theorem 6.6 implies the uniqueness.
Case 2: β is zero. If σ is of the second type there is a skew-symmetric non-

zero element β′ in k and we can replace β by β′ and apply case 1. Thus we
only need to consider the case where σ is of the first kind. We fix a point y ∈
B1(G) and fix an apartment containing y. This apartment is determined
by a Witt decomposition. We choose an adapted basis (wi)16j6m such that
the Gram matrix Gram(wi)(h) of the ε-hermitian form h has the form 0 M 0

εM 0 0
0 0 N


with M := antidiag(1, . . . , 1) and a diagonal regular matrix N. From 3.9
we deduce that the self-dual oD-lattice function Λ corresponding to y is
split by this basis. It is thus described by its intersections with the lines
wiD, i.e. there are real numbers ai such that

Λ(t) =
⊕
i

wip
d(t−ai)de
D .

Thus the square lattice function of y in t is

g̃y(t) =
⊕
i,j

p
d(t+aj−ai)de
D Ei,j

where Ei,j denotes the matrix with a 1 in the intersection of the ith row
and the jth column and zeros everywhere else. See for example [2, I.4.5].
It is enough to show that g̃y is determined by the Lie algebra filtration

gy. Indeed, a class of oD-lattice functions contains at most one self-dual
lattice function. Thus the self-dual square lattice function of a point of
B1(G) determines the point uniquely.

The adjoint involution of h

B 7→ Bσ = Gram(wi)(h)−1(Bρ)T Gram(wi)(h)
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on Mm(D) has under (wi)16j6m the formB1,1 B1,2 B1,3
B2,1 B2,2 B2,3
B3,1 B3,2 B3,3

 7−→
 C̃2,2 εC̃1,2 εMCT3,2N

εC̃2,1 C̃1,1 MCT3,1N

εN−1CT2,3M N−1CT1,3M N−1CT3,3N


The matrices B1,1, B1,2, B2,1 and B2,2 are r × r-matrices and C := Bρ

where r is the Witt index of h. By the above calculation we obtain that
Eσi,j is +Ei,j , −Ei,j or λEu,l with (i, j) 6= (u, l) for some λ ∈ D×. From the
self-duality of g̃y and since 2 is invertible in ok we get:

gy(t) ∩ k(Ei,j − Eσi,j) = p
dt+aj−aie
k (Ei,j − Eσi,j).

For the calculation see Lemma 9.4 below. Thus we can obtain the exponent
aj − ai from the knowledge of the Lie algebra filtration if Ei,j is not fixed
by σ. We now consider two cases.
Case 2.1: We assume that there is an anisotropic part in the Witt decom-

position, i.e. N occurs. The matrix Ei,m is fixed by σ if and only if i equals
m. Thus from the knowledge of the Lie algebra filtration we know all diffe-
rences ai − am for all indexes i different from m, and thus by subtractions
we know the differences ai − aj for all i and j.

Case 2.2: Now we assume that there is no anisotropic part in the Witt
decomposition. If ε is −1, no Ei,j is fixed and we can obtain the differences
ai − aj for all i and j. As a consequence, we only have to consider the case
where h is hermitian and D = k (see [8, 1.14]). Here the matrix Ei,j is fixed
by σ if and only if i + j = m + 1. Thus we can determine all differences
ai − aj where i + j 6= m + 1. If m is at least 4 for an index i there is an
index k 6= i with i + k 6= m + 1 and we can obtain ai − am+1−i if we add
ak− am+1−i to ai− ak. If m equals 2, then the group G is k-isomorphic to
Ois

2 which is excluded by the assumption of the theorem. �

The idea of taking the root system of GLD(V ) with respect to the Witt
basis was given by P. Broussous. To complete the proof we need the fol-
lowing lemma.

Lemma 9.4. — For all t ∈ R we have

p
dtde
D ∩ k = p

dte
k .

Proof. — For an element x of k, we have x ∈ p
dtde
D if and only if ν(x) >

dtde
d . There are integers l and s such that 1 6 s 6 d and

dtde = ld+ s

Thus dte = l+ 1 and we get that ν(x) > dtded if and only if ν(x) > dte. The
“only if” follows from ν(x) ∈ Z. �
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Remark 9.5.
(1) In particular the proof of Theorem 9.2 shows that, if Hi is (Ei)0

isomorphic to Ois
2 , then βi has to be zero and σ is of the first kind.

(2) For positive indices Hi is not isomorphic to O2 because the latter
is not connected.

(3) Let us assume that β is separable. The above remarks and 9.1 imply,
for i ∈ I0 ∪ I+, that Ois

2 is k0-isomorphic to Res(Ei)0|k0(Hi) if and
only if Hi is (Ei)0-isomorphic to Ois

2 .

10. Rigidity of Euclidean buildings

To have an approach to a uniqueness statement if there are no restrictions
on I we show that Euclidean buildings are rigid for functionals.
Definition 10.1.
(1) A set with affine structure is a pair (S, ∗) consisting of a non-empty

set S and a map

∗ : [0, 1]× S × S → S,

which we denote

ts1 + (1− t)s2 := ∗(t, s1, s2).

(2) An affine functional f on a set S with affine structure is an affine
map from S to R, i.e.

f(tx+ (1− t)y) = tf(x) + (1− t)f(y),

for all t ∈ [0, 1] and x, y ∈ S.

Proposition 10.2. — Let Ω be a thick Euclidean building and |Ω| be
its geometric realization. Then every affine functional a on |Ω| is constant.

For the definition of a thick Euclidean building and its geometric real-
ization see [5, VI.3].

Proof. — Let C1, C2 and C3 be three pairwise different adjacent cham-
bers having a common co-dimension 1 face S. We denote by Pi the unique
vertex of Ci which is not a vertex of S. The line segment [P1, P2] meets
[P1, P3] and [P2, P3] in a point Q ∈ |S̄|. This can be seen as follows. We
are working in three different apartments simultaneously. If ∆ij denotes an
apartment containing Ci and Cj , for different i and j, the affine isomor-
phism from |∆12| to |∆13| fixing |∆12 ∩∆13| sends [P1, P2] to [P1, P3] and
thus the unique intersection point in [P1, P2]∩|C̄1|∩|C̄2| lies on [P1, P3], and
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similarly on [P3, P2].Without loss of generality assume that a(Q) vanishes.
If a(P1) is negative then a(P2) and a(P3) are positive by the affineness
of a. Thus a(Q) is positive since it lies on [P2, P3]. A contradiction. Us-
ing galleries we obtain that a is constant on vertices of the same type. An
apartment is affinely generated by its vertices of a fixed type. Thus a is con-
stant on every apartment and therefore on |Ω|, since any two apartments
are connected by a gallery. �

Proposition 10.3. — If G is not k0-isomorphic to Ois
2 , then every

affine functional on B1(G) is constant.

Proof. — Not being k0-isomorphic to Ois
2 , the unitary group U(h) has no

k0-rational characters on the connected component of the identity implying
that the non-extended and the extended buildings are equal (see B.3). If G
is totally isotropic, then B1(G) is a point and otherwise it is the geometric
realization of a thick Euclidean building. Now we apply Proposition 10.2.

�

Proposition 10.4.
(1) A k×-invariant affine functional on B1(GLD(V ), k), i.e. on

Latt1
oD (V ), is constant.

(2) Every k×-invariant affine functional on B1(Ois
2 , k) is constant.

Proof.
(1) Every fiber of a k×-invariant affine functional on B1(GLD(V ), k) is

a union of classes of oD-lattice functions. It therefore factorizes to an
affine functional onB(GLD(V ), k). Now we apply Proposition 10.2.

(2) This follows from part 1, because B1(Ois
2 , k) is isomorphic to

B1(Gm, k) via a k×-equivariant affine bijection.
�

11. The general case

We introduce the notion of a translation in order to understand the class
of affine CLF-maps which satisfy a mild equivariance condition.
Definition 11.1.
(1) A translation of Latt1

oD (V ) is a map from Latt1
oD (V ) to itself of the

form
Λ 7→ Λ + s

where s is a real number.

ANNALES DE L’INSTITUT FOURIER



ON CENTRALIZERS OF CLASSICAL GROUPS AND BUILDINGS 535

(2) A translation of Latt1
h(V ) is the identity if G is not k0-isomorphic

to Ois
2 .

(3) A translation ofB1(H, k0) is a product of translations of the factors.

Remark 11.2. — A translation of B1(Ois
2 , k0) is included in the defini-

tion because (Ois
2 )0 is k0-isomorphic to Gm, i.e. there is a natural bijection

from B1(Ois
2 , k0) to Latt1

k0
(k0).

Let us fix a map j from B1(H) to B1(G) constructed as in the proof of
Theorem 7.2. In this section we are going to prove:

Theorem 11.3. — If φ is an affine and Z(
∏
i H0

i ((Ei)0))-equivariant
CLF-map from B1(H) to B1(G) then j−1 ◦φ is a translation of B1(H). In
terms of lattice functions, the image of φ is the set of self-dual oE-oD-lattice
functions in V and φ is

∏
i H0

i ((Ei)0)-equivariant.

The composition of j−1 with φ is possible by the following fact.

Proposition 11.4. — The image of a CLF-map from B1(H) to B1(G)
is a subset of the set of oE-oD-lattice functions.

Proof. — By Lemma 8.5 we can assume that

I0 ∪ I+ = {i}.

Case 1: β = 0. The field E is k and there is nothing to prove.
Case 2: i ∈ I0 and β 6= 0. There is only one CLF-map by Theorem 9.2

and it fulfills the assertion by Theorem 7.2.
Case 3: i ∈ I+. We choose two arbitrary points y ∈ B1(G) and x ∈

B1(H) such that gy ∩ h = hx. The lattice function Λ of y splits under
(Vi, V−i) by corollary 8.4. By self-duality it is sufficient to prove that Λ∩Vi
is an oEi-lattice function. The building

B1(H) = B1(GLEi⊗kD(Vi), Ei)

is identified with the set of lattice functions over a skew field whose center
is Ei. Thus we get

• (a− aσ) ∈ gy(0) for all a ∈ o×Ei ,
• πEi − πσEi ∈ gy( 1

e ), and
• π−1

Ei
− (π−1

Ei
)σ ∈ gy(− 1

e ),
where e is the ramification index of Ei|k and πEi is a prime element of Ei.
We conclude that 1iΛ is an oEi -lattice function �

Proof of Theorem 11.3. — Proposition 11.4 enables us to define

τ := j−1 ◦ φ
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because the image of j is the set of all oE-oD-lattice functions in V.
If we know that τ is a translation, then all assertions of Theorem 11.3

hold: A translation is a bijection and we conclude that φ and j have the
same image. The

∏
i H0

i ((Ei)0)-equivariance of φ follows because j and τ
are

∏
i H0

i ((Ei)0)-equivariant.
We denote the coordinates of τ by τi, i ∈ I0 ∪ I+. We need two steps to

show that τ is a translation. Let us fix i ∈ I0 ∪ I+.
Step 1: We prove that the coordinate τi only depends on xi.
Case 1.1: i ∈ I0, such that Ois

2 is not (Ei)0-isomorphic to Hi. By Theo-
rem 9.2 we have τi(x) = xi, for all x ∈ B1(H).
Case 1.2: We assume that we have an index i ∈ I such that Hi is

(Ei)0-isomorphic to Ois
2 , whose building is affinely isomorphic to R by

Remark 11.2. If we fix an index t ∈ (I ∪ I+) r {i} and coordinates xl for
l ∈ (I ∪ I+) r {t}, then the map

xt 7→ τi(x)

is constant by Proposition 10.3 or 10.4. Thus τi does not depend on xt.
Case 1.3: i ∈ I+. Let us fix x ∈ B1(H). The lattice functions Λτi(x) and

Λxi are equivalent by the CLF-property of τ . We define ai(x) to be the real
number such that

Λτi(x) = Λxi + ai(x).
The map ai is affine, since τi is. By an analogous argument as in case 1.2 we
have that ai does not depend on the tth coordinate, for t ∈ (I+ ∪ I0)r {i}.
Step 1 allows us to define a map τ̃i from B1(Hi, (Ei)0) to itself by

τ̃i(xi) := τi(x), x ∈ B1(H).

Step 2: Here we show that τ̃i is a translation. We firstly consider an index
i ∈ I0 such that Hi is (Ei)0-isomorphic to Ois

2 . In this case we have k = k0
and Ei = 1ik. We identify B1(Ois

2 , k) with R. The SOis
2 (k)-equivariance of

τi gives
τ̃i(xi + 1) = τ̃i(xi) + 1.

The affineness property implies that τ̃i is a translation. For i ∈ I+ the
map ai in case 3 of step 1 is an affine functional and the k×-equivariance
of τi implies the k×-invariance of ai, because one gets in terms of lattice
functions

Λπk + ai(Λπk) = τ̃i(Λπk) = (τ̃i(Λ))πk
= Λ + ai(Λ)− 1 = Λπk + ai(Λ),

where πk is a prime element of k. Thus ai is constant by Proposition 10.4.
�

ANNALES DE L’INSTITUT FOURIER



ON CENTRALIZERS OF CLASSICAL GROUPS AND BUILDINGS 537

12. Torality

In this section we want to prove that the map constructed in section 7
respects apartments and is toral if β is separable.

Definition 12.1. — A map

f : B1(G1, k0)→ B1(G2, k0)

between two extended buildings of reductive groups defined over k0 is called
toral if, for each maximal k0-split torus S of G1, there is a maximal k0-split
torus T of G2 containing S such that f maps the apartment corresponding
to S into the apartment corresponding to T. An analogous definition applies
to maps between non-extended buildings.

Maximal k0-split tori of G can be characterized in terms of Witt decom-
positions. Given a Witt decomposition {Wl | l ∈ L} of V , there is exactly
one maximal k0-split torus T of G which satisfies

ZG(T )(k0) =
{
g ∈ G(k0) | g(Wl) ⊆Wl, l ∈ L, (g − idV )(W0) ⊆ {0}

}
.

We recall, thatW0 is the orthogonal complement of the sum of allWl. Every
maximal k0-split torus arises in this way, because they are conjugate to each
other by elements of G(k0). The D-vector spaces Wl, l ∈ L, are exactly
the irreducible T (k0)-invariant D-subspaces of the orthogonal complement
of {

v ∈ V | t(v) = v, for all t ∈ T (k0)
}
.

Analogously one shows that the set of maximal k-split tori of GLD(V )
is one-to-one correspondence with the set of all decompositions of V into
one-dimensional D-subspaces.

Lemma 12.2. — The map ψI from B1(
∏
i Gi, k0) to B1(G, k0) defined

in Proposition 8.6 by

ψI
(
(Λi)i∈I0∪I+

)
:=

⊕
i∈I0∪I+

Λi

is toral.

Proof. — For i ∈ I0 ∪ I+, let Si be a maximal k0-split torus of Gi and
{W i

l | l ∈ Li} be the corresponding Witt decomposition of Vi + V−i.

Further let ∆i be the apartment of Si in B1(Gi, k0). Let αi be an element
of ∆i seen as a self dual D-norm on Vi + V−i. By [8, 2.9] the norm

α :=
⊕
i

αi
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has the form
α
(∑

i

wi0

)
= 1

2 inf
i

(
ν(h(wi0, wi0))

)
on Va :=

∑
iW

i
0, i.e. this form does not depend on (αi)i. Let us take a

splitting Witt decomposition {W a
l | l ∈ La} of Va for the restriction of α

to Va. Then the torus
∏
i Si is a subtorus of the maximal k0-split torus T,

which corresponds to the Witt decompostion⋃
i∈I0∪I+∪{a}

{
W i
l | l ∈ Li

}
of V, and ψI maps

∏
i ∆i into the apartment of T. �

Proposition 12.3. — The map j constructed in the proof of Theo-
rem 7.2 maps apartments into apartments. Furthermore, j is toral if β is
separable.

Without loss of generality we may assume that I0 ∪ I+ = {i} by
Lemma 12.2.
Proof i ∈ I+. — The map j̃

Ei of Theorem 6.7 from B1(H) to

B1(GLD(Vi), k) = B1(Resk|k0(GLD(Vi)), k0)

maps apartments into apartments and is toral if βi is separable by [2, 5.1].
We prove that the canonical map φ, see (7.2), from B1(Resk|k0(GLD(Vi)),
k0) to B1(G, k0) defined by

Λ ∈ Latt1
oD (Vi) 7→ (Λ⊕ Λ#−i) ∈ Latt1

h(V )

is toral. A maximal k-split torus S of GLD(Vi) corresponds to a decompo-
sition of Vi in one-dimensional D-subspaces, i.e. there is a decomposition
Vi =

⊕
l Vi,l such that

S(k) = Z
({
g ∈ GLD(Vi) | g(Vi,l) ⊆ Vi,l for all l

})
.

Let V−i,j be the subspace of V−i dual to Vi,j , i.e.

V−i,j :=
{
v ∈ V−i | h(v, Vi,k) = {0}, k 6= j

}
,

and let T be the torus given by the decomposition

V =
⊕
l

(Vi,l ⊕ V−i,l).

Under the map (7.1), from AutD(Vi) to AutD(Vi)⊕AutD(V−i) defined by

g ∈ AutD(Vi) 7→ (g, 0) + σ((g−1, 0)) ∈ AutD(Vi)⊕AutD(V−i)

the set S(k) is mapped into T (k) and under φ the apartment of S is mapped
into the apartment of T. Let S′ and T ′ be the maximal k0-split sub-tori
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of Resk|k0(S) and Resk|k0(T ) respectively. The set S′(k0) is mapped into
(T ′ ∩G)(k0) under (7.1). The image of φ only consists of self-dual lat-
tice functions. Hence φ seen as a map from B1(Resk|k0(GLD(Vi)), k0) to
B1(G, k0) is toral. �

From now on we assume i ∈ I0. Here we need the notion of tori adapted
to a decomposition of V.

Definition 12.4. — Assume we are given a decomposition

V = V ′+ ⊕ V ′− ⊕ V ′0

such that V ′+ and V ′− are maximal totally isotropic and V ′+ ⊕ V ′− is
orthogonal to V ′0 with respect to h. A maximal k0-split torus T of G is
adapted to (V ′+, V ′−, V ′0) if there is a Witt decomposition {Wl | l ∈ L}
corresponding to T with anisotropic part V ′0 such that⊕

l

(Wl ∩ V ′+) = V ′+ and
⊕
l

(Wl ∩ V ′−) = V ′−.

We say that an apartment of B1(G) is adapted to (V ′+, V ′−, V ′0) if every
lattice function in this apartment is split by (V ′+, V ′−, V ′0).

Proof i ∈ I0. — We have E = Ei. There are a central division al-
gebra ∆ over E and a finite-dimensional right vector space W such that
EndE⊗kD(V ) is E-algebra isomorphic to End∆(W ). We identify the E-
algebras EndE⊗kD(V ) and End∆(W ) via a fixed isomorphism and we fix
a signed hermitian form hE which corresponds to the restriction σE of
σ to the E-algebra End∆(W ). Let r be the Witt index of hE . We fix a
decomposition

(12.1) W = (W+ ⊕W−)⊕W 0

such that W+ and W− are maximal isotropic subspaces of W contained in
the orthogonal complement of W 0. Let e+, e− and e0 be the projections to
the vector spaces W+,W− and W 0 via the direct sum (12.1). We define

V + := e+V, V − := e−V and V 0 := e0V.

Consider the following diagram.
B1(H) ←− B1(U((hE)|W0×W0 ),E0)×B1(GL∆(W+),E) −→ B(GL∆(W+),E)yj yα y
B1(G) ←− B1(U(h|V 0×V 0 ),k0)×B1(GLD(V +),k) −→ B(GLD(V +),k)

where the vertical maps are induced by j. The right horizontal maps map
a pair (x,Λ) to the class of Λ. The right vertical arrow satisfies the CLF-
property and its image only consists of E×-fixed points of B(GLD(V +), k),
both properties inherited from j. Thus the map in the right column is jE ,
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i.e. the inverse of jE , because otherwise we could construct a CLF-map
from B(GLD(V +), k)E× to B(GL∆(W+), E) different from jE , but such
a CLF-map is unique by [2, II.1.1.]. Now jE maps apartments into apart-
ments which implies that j maps apartments adapted to (W+,W−,W 0)
into apartments adapted to (V +, V −, V 0).
We now prove that j is toral if E|k is separable. Let us assume that

E|k is separable. This implies that the right column jE is toral by [2, 5.1]
which implies the torality of α because the only maximal E0-split torus of
the anisotropic group U((hE)|W 0×W 0) is the trivial group. The torality of
α implies the torality of j on tori adapted to (W+,W−,W 0). Hence j is
toral because the triple (W+,W−,W 0) was chosen arbitrarily. �

Appendix A. The centralizer of a separable
Lie algebra element

We prove the representation of the centralizer as a product of general
linear groups and Weil restrictions of unitary groups if β is separable. We
still rely on the notation from section 2. For more details about the Weil
restriction we recommend [23, 1.3.] and [10, 20.5.]. The definitions of D′i
and V ′i are given after notation 5.1.

Proposition A.1. — Let us assume that β is separable. The centralizer
ZG(β) is k0-isomorphic to∏

i∈I0

Res(Ei)0|k0

(
U(σ|EndEi⊗kD(Vi))

)
×
∏
i∈I+

Res(Ei)0|k0

(
GLD′

i
(V ′i )

)
;

in particular it is reductive and defined over k0.

Before we come to the proof, we need some preparations on restriction
of scalars.

Lemma A.2. — Let D′ be a skew field of finite index such that the
center, denoted by E, is a non-Archimedean local field. Let V ′ be a finite-
dimensional right D′-vector space. Assume further that σ′ is an involution
on EndD′(V ′) whose set of fixed points in E is E0. Let k0 be a subfield of E0
such that E0|k0 is separable and finite. Then U(σ′⊗k0 idΩ) is k0-isomorphic
to ResE0|k0

(
U(σ′)

)
, for any algebraic closure Ω of E.

Remark A.3. — If V is an affine variety defined over E0 there is a
Gal(Ω|k0)-equivariant isomorphism

ResE0|k0(V) ∼=
∏
γ

Vγ ,
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defined over the normal hull of E0|k0, where γ passes through the set Γ
of all field embeddings E0 ↪→ Ω fixing k0, and one obtains Vγ from V in
the following way. We choose an automorphism γ̄ of Ω whose restriction to
E0 is γ. Let P1, . . . , Pl be polynomials in t variables with coefficients in E0
such that

V :=
{
x ∈ Ωt | Pi(x) = 0, i = 1, . . . , l

}
,

for some t ∈ N. One defines

Vγ :=
{

(γ̄(xj))16j6t | x ∈ V
}

=
{
x ∈ Ωt | P γi (x) = 0, i = 1, . . . , l

}
,

where P γi is the polynomial obtained from Pi by applying γ to the coeffi-
cients.

Proof of Lemma A.2. — The Ω-algebra EndD′(V ′) ⊗k0 Ω is canoni-
cally isomorphic to EndD′(V ′) ⊗E0 E0 ⊗k0 Ω and E0 ⊗k0 Ω is isomorphic
to Ω[E0 : k0] via

e⊗k0 w 7→ (γ(e)w)γ∈Γ.

We denote by Ωγ the left E0-vector space Ω under the action

e · ω := γ(e)ω.

Thus
EndD′(V ′)⊗E0 E0 ⊗k0 Ω ∼=

∏
γ

EndD′(V ′)⊗E0 Ωγ .

The fact that σ′ fixes E0 implies that σ′⊗k0 idΩ is the product of involutions
σ′ ⊗E0 idΩγ . It is enough to prove

U(σ′ ⊗E0 idΩγ ) = U(σ′ ⊗E0 idΩ)γ .

To show the latter, we fix γ and we choose an extension γ̄ to Ω. The ring
isomorphism

Φ: EndD′(V ′)⊗E0 Ω→ EndD′(V ′)⊗E0 Ωγ

sending f ⊗E0 ω to f ⊗E0 γ̄(ω) satisfies

Φ ◦ (σ′ ⊗E0 idΩ) = (σ′ ⊗E0 idΩγ ) ◦ Φ.

Thus an element g of EndD′(V ′)⊗E0 Ω lies in U(σ′ ⊗E0 idΩ) if and only if
Φ(g) lies in U(σ′ ⊗E0 idΩγ ), which proves the lemma. �

Proof of Proposition A.1. — Without loss of generality we assume that
I0 ∪ I+ = {i}.
Case 1: I0 = {i}. We fix an algebraic closure Ω of E. We have

ZEndD(V )⊗k0Ω(β ⊗k0 1) ∼= ZEndD(V )(β)⊗k0 Ω
∼= EndD′

i
(V ′i )⊗k0 Ω.
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The involution defining U(σ) on EndD(V )⊗k0 Ω is σ⊗k0 id. The above Ω-
algebra isomorphism defines an involution σ′i⊗k0 id on the right side of the
equation where σ′i is an involution on EndD′

i
(V ′i ) whose set of fixed points

in E is E0. By Lemma A.2 the group U(σ′i ⊗k0 id) is the Weil restriction
of U(σ′i) from E0 to k0.

Case 2: I+ = {i}. The algebra E is a direct product of two fields Ei
and E−i and we define E0 to be the set of fixed points of σ in E. In the
following part of the proof we use the bijections

Ei → E0 → E−i, ei 7→ ei + σ(ei) 7→ σ(ei).

We fix an algebraic closure Ω of E0. As in the proofs of Lemma A.2 and
case 1, we get the product decomposition

ZEndD(V )⊗k0Ω(β ⊗k0 1)
∼= ZEndD(V )(β)⊗k0 Ω
∼=
(
EndD′

i
(V ′i )⊕ (EndD′

i
(V ′)

)op)⊗k0 Ω
∼=
∏
γ

(
(EndD′

i
(V ′i )⊕ (EndD′

i
(V ′i ))op)⊗E0 Ωγ

)
∼=
∏
γ

(
(EndD′

i
(V ′i )⊗Ei Ωγ)⊕ (EndD′

i
(V ′i )⊗E−i Ωγ)op

)
.

The unitary group{
g ∈ (EndD′

i
(V ′i )⊗Ei Ω)⊕ (EndD′−i(V

′
−i)⊗E−i Ω)op | g(σ⊗E0 idΩ)(g) = 1

}
is Ei-isomorphic to GLD′

i
(V ′i ). We conclude as in the proof of Lemma A.2.

�

Appendix B. Rational characters

In this section we show that the extended and the non-extended buildings
of G are equal in almost all cases. The following statement is common
knowledge, but we give a prove for the sake of completeness. Let X∗(?)k0

denote the set of k0-rational characters of ?. Let us recall that by definition
B1(G) is different from B(G) if and only if the set X∗(G0)k0 is non-trivial
(see [6, 4.2.16]).

Definition B.1. — The special unitary group SU(h) of h is a con-
nected reductive group defined over k0, whose set of rational points, which
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we denote by SU(h), is the intersection of U(h)(k0) with the kernel of the
reduced norm on EndD(V ).

Remark B.2 ([14], 2.15).
(1) If σ is a unitary involution, then G is a k-form of GLmd(k̄).
(2) If σ is symplectic, then G is k-isomorphic to SU(h) which is a k-

form of the symplectic group Spmd(k̄), in particluar G is semisim-
ple.

(3) If σ is orthogonal, then G0 is k-isomorphic to SU(h) which is a
k-form of the special orthogonal group SOmd(k̄), in particular G0

is semisimple if md 6= 2.

We further need the following theorem.

Proposition B.3. — X∗(G0)k0 6= 1 if and only if

(B.1) m = 2 and d = 1 and σ is orthogonal and h is isotropic.

Lemma B.4. — Let L|L′ be a field extension and n ∈ N. Let L̄ be an
algebraic closure of L. Let φ be an L′-algebra monomorphism from Mn(L)
into Mn(L̄). Then there is an element ψ in Gal(L̄|L′) inducing an L′-algebra
automorphism of Mn(L̄) via

Ψ((aij)ij) := (ψ(aij))ij ,

such that Ψ ◦ φ is an L-algebra monomorphism from Mn(L) into Mn(L̄).

Proof. — The map from Mn(L′)⊗L′ L̄ to Mn(L̄) defined by

x⊗L′ y 7→ φ(x)y

is surjective, and thus im(φ) contains a L̄-basis of Mn(L̄). In particular
φ(L) is a subset of the center L̄ of Mn(L̄). Now choose ψ ∈ Gal(L̄|L′) such
that ψ−1|L equals φ. �

B.3. — A semisimple group is perfect and has therefore no characters.
By remark B.2 the only cases left are:

(1) σ is unitary.
(2) σ is orthogonal and md = 2 and not (B.1).
(3) Situation (B.1).
Case 1: We have D = k by Remark 2.1. There is an isomorphism of

k̄-algebras with involution(
Endk(V )⊗k0 k̄, σ ⊗k0 idk̄

) ∼= (Mm(k̄)×Mm(k̄), σ̃
)

with
σ̃(B,C) = (CT , BT ),
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and we have k̄-isomorphisms

G = U(σ ⊗k0 idk̄) ∼= U(σ̃) ∼= GLm(k̄).

The last isomorphism is induced by the projection to the first coordinate.
Let χ be a k0-rational character of G. A character of GLm(k̄) is a power
of the determinant. Thus, because of Lemma B.4, χ|G must be a power of
det |G or ρ ◦ det |G. We now fix a basis of V to get a k-isomorphism from
Mm(k) to Endk(V ). The involution σ ◦ ()ρ is conjugate to the transpose
map, which implies

χ(x)−1 = χ(σ(x)) = ρ(χ(x)) = χ(x),

for all x ∈ G. The last equality follows from χ(G) ⊆ k0. In particular the
only possible values of χ on G are 1 and −1. Thus χ is trivial, because G
is connected and G is Zariski-dense in G by [1, 18.3].

Case 2: We have k = k0, since σ is orthogonal. If d = 2 There is an
element a ∈ SU(h) r {1,−1}, because SU(h) is Zariski-dense in SU(h)
by [1, 18.3]. We have that k[a] is its own centralizer in D, because the
index of D is two, in particular the commutative group SU(h) is a subset
of k[a]. if we introduce a k-basis of D which contains 1 and a, then the
identity from SU(h) to U(σ|k[a]) can be extended to a k-isomorphism from
SU(h) to U(σ|k[a]). By case 1 there is no k-rational character on SU(h).
Let us now assume d = 1 and SU(h) is anisotropic. There is a k-basis of

V such that the Gram matrix of h is of the form(
e 0
0 f

)
,

and we identify Endk(V ) with M2(k). A short calculation shows that

SU(h) =
{(

a cf

−ce a

)
| a, c ∈ k̄ s.t. a2 + efc2 = 1

}
.

We fix square roots
√
e and

√
−f. The conjugation with(√
e
√
−f

√
e

2 −
√
−f
2

)
maps SU(h) to SOis

2 . The explicit formula for the map is(
a cf

−ce a

)
7→
(
a− c

√
−ef 0

0 a+ c
√
−ef

)
,
√
−ef :=

√
−e
√
f.

Thus a rational character of SU(h) is of the form(
a cf

−ce a

)
7→ (a+ c

√
−ef)z,

ANNALES DE L’INSTITUT FOURIER



ON CENTRALIZERS OF CLASSICAL GROUPS AND BUILDINGS 545

for some integer z. The inverse of (a + c
√
−ef) is (a − c

√
−ef). If z is

positive, we apply the binomial expansion to get coefficients α und γ in k
such that

(a+ c
√
−ef)z = α+ γ

√
−ef.

The element γ is zero, because
√
−ef /∈ k since h is anisotropic. Thus a

k-rational character χ of SU(h) satisfies

χ(x) = χ(x−1),

for all x ∈ SU(h). The density of SU(h) in SU(h) and the connectivity of
SU(h) imply that χ is trivial.

Case 3: Here G is k0-isomorphic to Ois
2 implying that G0 has non-trivial

k0-rational characters. �
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