Martin R. BRIDSON & Karen VOGTMANN

The Dehn functions of $Out(F_n)$ and $Aut(F_n)$

<http://aif.cedram.org/item?id=AIF_2012__62_5_1811_0>
THE DEHN FUNCTIONS OF $Out(F_n)$ AND $Aut(F_n)$

by Martin R. BRIDSON & Karen VOGTMANN (*)

Abstract. — For n at least 3, the Dehn functions of $Out(F_n)$ and $Aut(F_n)$ are exponential. Hatcher and Vogtmann proved that they are at most exponential, and the complementary lower bound in the case $n = 3$ was established by Bridson and Vogtmann. Handel and Mosher completed the proof by reducing the lower bound for n bigger than 3 to the case $n = 3$. In this note we give a shorter, more direct proof of this last reduction.

Résumé. — Pour n au moins 3, les fonctions de Dehn de $Out(F_n)$ et $Aut(F_n)$ sont exponentielles. Hatcher et Vogtmann ont montré qu’elles étaient au plus exponentielles, et la borne inférieure a été établie par Bridson et Vogtmann dans le cas $n = 3$. Handel et Mosher ont complété la démonstration en ramenant la preuve de la borne inférieure pour n au moins 4 au cas $n = 3$. Dans cet article, nous donnons un argument plus direct permettant de passer du cas $n = 3$ au cas général.

Dehn functions provide upper bounds on the complexity of the word problem in finitely presented groups. They are examples of filling functions: if a group G acts properly and cocompactly on a simplicial complex X, then the Dehn function of G is asymptotically equivalent to the function that provides the optimal upper bound on the area of least-area discs in X, where the bound is expressed as a function of the length of the boundary of the disc. This article is concerned with the Dehn functions of automorphism groups of finitely-generated free groups.

Much of the contemporary study of $Out(F_n)$ and $Aut(F_n)$ is based on the deep analogy between these groups, mapping class groups, and lattices in semisimple Lie groups, particularly $SL(n,\mathbb{Z})$. The Dehn functions of mapping class groups are quadratic [9], as is the Dehn function of $SL(n,\mathbb{Z})$ if $n \geq 5$ (see [10]). In contrast, Epstein et al. [6] proved that the Dehn function of $SL(3,\mathbb{Z})$ is exponential. Building on their result, we proved

Keywords: Automorphism groups of free groups, Dehn functions.

(*) Bridson is supported by an EPSRC Senior Fellowship. Vogtmann is supported by NSF grant DMS-0204185.
in [3] that $\text{Aut}(F_3)$ and $\text{Out}(F_3)$ also have exponential Dehn functions. Hatcher and Vogtmann [8] established an exponential upper bound on the Dehn function of $\text{Aut}(F_n)$ and $\text{Out}(F_n)$ for all $n \geq 3$. The comparison with $\text{SL}(n, \mathbb{Z})$ might lead one to suspect that this last result is not optimal for large n, but recent work of Handel and Mosher [7] shows that in fact it is: they establish an exponential lower bound by using their general results on quasi-retractions to reduce to the case $n = 3$.

Theorem. — For $n \geq 3$, the Dehn functions of $\text{Aut}(F_n)$ and $\text{Out}(F_n)$ are exponential.

This theorem answers Questions 35 and 37 of [4].

We learned the contents of [7] from Lee Mosher at Luminy in June 2010 and realized that one can also reduce the Theorem to the case $n = 3$ using a simple observation about natural maps between different-rank Outer spaces and Auter spaces (Lemma 3). The purpose of this note is record this observation and the resulting proof of the Theorem.

1. Definitions

Let A be a 1-connected simplicial complex. We consider simplicial loops $\ell : S \rightarrow A^{(1)}$, where S is a simplicial subdivision of the circle. A *simplicial filling* of ℓ is a simplicial map $L : D \rightarrow A^{(2)}$, where D is a triangulation of the 2-disc and $L|_{\partial D} = \ell$. Such fillings always exist, by simplicial approximation. The filling area of ℓ, denoted $\text{Area}_A(\ell)$, is the least number of triangles in the domain of any simplicial filling of ℓ. The Dehn function$^{(1)}$ of A is the least function $\delta_A : \mathbb{N} \rightarrow \mathbb{N}$ such that $\text{Area}_A(\ell) \leq \delta_A(n)$ for all loops of length $\leq n$ in $A^{(1)}$. The Dehn function of a finitely presented group G is the Dehn function of any 1-connected 2-complex on which G acts simplicially with finite stabilizers and compact quotient. This is well-defined up to the following equivalence relation: functions $f, g : \mathbb{N} \rightarrow \mathbb{N}$ are equivalent if $f \preceq g$ and $g \preceq f$, where $f \preceq g$ means that there is a constant $a > 1$ such that $f(n) \leq a(g(an + a)) + an + a$. The Dehn function can be interpreted as a measure of the complexity of the word problem for G — see [2].

Lemma 1. — If A and B are 1-connected simplicial complexes, $F : A \rightarrow B$ is a simplicial map, and ℓ is a loop in the 1-skeleton of A, then $\text{Area}_A(\ell) \geq \text{Area}_B(F \circ \ell)$.

$^{(1)}$The standard definition of area and Dehn function are phrased in terms of singular discs, but this version is \simeq equivalent.
Proof. — If \(L : D \to A \) is a simplicial filling of \(\ell \), then \(F \circ L \) is a simplicial filling of \(F \circ \ell \), with the same number of triangles in the domain \(D \). \(\square \)

Corollary. — Let \(A, B \) and \(C \) be 1-connected simplicial complexes with simplicial maps \(A \to B \to C \). Let \(\ell_n \) be a sequence of simplicial loops in \(A \) whose length is bounded above by a linear function of \(n \), let \(\bar{\ell}_n \) be the image loops in \(C \) and let \(\alpha(n) = \text{Area}_C(\bar{\ell}_n) \). Then the Dehn function of \(B \) satisfies \(\delta_B(n) \geq \alpha(n) \).

Proof. — This follows from Lemma 1 together with the observation that a simplicial map does not increase the length of any loop in the 1-skeleton. \(\square \)

2. Simplicial complexes associated to \(\text{Out}(F_n) \) and \(\text{Aut}(F_n) \)

Let \(K_n \) denote the spine of Outer space, as defined in [5], and \(L_n \) the spine of Auter space, as defined in [8]. These are contractible simplicial complexes with cocompact proper actions by \(\text{Out}(F_n) \) and \(\text{Aut}(F_n) \) respectively, so we may use them to compute the Dehn functions for these groups.

Recall from [5] that a *marked graph* is a finite metric graph \(\Gamma \) together with a homotopy equivalence \(g : R_n \to \Gamma \), where \(R_n \) is a fixed graph with one vertex and \(n \) loops. A vertex of \(K_n \) can be represented either as a marked graph \((g, \Gamma) \) with all vertices of valence at least three, or as a free minimal action of \(F_n \) on a simplicial tree (namely the universal cover of \(\Gamma \)). A vertex of \(L_n \) has the same descriptions except that there is a chosen basepoint in the marked graph (respected by the marking) or in the simplicial tree. Note that we allow marked graphs to have separating edges. Both \(K_n \) and \(L_n \) are flag complexes, so to define them it suffices to describe what it means for vertices to be adjacent. In the marked-graph description, vertices of \(K_n \) (or \(L_n \)) are adjacent if one can be obtained from the other by a forest collapse (i.e. collapsing each component of a forest to a point).

3. Three natural maps

There is a *forgetful map* \(\phi_n : L_n \to K_n \) which simply forgets the basepoint; this map is simplicial.

Let \(m < n \). We fix an ordered basis for \(F_n \), identify \(F_m \) with the subgroup generated by the first \(m \) elements of the basis, and identify \(\text{Aut}(F_m) \) with
the subgroup of Aut(F_n) that leaves $F_m < F_n$ invariant and fixes the last $n - m$ basis elements. We consider two maps associated to this choice of basis.

First, there is an equivariant augmentation map $\iota: L_m \to L_n$ which attaches a bouquet of $n - m$ circles to the basepoint of each marked graph and marks them with the last $n - m$ basis elements of F_n. This map is simplicial, since a forest collapse has no effect on the bouquet of circles at the basepoint.

Secondly, there is a restriction map $\rho: K_n \to K_m$ which is easiest to describe using trees. A point in K_n is given by a minimal free simplicial action of F_n on a tree T with no vertices of valence 2. We define $\rho(T)$ to be the minimal invariant subtree for $F_m < F_n$; more explicitly, $\rho(T)$ is the union of the axes in T of all elements of F_m. (Vertices of T that have valence 2 in $\rho(T)$ are no longer considered to be vertices.)

One can also describe ρ in terms of marked graphs. The chosen embedding $F_m < F_n$ corresponds to choosing an m-petal subrose $R_m \subset R_n$. A vertex in K_n is given by a graph Γ marked with a homotopy equivalence $g: R_n \to \Gamma$, and the restriction of g to R_m lifts to a homotopy equivalence $\hat{g}: R_m \to \hat{\Gamma}$, where $\hat{\Gamma}$ is the covering space corresponding to $g_*(F_m)$. There is a canonical retraction r of $\hat{\Gamma}$ onto its compact core, i.e. the smallest connected subgraph containing all nontrivial embedded loops in Γ. Let $\hat{\Gamma}_0$ be the graph obtained by erasing all vertices of valence 2 from the compact core and define $\rho(g, \Gamma) = (r \circ \hat{g}, \hat{\Gamma}_0)$.

Lemma 2. — For $m < n$, the restriction map $\rho: K_n \to K_m$ is simplicial.

Proof. — Any forest collapse in Γ is covered by a forest collapse in $\hat{\Gamma}$ that preserves the compact core, so ρ preserves adjacency. □

Lemma 3. — For $m < n$, the following diagram of simplicial maps commutes:

\[
\begin{array}{ccc}
L_m & \stackrel{\iota}{\to} & L_n \\
\phi_m & \downarrow & \downarrow \phi_n \\
K_m & \stackrel{\rho}{\Leftarrow} & K_n
\end{array}
\]

Proof. — Given a marked graph with basepoint $(g, \Gamma; v) \in L_n$, the marked graph $\iota(g, \Gamma; v)$ is obtained by attaching $n - m$ loops at v labelled by the elements a_{m+1}, \ldots, a_n of our fixed basis for F_n. Then $(g_n, \Gamma_n) := \phi_n \circ \iota(g, \Gamma; v)$ is obtained by forgetting the basepoint, and the cover of (g_n, Γ_n) corresponding to $F_m < F_n$ is obtained from a copy of (g, Γ) (with its labels) by attaching $2(n - m)$ trees. (These trees are obtained from the Cayley graph of F_n as follows: one cuts at an edge labelled a^ϵ, with
In the light of the Corollary and Lemma 3, it suffices to exhibit a sequence of loops ℓ_i in the 1-skeleton of L_3 whose lengths are bounded by a linear function of i and whose filling area when projected to K_3 grows exponentially as a function of i. Such a sequence of loops is essentially described in [3]. What we actually described there were words in the generators of $\text{Aut}(F_3)$ rather than loops in L_3, but standard quasi-isometric arguments show that this is equivalent. More explicitly, the words we considered were

$$w_i = T^i AT^{-i} BT^i A^{-1} T^{-i} B^{-1}$$

where

$$T: \begin{cases} a_1 \mapsto a_1^2 a_2 \\ a_2 \mapsto a_1 a_2 \\ a_3 \mapsto a_3 \end{cases}, \quad A: \begin{cases} a_1 \mapsto a_1 \\ a_2 \mapsto a_2 \\ a_3 \mapsto a_1 a_3 \end{cases}, \quad B: \begin{cases} a_1 \mapsto a_1 \\ a_2 \mapsto a_2 \\ a_3 \mapsto a_3 a_2 \end{cases}$$

To interpret these as loops in the 1-skeleton of L_3 (and K_3) we note that $A = \lambda_{31}$ and $B = \rho_{32}$ are elementary transvections and T is the composition of two elementary transvections: $T = \lambda_{21} \circ \rho_{12}$. Thus w_i is the product of $8i + 4$ elementary transvections. There is a (connected) subcomplex of the 1-skeleton of L_3 spanned by roses (graphs with a single vertex) and Nielsen graphs (which have $(n - 2)$ loops at the base vertex and a further trivalent vertex). We say roses are adjacent if they have distance 2 in this graph.

Let $I \in L_3$ be the rose marked by the identity map $R_3 \to R_3$. Each elementary transvection τ moves I to an adjacent rose τI, which is connected to I by a Nielsen graph N_τ. A composition $\tau_1 \ldots \tau_k$ of elementary transvections gives a path through adjacent roses $I, \tau_1 I, \tau_1 \tau_2 I, \ldots, \tau_1 \tau_2 \ldots \tau_k I$; the Nielsen graph connecting σI to $\sigma \tau I$ is σN_τ. Thus the word w_i corresponds to a loop ℓ_i of length $16i + 8$ in the 1-skeleton of L_3. Theorem A of [3] provides an exponential lower bound on the filling area of $\phi \circ \ell_i$ in K_3. □

The square of maps in Lemma 3 ought to have many uses beyond the one in this note (cf. [7]). We mention just one, for illustrative purposes. This is a special case of the fact that every infinite cyclic subgroup of $\text{Out}(F_n)$ is quasi-isometrically embedded [1].

Proposition. — *The cyclic subgroup of $\text{Out}(F_n)$ generated by any Nielsen transformation (elementary transvection) is quasi-isometrically embedded.*
Proof. — Each Nielsen transformation is in the image of the map
\[\Phi : \operatorname{Aut}(F_2) \to \operatorname{Aut}(F_n) \to \operatorname{Out}(F_n) \]
given by the inclusion of a free factor \(F_2 < F_n \). Thus it suffices to prove that if a cyclic subgroup \(C = \langle c \rangle < \operatorname{Aut}(F_2) \) has infinite image in \(\operatorname{Out}(F_2) \), then \(t \mapsto \Phi(c^t) \) is a quasi-geodesic. This is equivalent to the assertion that some (hence any) \(C \)-orbit in \(K_n \) is quasi-isometrically embedded, where \(C \) acts on \(K_n \) as \(\Phi(C) \) and \(K_n \) is given the piecewise Euclidean metric where all edges have length 1.

\(K_2 \) is a tree and \(C \) acts on \(K_2 \) as a hyperbolic isometry, so the \(C \)-orbits in \(K_2 \) are quasi-isometrically embedded. For each \(x \in L_2 \), the \(C \)-orbit of \(\phi_2(x) \) is the image of the quasi-geodesic \(t \mapsto c^t.\phi_2(x) = \phi_2(c^t.x) \). We factor \(\phi_2 \) as a composition of \(C \)-equivariant simplicial maps \(L_2 \xrightarrow{\iota} K_n \xrightarrow{\phi_n} K_2 \), as in Lemma 3, to deduce that the \(C \)-orbit of \(\phi_n.\iota(x) \) in \(K_n \) is quasi-isometrically embedded.

A slight variation on the above argument shows that if one lifts a free group of finite index \(\Lambda < \operatorname{Out}(F_2) \to \operatorname{Aut}(F_2) \) and then maps it to \(\operatorname{Out}(F_n) \) by choosing a free factor \(F_2 < F_n \), then the inclusion \(\Lambda \hookrightarrow \operatorname{Out}(F_n) \) will be a quasi-isometric embedding.

BIBLIOGRAPHY
