Hussein MOURTADA

Jet schemes of complex plane branches and equisingularity

<http://aif.cedram.org/item?id=AIF_2011___61_6_2313_0>
JET SCHEMES OF COMPLEX PLANE BRANCHES
AND EQUISINGULARITY

by Hussein MOURTADA (*)

Abstract. — For $m \in \mathbb{N}$, we determine the irreducible components of the m–th Jet Scheme of a complex branch C and we give formulas for their number $N(m)$ and for their codimensions, in terms of m and the generators of the semigroup of C. This structure of the Jet Schemes determines and is determined by the topological type of C.

Résumé. — Pour $m \in \mathbb{N}$, nous déterminons les composantes irréductibles des m–èmes espaces des jets d’une branche plane complexe C et nous donnons des formules pour leur nombre $N(m)$ et leurs codimensions, en fonction de m et des générateurs du semigroupe de C. Cette structure des espaces des jets détermine et elle est déterminée par le type topologique de C.

1. Introduction

Let \mathbb{K} be an algebraically closed field. The space of arcs X_∞ of an algebraic \mathbb{K}–variety X is a non-noetherian scheme in general. It has been introduced by Nash in [10]. Nash has initiated its study by looking at its image by the truncation maps $X_\infty \rightarrow X_m$ in the jet schemes of X. The mth–jet scheme X_m of X is a \mathbb{K}– scheme of finite type which parametizes morphisms $\text{Spec } \mathbb{K}[t]/(t)^{m+1} \rightarrow X$. From now on, we assume $\text{char } \mathbb{K} = 0$.

In [10], Nash has derived from the existence of a resolution of singularities of X, that the number of irreducible components of the Zariski closure of the set of the m–truncations of arcs on X that send 0 into the singular locus of X is constant for m large enough. Besides a theorem of Kolchin asserts that if X is irreducible, then X_∞ is also irreducible. More recently,

Keywords: Jet schemes, singularities of plane curves.
Math. classification: 14E18, 14B05.
(*) I would like to express all my gratitude to Monique Lejeune-Jalabert, without whom this work would not exist. I also would like to thank the referee for his careful reading and comments.
the jet schemes have attracted attention from various viewpoints. In [9], Mustata has characterized the locally complete intersection varieties having irreducible X_m for $m \geq 0$. In [2], a formula comparing the codimensions of Y_m in X_m with the log canonical threshold of a pair (X, Y) is given. In this work, we consider a curve C in the complex plane \mathbb{C}^2 with a singularity at 0 at which it is analytically irreducible (i.e. the formal neighborhood $(C, 0)$ of C at 0 is a branch). We determine the irreducible components of the space $C_m^0 := \pi_m^{-1}(0)$ where $\pi_m : C_m \rightarrow C$ is the canonical projection, and we show that their number is not bounded as m grows. More precisely, let x be a transversal parameter in the local ring $\mathcal{O}_{\mathbb{C}^2, 0}$, i.e. the line $x = 0$ is transversal to C at 0 and following [2], for $e \in \mathbb{N}$, let

$$\text{Cont}_e(x)_m (\text{resp.} \text{Cont}_{> e}(x)_m) := \{ \gamma \in C_m \mid \text{ord}_t x \circ \gamma = e (\text{resp.} > e) \},$$

where Cont stands for contact locus. Let $\Gamma(C) = \langle \beta_0, \ldots, \beta_g \rangle$ be the semigroup of the branch $(C, 0)$ and let $e_i = \text{gcd}(\beta_0, \ldots, \beta_i)$, $0 \leq i \leq g$. Recall that $\Gamma(C)$ and the topological type of C near 0 are equivalent data and characterize the equisingularity class of $(C, 0)$ as defined by Zariski in [13]. We show in theorem 4.9 that the irreducible components of C_m^0 are

$$C_{m\kappa \ell} = \text{Cont}_{\kappa \beta_0}(x)_m,$$

for $1 \leq \kappa$ and $\kappa \beta_0 \beta_1 + e_1 \leq m$,

$$C_{m\kappa \nu}^j = \text{Cont}_{e_j^{-1}}^{\kappa \beta_0}(x)_m$$

for $2 \leq j \leq g, 1 \leq \kappa, \kappa \neq 0 \mod \frac{e_{j-1}}{e_j}$ and $\kappa \beta_0 \beta_1 + e_1 \leq m < \kappa \beta_j$,

$$B_m = \text{Cont}_{e_1^{-1} q}^{\beta_0 \beta_1}(x)_m,$$

if $q \beta_0 \beta_1 + e_1 \leq m < (q + 1)n_1 \beta_1 + e_1$.

These irreducible components give rise to infinite and finite inverse systems represented by a tree. We recover $\langle \beta_0, \ldots, \beta_g \rangle$ from the tree and the multiplicity β_0 in corollary 4.13, and we give formulas for the number of irreducible components of C_m^0 and their codimensions in terms of m and $(\beta_0, \ldots, \beta_g)$ in proposition 4.7 and corollary 4.10. We recover the fact coming from [2] and [6] that

$$\min_m \frac{\text{codim}(C_m^0, \mathbb{C}^2_m)}{m + 1} = \frac{1}{\beta_0} + \frac{1}{\beta_1}.$$

The structure of the paper is as follows: The basics about Jet schemes and the results that we will need are presented in section 2. In section 3
we present the definitions and the results we will need about branches. The last section is devoted to the proof of the main result and corollaries.

2. Jet schemes

Let \(K \) be an algebraically closed field of arbitrary characteristic. Let \(X \) be a \(K \)-scheme of finite type over \(k \) and let \(m \in \mathbb{N} \). The functor \(F_m : K \text{-Schemes} \to \text{Sets} \) which to an affine scheme defined by a \(K \)-algebra \(A \) associates

\[
F_m(\text{Spec}(A)) = \text{Hom}_K(\text{Spec}A[t]/(t^{m+1}), X)
\]

is representable by a \(K \)-scheme \(X_m \) [12]. \(X_m \) is the \(m \)-th jet scheme of \(X \), and \(F_m \) is isomorphic to its functor of points. In particular the closed points of \(X_m \) are in bijection with the \(K[t]/(t^{m+1}) \) points of \(X \).

For \(m, p \in \mathbb{N}, m > p \), the truncation homomorphism \(A[t]/(t^{m+1}) \to A[t]/(t^{p+1}) \) induces a canonical projection \(\pi_{m,p} : X_m \to X_p \). These morphisms clearly verify \(\pi_{m,p} \circ \pi_{q,m} = \pi_{q,p} \) for \(p < m < q \).

Note that \(X_0 = X \). We denote the canonical projection \(\pi_{m,0} : X_m \to X_0 \) by \(\pi_m \).

Example 2.1. — Let \(X = \text{Spec} \frac{K[x_0,\ldots,x_n]}{(f_1,\ldots,f_r)} \) be an affine \(K \)-scheme. For a \(K \)-algebra \(A \), to give a \(A \)-point of \(X_m \) is equivalent to give a \(K \)-algebra homomorphism

\[
\varphi : \frac{K[x_0,\ldots,x_n]}{(f_1,\ldots,f_r)} \to A[t]/(t^{m+1}).
\]

The map \(\varphi \) is completely determined by the image of \(x_i, i = 0, \ldots, n \)

\[
x_i \mapsto \varphi(x_i) = x_i^{(0)} + x_i^{(1)} t + \cdots + x_i^{(m)} t^m
\]

such that \(f_l(\varphi(x_0),\cdots,\varphi(x_n)) \in (t^{m+1}), l = 1, \ldots, r \).

If we write

\[
f_l(\varphi(x_0),\cdots,\varphi(x_n)) = \sum_{j=0}^{m} F_l^{(j)}(x_0^{(0)},\cdots,x_n^{(0)}) t^j \mod (t^{m+1})
\]

where \(x^{(j)} = (x_0^{(j)},\cdots,x_n^{(j)}) \), then

\[
X_m = \text{Spec} \frac{K[x_0^{(0)},\cdots,x_n^{(m)}]}{(F_l^{(j)})_{j=0,\ldots,m, l=1,\ldots,r}}
\]
Example 2.2. — From the above example, we see that the m-th jet scheme of the affine space \mathbb{A}^n_K is isomorphic to $\mathbb{A}^{(m+1)n}_K$ and that the projection $\pi_{m,m-1} : (\mathbb{A}^n_K)_m \rightarrow (\mathbb{A}^n_K)_{m-1}$ is the map that forgets the last n coordinates.

Let $\text{char}(\mathbb{K}) = 0$, $S = \mathbb{K}[x_0, \cdots, x_n]$ and $S_m = \mathbb{K}[x^{(0)}, \cdots, x^{(m)}]$. Let D be the \mathbb{K}-derivation on S_m defined by $D(x_i^{(j)}) = x_i^{(j+1)}$ if $0 \leq j < m$, and $D(x_i^{(m)}) = 0$. For $f \in S$ let $f^{(1)} := D(f)$ and we recursively define $f^{(m)} = D(f^{(m-1)})$.

Proposition 2.3. — Let $X = \text{Spec}(S/(f_1, \cdots, f_r)) = \text{Spec}(R)$ and $R_m = \Gamma(X_m)$. Then

$$R_m = \text{Spec}\left(\frac{\mathbb{K}[x^{(0)}, \cdots, x^{(m)}]}{(f_i^{(j)})_{i=1, \cdots, r}}\right).$$

Proof. — For a \mathbb{K}-algebra A, to give an A-point of X_m is equivalent to give an homomorphism

$$\phi : \mathbb{K}[x_0, \cdots, x_n] \rightarrow A[t]/(t^{m+1})$$

which can be given by

$$x_i \mapsto \frac{x_i^{(0)}}{0!} + \frac{x_i^{(1)}}{1!}t + \cdots + \frac{x_i^{(m)}}{m!}t^m.$$

Then for a polynomial $f \in S$, we have

$$\phi(f) = \sum_{j=0}^{m} \frac{f^{(j)}(x^{(0)}, \cdots, x^{(j)})}{j!} t^j.$$

To see this, it is sufficient to remark that it is true for $f = x_i$, and that both sides of the equality are additive and multiplicative in f, and the proposition follows. \hfill \square

Remark 2.4. — Note that the proposition shows the linearity of the equations $F_i^{(j)}(x^{(0)}, \cdots, x^{(j)})$ defining X_m with respect to the new variables i.e $x^{(j)}$. We can deduce from this that if X is a nonsingular \mathbb{K}-variety of dimension n, then the projections $\pi_{m,m-1} : X_m \rightarrow X_{m-1}$ are locally trivial fibrations with fiber \mathbb{A}^n_K. In particular, X_m is a non singular variety of dimension $(m+1)n$.

3. Semigroup of complex branches

The main references for this section are [14],[8],[1],[11],[5],[4],[7]. Let $f \in \mathbb{C}[[x,y]]$ be an irreducible power series, which is y-regular (i.e $f(0, y) =$
$y^\beta_0 u(y)$ where u is invertible in $\mathbb{C}[[y]]$ and such that $\text{mult}_0 f = \beta_0$ and let C be the analytically irreducible plane curve (branch for short) defined by f in $\text{Spec} \mathbb{C}[[x, y]]$. By the Newton-Puiseux theorem, the roots of f are

$$y = \sum_{i=0}^{\infty} a_i w^i x^{\frac{1}{\beta_0}}$$

where w runs over the β_0-th roots of unity in \mathbb{C}. This is equivalent to the existence of a parametrization of C of the form

$$x(t) = t^{\beta_0}, \quad y(t) = \sum_{i \geq \beta_0} a_it^i.$$

We recursively define $\beta_i = \min\{i, a_i \neq 0, \gcd(\beta_0, \ldots, \beta_{i-1}) \text{ is not a divisor of } i\}$.

Let $e_0 = \beta_0$ and $e_i = \gcd(e_{i-1}, \beta_i), i \geq 1$. Since the sequence of positive integers

$$e_0 > e_1 > \cdots > e_i > \cdots$$

is strictly decreasing, there exists $g \in \mathbb{N}$, such that $e_g = 1$. The sequence $(\beta_1, \ldots, \beta_g)$ is the sequence of Puiseux exponents of C. We set

$$n_i := \frac{e_{i-1}}{e_i}, m_i := \frac{\beta_i}{e_i}, i = 1, \ldots, g$$

and by convention, we set $\beta_{g+1} = +\infty$ and $n_{g+1} = 1$.

On the other hand, for $h \in \mathbb{C}[[x, y]]$, we define the intersection number

$$(f, h)_0 = (C, C_h)_0 := \dim_{\mathbb{C}} \mathbb{C}[[x, y]]/(f, h) = \text{ord}_t h(x(t), y(t))$$

where C_h is the Cartier divisor defined by h and $\{x(t), y(t)\}$ is as above.

The mapping $v_f : \mathbb{C}[[x, y]]/(f) \to \mathbb{N}, h \mapsto (f, h)_0$ defines a divisorial valuation.

We define the semigroup of C to be the semigroup of v_f i.e $\Gamma(C) = \Gamma(v_f) = \{(f, h)_0 \in \mathbb{N}, h \neq 0 \mod(f)\}$.

The following propositions and theorem from [14] characterize the structure of $\Gamma(C)$.

Proposition 3.1. — There exists a unique sequence of $g + 1$ positive integers $(\bar{\beta}_0, \ldots, \bar{\beta}_g)$ such that:

i) $\bar{\beta}_0 = \beta_0$,

ii) $\bar{\beta}_i = \min\{\Gamma(C) \setminus < \bar{\beta}_0, \ldots, \bar{\beta}_{i-1} >, 1 \leq i \leq g,$

iii) $\Gamma(C) = < \bar{\beta}_0, \ldots, \bar{\beta}_g >,$

where for $i = 1, \ldots, g + 1, < \bar{\beta}_0, \ldots, \bar{\beta}_{i-1} >$ is the semigroup generated by $\bar{\beta}_0, \ldots, \bar{\beta}_{i-1}$. By convention, we set $\bar{\beta}_{g+1} = +\infty.$
Proposition 3.2. — The sequence \((\tilde{\beta}_0, \cdots, \tilde{\beta}_g)\) verifies:

i) \(e_i = \gcd(\tilde{\beta}_0, \cdots, \tilde{\beta}_i), 0 \leq i \leq g\),

ii) \(\tilde{\beta}_0 = \beta_0, \tilde{\beta}_1 = \beta_1\) and \(\tilde{\beta}_i = n_{i-1}\tilde{\beta}_{i-1} + \beta_i - \beta_{i-1}\). In particular \(n_i\tilde{\beta}_i < \tilde{\beta}_{i+1}\), for \(i = 2, \cdots, g\).

Theorem 3.3. — The sequence \((\tilde{\beta}_0, \cdots, \tilde{\beta}_g)\) and the sequence \((\beta_0, \cdots, \beta_g)\) are equivalent data. They determine and are determined by the topological type of \(C\).

Then from the appendix of [14], [1] or [11], we can choose a system of approximate roots (or a minimal generating sequence) \(\{x_0, \cdots, x_{g+1}\}\) of the divisorial valuation \(v_f\). We set \(x = x_0, y = x_1\); for \(i = 2, \cdots, g+1, x_i \in \mathbb{C}[[x, y]]\) is irreducible; for \(1 \leq i \leq g\), the analytically irreducible curve \(C_i = \{x_i = 0\}\) has \(i-1\) Puiseux exponents and \(C_{g+1} = C\). This sequence also verifies:

i) \(v_f(x_i) = \tilde{\beta}_i, 0 \leq i \leq g\),

ii) \(\Gamma(C_i) := \langle \frac{\tilde{\beta}_0}{e_i-1}, \cdots, \frac{\tilde{\beta}_{i-1}}{e_i-1} \rangle\), and the Puiseux sequence of \(C_i\) is \((\frac{\beta_0}{e_i-1}, \cdots, \frac{\beta_{i-1}}{e_i-1}), 2 \leq i \leq g+1\).

iii) for \(1 \leq i \leq g\), there exists a unique system of nonnegative integers \(b_{ij}, 0 \leq j < i\) such that for \(1 \leq j < i, b_{ij} < n_j\) and \(n_i\tilde{\beta}_i = \sum_{0 \leq j < i} b_{ij}\beta_j\). Furthermore, for \(1 \leq i \leq g\), one can choose \(x_i\) such that they satisfy identities of the form

\[x_{i+1} = x_i^{n_i} - c_i x_0^{b_i} \cdots x_{i-1}^{b_{i-1}} - \sum_{\gamma = (\gamma_0, \cdots, \gamma_i)} c_\gamma x_0^{\gamma_0} \cdots x_i^{\gamma_i},(*)\]

with, \(0 \leq \gamma_j < n_j\), for \(1 \leq j < i\), and \(\sum_j \gamma_j \beta_j > n_i\beta_i\) and with \(c_\gamma, c_i \in \mathbb{C}\) and \(c_i \neq 0\). These last equations (\(\ast\)) let us realize \(C\) as a complete intersection in \(\mathbb{C}^{g+1} = \text{Spec} \mathbb{C}[[x_0, \cdots, x_g]]\) defined by the equations

\[f_i = x_{i+1} - (x_i^{n_i} - c_i x_0^{b_i} \cdots x_{i-1}^{b_{i-1}} - \sum_{\gamma = (\gamma_0, \cdots, \gamma_i)} c_\gamma x_0^{\gamma_0} \cdots x_i^{\gamma_i})\]

for \(1 \leq i \leq g\), with \(x_{g+1} = 0\) by convention.

Let \(h \in \mathbb{C}[[x, y]]\) be a \(y\)-regular irreducible power series with multiplicity \(p = \text{ord}_y h(0, y)\). Let \(y(x^{\frac{1}{\beta_0}})\) and \(z(x^{\frac{1}{\beta}})\) be respectively roots of \(f\) and \(h\) as in (1). We call contact order of \(f\) and \(h\) in their Puiseux series the following rational number

\[o_f(h) := \max\{\text{ord}_x (y(wx^{\frac{1}{\beta_0}}) - z(x^{\frac{1}{\beta}})); w^{\beta_0} = 1, \lambda^p = 1\} = \max\{\text{ord}_x (y(wx^{\frac{1}{\beta_0}}) - z(x^{\frac{1}{\beta}})); w^{\beta_0} = 1\} = \max\{\text{ord}_x (y(x^{\frac{1}{\beta_0}}) - z(x^{\frac{1}{\beta}})); \lambda^p = 1\} = o_h(f)\]

The following formula is from [8], see also [5].
In the sequel, we will denote the integral part of a rational number and the ideal defining coordinates we can write strictly positive integer such that \(o_f(h) \leq \frac{\beta_i}{\beta_0} \). Then
\[
\frac{(f,h)_0}{p} = \sum_{k=1}^{i-1} \frac{e_{k-1} - e_k}{\beta_0} \beta_k + e_{i-1} o_f(h) = (\frac{\beta_i}{\beta_0} e_{i-2} + (\beta_0 o_f(h) - \beta_{i-1}) e_{i-1}) \frac{1}{\beta_0}.
\]

Corollary 3.5. — \([1][5]\) Let \(i > 0 \) be an integer. Then \(o_f(h) \leq \frac{\beta_i}{\beta_0} \) iff \(\frac{(f,h)_0}{p} \leq e_{i-1} \frac{\beta_i}{\beta_0} \). Moreover \(o_f(h) = \frac{\beta_i}{\beta_0} \) iff \(\frac{(f,h)_0}{p} = e_{i-1} \frac{\beta_i}{\beta_0} \). In particular \(o_f(x_i) = \frac{\beta_i}{\beta_0}, 1 \leq i \leq g \). We say that \(C_i x_i = 0 \) has maximal contact with \(C \).

4. Jet schemes of complex branches

We keep the notations of sections 2 and 3. We consider a curve \(C \subset \mathbb{C}^2 \) with a branch of multiplicity \(\beta_0 > 1 \) at 0, defined by \(f \). Note that in suitable coordinates we can write
\[
f(x_0, x_1) = (x_1^{m_1} - c x_0^{m_1}) e_1 + \sum_{a \beta_0 + b \beta_1 > 0} c_{ab} x_0^a x_1^b; c \in \mathbb{C}^* \text{ and } c_{ab} \in \mathbb{C}. \ (\diamond)
\]
We look for the irreducible components of \(C_m := (\pi^{-1}_m(0)) \) for every \(m \in \mathbb{N} \), where \(\pi_m : C_m \to C \) is the canonical projection. Let \(J^m_0 \) be the radical of the ideal defining \((\pi^{-1}_m(0)) \) in \(\mathbb{C}^2 \).

In the sequel, we will denote the integral part of a rational number \(r \) by \([r]\).

Proposition 4.1. — For \(0 < m < n \beta_1 \), we have that
\[
(C_m^0)_{\text{red}} = (\pi^{-1}_m(0))_{\text{red}} = \text{Spec } \mathbb{C}\left[x_0^{(0)}, \ldots, x_0^{(m)}, x_1^{(0)}, \ldots, x_1^{(m)} \right] / \left(x_0^{(0)}, \ldots, x_0^{(\left\lfloor \frac{m}{\beta_1} \right\rfloor)}, x_1^{(0)}, \ldots, x_1^{(\left\lfloor \frac{m}{\beta_1} \right\rfloor)} \right),
\]
and
\[
(C_{n \beta_1}^0)_{\text{red}} = (\pi^{-1}_{n \beta_1}(0))_{\text{red}} = \text{Spec } \mathbb{C}\left[x_0^{(0)}, \ldots, x_0^{(n \beta_1)}, x_1^{(0)}, \ldots, x_1^{(n \beta_1)} \right] / \left(x_0^{(0)}, \ldots, x_0^{(n - 1)}, x_1^{(0)}, \ldots, x_1^{(n - 1)} - c x_0^{(n)} \right),
\]

Proof. — We write \(f = \sum_{(a,b) \in I} c_{ab} f_{ab} \) where \((a, b) \in \mathbb{N}^2 \), \(f_{ab} = x_0^{a} x_1^{b} \), \(c_{ab} \in \mathbb{C} \) and \(a \beta_0 + b \beta_1 > \beta_0 \beta_1 \) (the segment \([(0, \beta_0)(\beta_1, 0)] \) is the Newton Polygon of \(f \)). Let \(\text{supp}(f) = \{(a, b) \in \mathbb{N}^2; c_{ab} \neq 0 \} \).
For $0 < m < n_1 \beta_1$, the proof is by induction on m. For $m = 1$, we have that

$$F^{(1)} = \sum_{(a,b) \in supp(f)} c_{ab} F_{ab}^{(1)}$$

where $(F^{(0)}, \ldots, F^{(i)})$ (resp. $(F_{ab}^{(0)}, \ldots, F_{ab}^{(i)})$) is the ideal defining the i-th jet scheme C_i of C (resp. C_{ab}^i the i-th jet scheme of $C_{ab} = \{f_{ab} = 0\}$) in C_i^2.

Then we have

$$F_{ab}^{(1)} = \sum_{i_k = 1} x_0^{(i_1)} \cdots x_0^{(i_a)} x_1^{(i_{a+b})}$$

where $\beta_1(a + b) \geq a \beta_0 + b \beta_1 \geq \beta_0 \beta_1$ so $a + b \geq \beta_0 > 1$. Then for every $(a, b) \in supp(f)$ and every $(i_1, \ldots, i_a, \ldots, i_{a+b}) \in \mathbb{N}^{a+b}$ such that $\sum_{k=1}^{a+b} i_k = 1$ there exists $1 \leq k \leq a + b$ such that $i_k \neq 0$, this means that $F_{ab}^{(1)} \in (x_0^{(0)}, x_1^{(0)})$ and since we are looking over the origin, we have that $(x_0^{(0)}, x_1^{(0)}) \subseteq J_1^0$ therefore $(\pi_1^{-1}(0))_{red} = Spec \mathbb{C}[x_0^{(0)}, x_1^{(0)}, \cdots, x_1^{(m-1)}]$. In fact this is nothing but the Zariski tangent space of C at 0.

Suppose that the lemma holds until $m - 1$ i.e.

$$(\pi_1^{-1}(0))_{red} = Spec \mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m-1)} - x_1^{(0)}, \cdots, x_1^{(m-1)}] / (x_0^{(0)}, \cdots, x_0^{(m-1)}, x_1^{(m-1)}).$$

First case: If $[m - 1]_{\beta_1} = [m]_{\beta_1}$ and $[m - 1]_{\beta_0} = [m]_{\beta_0}$. We have

$$F^{(m)} = \sum_{(a,b) \in supp(f)} c_{ab} \sum_{i_k = m} x_0^{(i_1)} \cdots x_0^{(i_a)} x_1^{(i_{a+b})}$$

Let $(a, b) \in supp(f)$; if for every $k = 1, \ldots, a$, we had $i_k \geq [m]_{\beta_1} + 1$, and for every $k = a + 1, \ldots, a + b$, we had $i_k \geq [m]_{\beta_0} + 1$, then

$$m \geq a([m]_{\beta_1} + 1) + b([m]_{\beta_0} + 1) > \frac{m}{\beta_1} a + \frac{m}{\beta_0} b = m \frac{a \beta_0 + b \beta_1}{\beta_0 \beta_1} \geq m.$$

The contradiction means that there exists $1 \leq k \leq a$ such that $i_k < [m]_{\beta_1}$ or there exists $a + 1 \leq k \leq a + b$ such that $i_k < [m]_{\beta_0}$. So $F^{(m)}$ lies in the ideal generated by J_{m-1}^0 in $\mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m-1)}, x_1^{(0)}, \cdots, x_1^{(m-1)}]$ and $J_m^0 = J_{m-1}^0 \mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, x_1^{(0)}, \cdots, x_1^{(m)}]$.

Second case: If $[m - 1]_{\beta_1} = [m]_{\beta_1}$ and $[m - 1]_{\beta_0} + 1 = [m]_{\beta_0}$ (i.e. β_0 divides m). We have that

$$F^{(m)} = F^{(m)}_{0, \beta_0} + \sum_{(a,b) \in supp(f) : (a,b) \neq (0, \beta_0)} F^{(m)}_{ab}, \quad (**)$$
where
\[F_{0\beta_0}^{(m)} = \sum_{i_k=m} x_1^{(i_1)} \cdots x_1^{(i_{\beta_0})} \]
\[= x_1^{(\frac{m}{\beta_0})} + \sum_{i_k=m; (i_1, \cdots, i_{\beta_0}) \neq (\frac{m}{\beta_0}, \cdots, \frac{m}{\beta_0})} x_1^{(i_1)} \cdots x_1^{(i_{\beta_0})}; \]
but \(\sum i_k = m \) and \((i_1, \cdots, i_{\beta_0}) \neq (\frac{m}{\beta_0}, \cdots, \frac{m}{\beta_0})\) implies that there exists \(1 \leq k \leq \beta_0\) such that \(i_k < \frac{m}{\beta_0}\), so
\[\sum_{i_k=m; (i_1, \cdots, i_{\beta_0}) \neq (\frac{m}{\beta_0}, \cdots, \frac{m}{\beta_0})} x_1^{(i_1)} \cdots x_1^{(i_{\beta_0})} \in J_{m-1}^0 \mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, x_1^{(0)}, \cdots, x_1^{(m)}]. \]

For the same reason as above, we have that
\[\sum_{(a,b) \in \text{supp}(f); (a,b) \neq (0,\beta_0)} F_{ab}^{(m)} \in J_{m-1}^0 \mathbb{C}[x_0^{(0)}, \cdots, x_0^{(m)}, x_1^{(0)}, \cdots, x_1^{(m)}]. \]

From (**) we deduce that \(x_1^{(\frac{m}{\beta_0})} \in J_m^0\) and
\[F^{(m)} \in (x_0^{(0)}, \cdots, x_0^{(\frac{m}{\beta_1})}, x_1^{(0)}, \cdots, x_1^{(\frac{m}{\beta_0})}). \]
Then \(J_m^0 = (x_0^{(0)}, \cdots, x_0^{(\frac{m}{\beta_1})}, x_1^{(0)}, \cdots, x_1^{(\frac{m}{\beta_0})})\).

The third case i.e. if \(\frac{m-1}{\beta_1} + 1 = \frac{m}{\beta_1}\) and \(\frac{m-1}{\beta_0} = \frac{m}{\beta_0}\) is discussed as the second one. Note that these are the only three possible cases since \(m < n_1\beta_1 = lcm(\beta_0, \beta_1)\)(here \(lcm\) stands for the least common multiple).

For \(m = n_1\beta_1\), we have that \(F^{(m)}\) is the coefficient of \(t^m\) in the expansion of
\[f(x_0^{(0)} + x_0^{(1)}t + \cdots + x_0^{(m)}t^m, x_1^{(0)} + x_1^{(1)}t + \cdots + x_1^{(m)}t^m). \]

But since we are interested in the radical of the ideal defining the \(m\)-th jet scheme, and we have found that \(x_0^{(0)}, \cdots, x_0^{(n_1-1)}, x_0^{(0)}, \cdots, x_1^{(m_1-1)} \in J_{m-1}^0 \subseteq J_m^0\), we can annihilate \(x_0^{(0)}, \cdots, x_0^{(n_1-1)}, x_1^{(0)}, \cdots, x_1^{(m_1-1)}\) in the above expansion. Using (\(\phi\)), we see that the coefficient of \(t^m\) is \((x_1^{(m_1)})^{n_1} - cx_0^{(n_1)}m_1)\cdot e_1. \]

In the sequel if \(A\) is a ring, \(I \subseteq A\) an ideal and \(f \in A\), we denote by \(V(I)\) the subvariety of \(Spec\ A\) defined by \(I\) and by \(D(f)\) the open set in \(Spec\ A\), \(D(f) := Spec\ A_f\).

The proof of the following corollary is analogous to that of proposition 4.1.
Corollary 4.2. — Let $m \in \mathbb{N}$; let $k \geq 1$ be such that $m = kn_1 \tilde{\beta}_1 + i; 1 \leq i \leq n_1 \tilde{\beta}_1$. Then if $i < n_1 \tilde{\beta}_1$, we have that

$$\text{Cont}^{>kn_1}(x_0)_m = (\pi^{-1}_{m, kn_1 \tilde{\beta}_1}(V(x_0^{(0)}, \ldots, x_0^{(kn_1)})))_{\text{red}} = \frac{\mathbb{C}[x_0^{(0)}, \ldots, x_0^{(m)}, x_1^{(0)}, \ldots, x_1^{(m)}]}{(x_0^{(0)}, \ldots, x_0^{(kn_1)}, \ldots, x_0^{(kn_1 + [\frac{i}{k_1}])}, x_1^{(0)}, \ldots, x_1^{(kn_1)}, \ldots, x_1^{(kn_1 + [\frac{i}{k_1}])})}$$

and if $i = n_1 \tilde{\beta}_1$

$$\pi^{-1}_{m, kn_1 \tilde{\beta}_1}(V(x_0^{(0)}, \ldots, x_0^{(kn_1)}))_{\text{red}} = \frac{\mathbb{C}[x_0^{(0)}, \ldots, x_0^{((k+1)n_1-1)}, x_1^{(0)}, \ldots, x_1^{((k+1)m_1-1)}, x_1^{(k+1)m_1)} - cx_0^{(k+1)m_1})}{(x_0^{(0)}, \ldots, x_0^{(k+1n_1 - 1)}, x_1^{(0)}, \ldots, x_1^{(k+1m_1)} - x_0^{(k+1m_1)})}.$$

We now consider the case of a plane branch with one Puiseux exponent.

Lemma 4.3. — Let C be a plane branch with one Puiseux exponent. Let $m, k \in \mathbb{N}$, such that $k \neq 0$ and $m \geq kn_1 \tilde{\beta}_1 + 1$, and let $\pi_{m, kn_1 \tilde{\beta}_1} : C_m \to C_{kn_1 \tilde{\beta}_1}$ be the canonical projection. Then

$$C_m^k := \pi_{m, kn_1 \tilde{\beta}_1}^{-1}(V(x_0^{(0)}, \ldots, x_0^{(kn_1-1)}) \cap D(x_0^{(kn_1)}))_{\text{red}}$$

is irreducible of codimension $k(m_1 + n_1) + 1 + (m - kn_1 \tilde{\beta}_1)$ in \mathbb{C}_m^2.

Proof. — First note that since $e_1 = 1$, we have $m_1 = \frac{\beta_1}{e_1} = \tilde{\beta}_1$. Let I_m^0 be the ideal defining C_m^k in $\mathbb{C}_m^2 \cap D(x_0^{(kn_1)})$. Since $m \geq kn_1 \tilde{\beta}_1$, by corollary 4.2, $x_0^{(0)}, \ldots, x_0^{(kn_1-1)} \in I_m^0$. So I_m^k is the radical of the ideal $I_m^{*0k} := (x_0^{(0)}, \ldots, x_0^{(kn_1-1)}, x_1^{(0)}, \ldots, x_1^{(kn_1-1)}, F(0), \ldots, F(m))$. Now it follows from \diamond and proposition 2.3 that

$$F(l) \in (x_0^{(0)}, \ldots, x_0^{(kn_1-1)}, x_1^{(0)}, \ldots, x_1^{(kn_1-1)}) \text{ for } 0 < l < km_1m_1,$$

$$F(km_1m_1) \equiv x_1^{(kn_1)m_1} - cx_0^{(kn_1)m_1} \mod (x_0^{(0)}, \ldots, x_0^{(kn_1-1)}, x_1^{(0)}, \ldots, x_1^{(kn_1-1)}),$$

$$F(km_1m_1 + l) \equiv n_1 x_1^{(kn_1)m_1 - 1} x_0^{(km_1 + l)} - m_1 cx_0^{(kn_1)m_1 - 1} x_0^{(km_1 + l) + H_l(x_0^{(0)}, \ldots, x_0^{(kn_1-1)}, x_1^{(0)}, \ldots, x_1^{(kn_1-1)}) \mod (x_0^{(0)}, \ldots, x_0^{(kn_1-1)}, x_1^{(0)}, \ldots, x_1^{(kn_1-1)}),}$$

for $1 \leq l \leq m - km_1m_1$.

This implies that

$$I_m^{*0k} = (x_0^{(0)}, \ldots, x_0^{(kn_1-1)}, x_1^{(0)}, \ldots, x_1^{(kn_1-1)}, F(km_1m_1), \ldots, F(m)).$$
Moreover the subscheme of $\mathbb{C}^2_m \cap D(x_0^{(kn)})$ defined by I_m^{*0k} is isomorphic to the product of $\mathbb{C}^*(\mathbb{C}^*)$ isomorphic to the regular locus of $x_1^{(km)} - cx_0^{(kn)m_1}$ by an affine space and its codimension is $k(m_1 + n_1) + 1 + (m - kn_1m_1)$ so it is reduced and irreducible, and it is nothing but C^k_m, or equivalently $I_m^{0k} = I_m^{*0k}$.

COROLLARY 4.4. — Let C be a plane branch with one Puiseux exponent. Let $m \in \mathbb{N}, m \neq 0$. Let $q \in \mathbb{N}$ be such that $m = qn_1\bar{\beta}_1 + i; 0 < i < n_1\bar{\beta}_1$. Then $C_m^0 = \pi_m^{-1}(0)$ has $q + 1$ irreducible components which are:

$$C_{mkI} = \overline{C_m^0}, 1 \leq k \leq q,$$

and $B_m = \text{Cont}^{>q_1}(x) = \pi_m^{-1}(V(x_0^{(0)}, \cdots, x_0^{(q_1)}))$.

We have that

$$\text{codim}(C_{mkI}, \mathbb{C}^2_m) = k(m_1 + n_1) + 1 + (m - kn_1m_1)$$

and

$$\text{codim}(B_m, \mathbb{C}^2_m) = q(m_1 + n_1) + \left[\frac{i}{\beta_0}\right] + \left[\frac{i}{\beta_1}\right] + 2 = \left[\frac{m}{\beta_0}\right] + \left[\frac{m}{\beta_1}\right] + 2 \text{ if } i < n_1\bar{\beta}_1$$

$$\text{codim}(B_m, \mathbb{C}^2_m) = (q + 1)(m_1 + n_1) + 1 \text{ if } i = n_1\bar{\beta}_1.$$

Proof. — The codimensions and the irreducibility of B_m and C_{mkI} follow from corollary 4.2 and lemma 4.3. This shows that if $1 \leq k < k' \leq q$, we have $\text{codim}(C_{mkI}, \mathbb{C}^2_m) < \text{codim}(C_{mk'I}, \mathbb{C}^2_m)$, then $C_{mkI} \not\subseteq C_{mk'I}$. On the other hand, since $C_{mkI} \subseteq V(x_0^{(kn)})$ and $C_{mkI} \not\subseteq V(x_0^{(kn)})$, we have that $C_{mkI} \not\subseteq C_{mk'I}$. This also shows that $\text{dim } B_m \geq \text{dim } C_{mkI}$ for $1 \leq k \leq q$, therefore $B_m \not\subseteq C_{mkI}, 1 \leq k \leq q$. But $C_{mkI} \not\subseteq B_m$ because $B_m \subseteq V(x_0^{(qn)})$ and $C_{mkI} \not\subseteq V(x_0^{(qn)})$ for $1 \leq k \leq q$. We thus have that $C_{mkI} \not\subseteq B_m$ and $B_m \not\subseteq C_{mkI}$. We conclude the corollary from the fact that by construction $C_m^0 = \bigcup_{k=1}^q C_{mkI} \cup B_m$.

To understand the general case, i.e. to find the irreducible components of C_m^0, where C has a branch with g Puiseux exponents at 0, since for $kn_1\bar{\beta}_1 < m \leq (k + 1)n_1\bar{\beta}_1$, $m, k \in \mathbb{N}$ we know by corollary 4.2 the structure of the m-jets that project to $V(x_0^{(0)}, \cdots, x_0^{(kn)}) \cap C^0_{kn_1\bar{\beta}_1}$, we have to understand for $m > kn_1\bar{\beta}_1$ the m-jets that projects to $V(x_0^{(0)}, \cdots, x_0^{(kn_1-1)}) \cap D(x_0^{(kn_1)})$, i.e. $C_m^k := \pi_m^{-1}(V(x_0^{(0)}, \cdots, x_0^{(kn_1-1)}) \cap D(x_0^{(kn_1)}))_{\text{red}}$.

Let $m, k \in \mathbb{N}$ be such that $m \geq kn_1\bar{\beta}_1$. Let $j = \max\{l, n_2 \cdots n_{l-1} \text{ divides } k\}$ (we set $j = 2$ if the greatest common divisor $(k, n_2) = 1$ or if $g = 1$). Set κ such that $k = \kappa n_2 \cdots n_{j-1}$, then we have $kn_1 = \kappa n_{j} \cdots n_{g}$.
Indeed, we have that
\[C_k^m = \bar{\pi}_{m,\left[n_i^{-m}u_{g}\right]}(C_{m,\left[n_i^{-m}u_{g}\right]^k}), \]
where \(\bar{\pi}_{m,\left[n_i^{-m}u_{g}\right]} : C_m^2 \rightarrow C_{m,\left[n_i^{-m}u_{g}\right]^2} \) is the canonical map. For \(j < g + 1 \) and \(m \geq \beta \beta_j \), we have that
\[C_m^k = \emptyset \]

Proposition 4.5. — Let \(2 \leq j \leq g + 1 \); for \(i = 2, \ldots, g \), and \(kn_1 \beta_1 < m < \kappa e^{-\beta_{j-1}} \), we have that
\[o_f(\tilde{f}) = o_{x_i}(\hat{f}). \] (It was pointed by the referee that this follows from [1]. For the convenience of the reader we give a detailed proof below.) Let \(y(x^{\frac{1}{\beta_0}}), z(x^{\frac{1}{n_i^{-m}u_{g}}}) \) and \(u(x^{\frac{1}{m(\tilde{f})}}) \) be respectively Puiseux-roots of \(f, x_i \) and \(\tilde{f} \). There exist \(w, \lambda \in \mathbb{C} \) such that \(w^{\frac{1}{n_i^{-m}u_{g}}} = 1, \lambda^m(\tilde{f}) = 1 \) and
\[o_f(\tilde{f}) = ord_x(u(\lambda x^{\frac{1}{m(\tilde{f})}}) - y(x^{\frac{1}{\beta_0}})) \]
and
\[o_f(x_i) = ord_x(y(x^{\frac{1}{\beta_0}}) - z(wx^{\frac{1}{n_i^{-m}u_{g}} - 1})). \]
Since \(o_f(\tilde{f}) < o_f(x_i) \), we have that
\[o_f(\tilde{f}) = ord_x(u(\lambda x^{\frac{1}{m(\tilde{f})}}) - y(x^{\frac{1}{\beta_0}}) + y(x^{\frac{1}{\beta_0}}) - z(wx^{\frac{1}{m(\tilde{f})} - 1})) \]
\[= ord_x(u(\lambda x^{\frac{1}{m(\tilde{f})}}) - z(wx^{\frac{1}{n_i^{-m}u_{g} - 1}})) \leq o_{x_j}(\hat{f}). \]
On the other hand, there exist \(\lambda \) and \(\delta \in \mathbb{C} \), such that \(\lambda^m(\tilde{f}) = 1, \delta^{\beta_0} = 1 \) and such that
\[o_{x_j}(\hat{f}) = ord_x(u(\lambda x^{\frac{1}{m(\tilde{f})}}) - z(x^{\frac{1}{n_i^{-m}u_{g} - 1}})) \]
and
\[o_f(x_i) = ord_x(y(\delta x^{\frac{1}{\beta_0}}) - z(x^{\frac{1}{n_i^{-m}u_{g} - 1}})). \]
We have then that
\[o_{x_i}(\tilde{f}) = \text{ord}_x(u(\lambda x^{\frac{1}{m(i)}}) - y(\delta x^{\frac{1}{n_0}}) + y(\delta x^{\frac{1}{n_0}}) - z(w x^{\frac{1}{n_1-n_i-1}})). \]

Now
\[\text{ord}_x(u(\lambda x^{\frac{1}{m(i)}}) - y(\delta x^{\frac{1}{n_0}})) \leq o_f(\tilde{f}) \]
\[< o_f(x_i) = \text{ord}_x(y(\delta x^{\frac{1}{n_0}}) - z(w x^{\frac{1}{n_1-n_i-1}})). \]

So
\[o_{x_i}(\tilde{f}) = \text{ord}_x(u(\lambda x^{\frac{1}{m(i)}}) - y(\delta x^{\frac{1}{n_0}})) \leq o_f(\tilde{f}). \]

We conclude that \(o_f(\tilde{f}) = o_{x_i}(\tilde{f}), \) and since the sequence of Puiseux exponents of \(C_i \) is \((\frac{\beta_0}{n_1 \cdots n_g}, \ldots, \frac{\beta_{i-1}}{n_1 \cdots n_g}) \), applying proposition 3.4 to \(C \) and \(C_i \), we find that \((f, \tilde{f})_0 = n_i \cdots n_g(x_i, \tilde{f})_0 \) and claim follows.

On the other hand by the corollary 3.5 applied to \(f \) and \(\tilde{f}, (f, \tilde{f})_0 \geq \kappa e_{i-1} \frac{\beta_i}{\beta_0} \) if and only if \(o_f(\tilde{f}) \geq \frac{\beta_i}{\beta_0} = o_{x_i}(f) = o_f(x_i) \) so \(o_f(\tilde{f}) \geq \frac{\beta_i}{\beta_0} \) if and only if \(o_{x_i}(\tilde{f}) \geq \frac{\beta_i}{\beta_0} \), therefore \((x_i, \tilde{f})_0 \geq \kappa \frac{\beta_i}{e_{j-1}}. \) This proves the first assertion.

The second assertion is a direct consequence of lemma 5.1 in [5].

To further analyse the \(C_m^k \)'s, we realize, as in section 3, \(C \) as a complete intersection in \(\mathbb{C}^{g+1} = \text{Spec} \mathbb{C}[x_0, \ldots, x_g] \) defined by the ideal \((f_1, \ldots, f_g) \) where
\[
 f_i = x_{i+1} - (x_i^{n_i} - c_i x_0^{b_{0i}} \cdots x_{i-1}^{b_{i-1}} - \sum_{\gamma=(\gamma_0, \ldots, \gamma_i)} c_i \gamma_0 x_0^{\gamma_0} \cdots x_i^{\gamma_i})
\]
for \(1 \leq i \leq g \) and \(x_{g+1} = 0. \) This will let us see the \(C_m^k \)'s as fibrations over some reduced scheme that we understand well.

We keep the notations above and let \(I^{k}_m \) be the radical of the ideal defining \(C_m^k \) in \(\mathbb{C}^{g+1} \) and let \(I^{0k}_m \) be the ideal defining
\[
 C_m^k = (V(I^{0}_m, x_0^{(0)}, \ldots, x_0^{(kn_1)})) \cap D(x_0^{(kn_1)})_{\text{red}} \text{ in } D(x_0^{(kn_1)}).
\]

Lemma 4.6. — Let \(k \neq 0, j \) and \(\kappa \) as above. For \(1 \leq i < j \leq g \) (resp. \(1 \leq i < j-1 = g \)) and for \(\kappa n_i \cdots n_{j-1} \beta_i \leq m < \kappa n_i+1 \cdots n_{j-1} \beta_{i+1} \), we have
\[
 I^{0k}_m = (x_0^{(0)}, \ldots, x_0^{(\frac{n \beta_i}{n_j-n_g}-1)}),
\]
\[
 x_i^{(0)}, \ldots, x_i^{(\frac{n \beta_j}{n_j-n_g}-1)}, F_l^{(\frac{n \beta_i}{n_j-n_g})}, \ldots, F_l^{(m)}; 1 \leq l \leq i,
\]
\[
 x_{i+1}^{(0)}, \ldots, x_{i+1}^{(\frac{m}{n_i+1-n_g})},
\]
\[
 F_l^{(0)}, \ldots, F_l^{(m)}, i + 1 \leq l \leq g - 1.
\]
Moreover for $1 \leq l \leq i$,
\[
F_l^{(l)} = -(x_l^{(l)})_{0}^{n_l} - c_l x_0^{(l)} \cdots x_{l-1}^{(l)-1} \mod \left(\left(x_l^{(l)} \right)_{0}^{m} \right),
\]
for $1 \leq l < i$ and $\kappa \frac{n_l \beta_l}{n_j \cdots n_g} < n < \kappa \frac{n_{l+1} \beta_l}{n_j \cdots n_g}$ (resp. $l = i$ and $\kappa \frac{n_l \beta_l}{n_j \cdots n_g} < n \leq \frac{m}{n_{l+1} \cdots n_g}$)
\[
F_l^{(n)} \equiv -(n_l x_l^{(n-1)})_{0}^{n_l} - c_l \cdots (x_l^{(n-1)})_{0}^{n_l} \mod \left(\left(x_l^{(n-1)} \right)_{0}^{m} \right),
\]
for $1 \leq l < i$ and $\kappa \frac{n_l \beta_l}{n_j \cdots n_g} < n \leq m$ (resp. $l = i$ and $\frac{m}{n_{l+1} \cdots n_g} < n \leq m$), or $i + 1 \leq l \leq g - 1$ and $0 < n < m$,
\[
F_l^{(n)} = x_l^{(n)} + H_l(x_l^{(0)}, \cdots, x_l^{(n-1)}).
\]
For $i = j - 1 = g$ and $m \geq \kappa n_g \beta_g$,
\[
F_m^{(0)} = (x_0^{(0)}), \cdots, x_0^{(\beta_0 - 1)},
\]
\[
x_l^{(0)}, \cdots, x_l^{(\beta_l - 1)}, F_l^{(\beta_l)}, \cdots, F_l^{(m)}, 1 \leq l \leq g,
\]
where for $1 \leq l < g$ and $\kappa n_l \beta_l \leq n \leq m$, the above formula for $F_l^{(n)}$ remains valid,
\[
F_{g}^{(\kappa n_g \beta_g)} \equiv -(x_g^{(\kappa \beta_g)}_{0}^{n_g} - c_g x_0^{(\beta_0)} \cdots x_{g-1}^{(\beta_{g-1})})_{0}^{n_g} \mod \left(\left(x_g^{(\beta_g)} \right)_{0}^{m} \right),
\]
and for $\kappa n_g \beta_g < n \leq m$,
\[
F_{g}^{(n)} \equiv -(n_g x_g^{(\kappa \beta_g)}_{0}^{n_g} - c_g x_0^{(\beta_0)} \cdots x_{g-1}^{(\beta_{g-1})})_{0}^{n_g} \mod \left(\left(x_g^{(\beta_g)} \right)_{0}^{m} \right),
\]
\[
\sum_{0 \leq h \leq g-1} b_{g} x_0^{(\beta_0)} \cdots x_h^{(\beta_h)} x_h^{(\beta_h)_{0}^{n_g} - c_g x_0^{(\beta_0)} \cdots x_{g-1}^{(\beta_{g-1})}} + H_g(x_h^{(\beta_h)_{0}^{n_g}}), \cdots, x_l^{(\beta_l - 1)})_{0}^{n_g} \mod \left(\left(x_l^{(\beta_l - 1)} \right)_{0}^{m} \right).
\]
I

Assume that it holds for $0 < n < k_n \beta_1$. Now since $\frac{m}{n_2 \cdots n_g} \geq \left[\frac{m}{n_2 \cdots n_g} \right] \geq k_n m_1$, we have

$$F_{(k_1 m_1)}^{(n)} = -(x_1^{(k_1 m_1)} - c_1 x_0^{(k_1 m_1)})$$

and

$$F_{(k_1 m_1)}^{(n)} = -(n_1 x_1^{(k_1 m_1 - 1)} x_1^{(k_1 m_1 - n - k_1 m_1)} - m_1 c_1 x_0^{(k_1 m_1 - 1)} x_0^{(k_1 m_1 - n - k_1 m_1)})$$

$$+ H_l(x_0^{(0)}, \ldots, x_0^{(k_1 m_1 - 1)} x_1^{(0)}, \ldots, x_1^{(k_1 m_1 - n - k_1 m_1 - 1)} x_2^{(0)}, \ldots, x_2^{(m - n_2 \cdots n_g - 1)})$$

for $k_n \beta_1 < n \leq \left[\frac{m}{n_2 \cdots n_g} \right]$. Finally, for $l = 1$ and $[\frac{m}{n_2 \cdots n_g}] < n \leq m$, or $2 \leq l \leq g - 1$ and $0 \leq n \leq m$, we have

$$F_{l}^{(n)} = x_l^{(n)} + H_l(x_0^{(0)}, \ldots, x_0^{(m)}, \ldots, x_l^{(0)}, \ldots, x_l^{(n)}).$$

As a consequence for $i = 1$, the subscheme of $C^{g+1} \cap D(x_0^{(k_1 m_1)})$ defined by I_{m}^{0k} is isomorphic to the product of C^* by an affine space, so it is reduced and irreducible and $I_{m}^{0k} = I_{m}^{0k}$ is a prime ideal in $C[x_0^{(0)}, \ldots, x_0^{(m)}, \ldots, x_g^{(0)}, \ldots, x_g^{(m)}]_{x_0^{(k_1 m_1)}}$, generated by a regular sequence, i.e. the proposition holds for $i = 1$. Assume that it holds for $i < j - 1 < g$ (resp. $i < j - 2 = g - 1$). For $k_n i + 1 \cdots n_{j - 1} \beta_{i + 1} \leq m < k_n i + 2 \cdots n_{j - 1} \beta_{i + 2}$, the ideal in $C[x_0^{(0)}, \ldots, x_0^{(m)}, \ldots, x_g^{(0)}, \ldots, x_g^{(m)}]_{x_0^{(k_1 m_1)}}$ generated by I_{m}^{0k} is contained in I_{m}^{0k}. By the inductive hypothesis, $x_l^{(0)}, \ldots, x_l^{(n_2 \cdots n_g - 1)} \in$
$I_{\kappa n_{i+1} \cdots n_{j-1}}^{i+1}$ for $l = 1, \ldots, i + 1$. So I_m^{0k} is the radical of

$$I_m^{0k} = (x_0^{(0)}, \ldots, x_l^{(\frac{n_i \beta_0}{n_j \cdots n_g} - 1)}, x_l^{(0)}, \ldots, x_l^{(\frac{n_i \beta_l}{n_j \cdots n_g} - 1)}, F_l^{(0)}, \ldots, F_l^{(m)}), 1 \leq l \leq i + 1,$$

$$x_{i+2}^{(0)}, \ldots, x_{i+2}^{(\frac{m}{n_{i+2} \cdots n_g})}, F_l^{(0)}, \ldots, F_l^{(m)}, i + 2 \leq l \leq g - 1).$$

Now for $0 \leq n < \frac{\kappa n_l \beta_l}{n_j \cdots n_g}$, we have

$$F_l^{(n)} \equiv x_{i+1}^{(n)} \mod (x_0^{(0)}, \ldots, x_l^{(\frac{n_i \beta_0}{n_j \cdots n_g} - 1)}, x_l^{(0)}, \ldots, x_l^{(\frac{n_i \beta_l}{n_j \cdots n_g} - 1)}, 1 \leq l \leq i + 1).$$

Here since $\overline{\beta}_{l+1} + n_l \overline{\beta}_l$, for $1 \leq l \leq i$ and $\frac{m}{n_{i+2} \cdots n_g} \geq \frac{1}{n_{i+2} \cdots n_g} \geq \frac{\kappa n_{i+1} \overline{\beta}_{i+1}}{n_j \cdots n_g},$ we can delete $F_l^{(n)}$, $1 \leq l \leq i + 1, 0 \leq n < \frac{\kappa n_l \beta_l}{n_j \cdots n_g}$ from the above generators of I_m^{0k}. The identities relative to the $F_l^{(n)}$ for $1 \leq l \leq i + 1$, $0 \leq n \leq m$ or $i + 2 \leq l \leq g - 1$ and $0 \leq n \leq m$ follow immediately from (\circ). Hence the subscheme of $\mathbb{C}^{g+1} \cap D(x_0^{(kn_l)})$ defined by I_m^{0k} is isomorphic to the product of \mathbb{C}^* by an affine space, so it is reduced and irreducible and $I_m^{0k} = I_m^{0k}$ is a prime ideal in $\mathbb{C}[x_0^{(0)}, \ldots, x_0^{(m)}, \ldots, x_g^{(0)}, \ldots, x_g^{(m)}]_{x_0^{(kn_l)}},$ generated by a regular sequence, i.e the proposition holds for $i + 1$.

The case $i = j - 1 = g$ and $m \geq \kappa n_g \beta_g$ follows by similar arguments. □

As an immediate consequence we get

Proposition 4.7. — Let C be a plane branch with g Puiseux exponents. Let $k \neq 0, j$ and κ as above. For $m \geq \kappa n_1 \beta_1$, let $\pi_{m,kn_1 \beta_1} : C_m \to C_{kn_1 \beta_1}$ be the canonical projection and let $C_m^k := \pi_{m,kn_1 \beta_1}^{-1}(D(x_0^{(kn_l)})) \cap V(x_0^{(0)}, \ldots, x_0^{(kn_l)})_{\text{red}}$. Then for $1 \leq i < j \leq g$ (resp.$1 \leq i < j - 1 = g$) and $\kappa n_i \cdots n_{j-1} \beta_i \leq m < \kappa n_{i+1} \cdots n_{j-1} \beta_{i+1}, C_m^k$ is irreducible of codimension

$$\frac{\kappa}{n_j \cdots n_g}(\beta_0 + \beta_1 + \sum_{l=1}^{i-1}(\beta_{l+1} - n_l \beta_l)) + ([\frac{m}{n_{i+1} \cdots n_g}] - \frac{\kappa n_i \beta_i}{n_j \cdots n_g}) + 1$$

in \mathbb{C}_m. (We suppose that the sum in the formula is equal to 0 when $i = 1$.) For $j \leq g$ and $m \geq \kappa \beta_j$ (resp.$j = g + 1$ and $m \geq \kappa n_g \beta_g$),

$$C_m^k = \emptyset$$
(resp. C^k_m is of codimension
\[
\kappa(\tilde{\beta}_0 + \tilde{\beta}_1 + \sum_{l=1}^{g-1} (\tilde{\beta}_{l+1} - n_l\tilde{\beta}_l)) + m - \kappa n_g \tilde{\beta}_g + 1
\]
in C^2_m.

The referee kindly pointed out that for $m \in \mathbb{N}$ such that $\kappa n_i \cdots n_{j-1} \tilde{\beta}_i \leq m < \kappa n_{i+1} \cdots n_{j-1} \tilde{\beta}_{i+1}$, the codimension of C^k_m can also be written as:
\[
\kappa \left(\frac{e_j - 1}{e_j} (\tilde{\beta}_0 + \beta_{i+1} - \tilde{\beta}_{i+1}) + \left(\frac{m}{e_i} - \frac{\kappa n_i \tilde{\beta}_i}{e_1} \right) + 1 \right.
\]

For $k' \geq k$ and $m \geq k'n_1 \tilde{\beta}_1$, we now compare $\text{codim}(C^k_m, C^2_m)$ and $\text{codim}(C^k_{m'}, C^2_m)$.

Corollary 4.8. — For $k' \geq k \geq 1$ and $m \geq k'n_1 \tilde{\beta}_1$, if C^k_m and $C^k_{m'}$ are nonempty, we have
\[
\text{codim}(C^k_{m'}, C^2_m) \leq \text{codim}(C^k_m, C^2_m).
\]

Proof. — Let $\gamma^k : [kn_1 \tilde{\beta}_1, \infty[\rightarrow [k(n_1 + m_1), \infty[be the piecewise linear function given by
\[
\gamma^k(m) = \frac{k}{e_1} (\tilde{\beta}_0 + \tilde{\beta}_1 + \sum_{l=1}^{i-1} (\tilde{\beta}_{l+1} - n_l\tilde{\beta}_l)) + \left(\frac{m}{e_i} - \frac{\kappa n_i \tilde{\beta}_i}{e_1} \right) + 1
\]

for $1 \leq i \leq g$ and $\frac{k \tilde{\beta}_i}{n_2 \cdots n_{i-1}} \leq m < \frac{k \tilde{\beta}_{i+1}}{n_2 \cdots n_i}$. (Recall that by convention $\tilde{\beta}_{g+1} = \infty$)

In view of proposition 4.7, we have that $\text{codim}(C^k_m, C^2_m) = [\gamma^k(m)]$ for $k \equiv 0 \mod n_2 \cdots n_{j-1}$ and $k \not\equiv 0 \mod n_2 \cdots n_j$ with $2 \leq j \leq g$ and any integer $m \in [kn_1 \tilde{\beta}_1, \frac{k \tilde{\beta}_j}{n_2 \cdots n_{j-1}}[$ or for $k \equiv 0 \mod n_2 \cdots n_g$ and any integer $m \geq kn_1 \tilde{\beta}_1$. Similarly we define $\gamma^{k'} : [k'n_1 \tilde{\beta}_1, \infty[\rightarrow [k'(n_1 + m_1), \infty[by changing k to k'.

Let Γ^k (resp. $\Gamma^{k'}$) be the graph of γ^k (resp. $\gamma^{k'}$) in \mathbb{R}^2. Now let $\tau : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be defined by $\tau(a, b) = (a, b - 1)$ and let $\lambda^{k'/k} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be defined by $\lambda^{k'/k}(a, b) = \frac{k'}{k} (a, b)$. We note that $\tau(\Gamma^{k'}) = \lambda^{k'/k}(\tau(\Gamma^k))$; we also note that the endpoints of $\tau(\Gamma^k)$ and $\tau(\Gamma^{k'})$ lie on the line through 0 with slope $\frac{\beta_0 + \beta_1}{e_1 n_1 \tilde{\beta}_1} = \frac{1}{e_1} \frac{n_1 + m_1}{n_1 m_1} < \frac{1}{e_1}$. Since $k' \geq 1$, the image of $\tau(\Gamma^k)$ by $\lambda^{k'/k}$ lies in the interior subset of $\mathbb{R}^2_{\geq 0}$ whith boundary the union of $\tau(\Gamma^k)$, of the segment joining its endpoint $(kn_1 \tilde{\beta}_1, \frac{k'}{k} (\beta_0 + \tilde{\beta}_1))$ to $(kn_1 \tilde{\beta}_1, 0)$ and of $[kn_1 \tilde{\beta}_1, \infty[\times 0$. This implies that $\gamma^{k'}(m) \leq \gamma^k(m)$ for $m \geq k'n_1 \tilde{\beta}_1$, hence $[\gamma^{k'}(m)] \leq [\gamma^k(m)]$ and the claim. \qed
THEOREM 4.9. — Let C be a plane branch with $g \geq 2$ Puiseux exponents. Let $m \in \mathbb{N}$. For $1 \leq m < n_1 \bar{\beta}_1 + e_1, C_m^0 = \text{Cont}^{>0}(x_0)_m$ is irreducible. For $q n_1 \bar{\beta}_1 + e_1 < m < (q + 1)n_1 \bar{\beta}_1 + e_1$, with $q \geq 1$ in \mathbb{N}, the irreducible components of C_m^0 are:

$$C_{m\kappa} = \text{Cont}^{\kappa \bar{\beta}_0}(x_0)_m$$

for $1 \leq \kappa$ and $\kappa \bar{\beta}_0 \bar{\beta}_1 + e_1 \leq m$,

$$C_{m\kappa V}^j = \text{Cont}^{\frac{\kappa \bar{\beta}_0}{n_j \cdots n_q}}(x_0)_m$$

for $j = 2, \ldots, g$, $1 \leq \kappa$ and $\kappa \not\equiv 0 \mod n_j$ and such that $\kappa n_1 \cdots n_{j-1} \bar{\beta}_1 + e_1 \leq m < \kappa \beta_j$,

$$B_m = \text{Cont}^{>n_1 q}(x_0)_m.$$

Proof. — We first observe that for any integer $k \neq 0$ and any $m \geq k n_1 \bar{\beta}_1$,

$$(C_m^0)_{\text{red}} = \cup_{1 \leq h \leq k} C_m^h \cup \text{Cont}^{>k n_1}(x_0)_m$$

where $C_m^h := \text{Cont}^{hn_1}(x_0)_m$. Indeed, for $k = 1$, we have that $(C_m^0)_{\text{red}} \subset V(x_0^{(0)}, \ldots, x_0^{(n_1-1)})$ by proposition 4.4. Arguing by induction on k, we may assume that the claim holds for $m \geq (k-1)n_1 \bar{\beta}_1$. Now by corollary 4.2, we know that for $m \geq k n_1 \bar{\beta}_1$, $\text{Cont}^{>(k-1)n_1}(x_0)_m \subset V(x_0^{(0)}, \ldots, x_0^{(k n_1-1)})$, hence the claim for $m \geq kn_1 \bar{\beta}_1$.

We thus get that for $q n_1 \bar{\beta}_1 + e_1 \leq m < (q + 1)n_1 \bar{\beta}_1 + e_1$,

$$(C_m^0)_{\text{red}} = \cup_{1 \leq k \leq q} C_m^k \cup \text{Cont}^{>q n_1}(x_0)_m.$$
by corollary 4.2. Let $\lambda^q : [qn_1 \bar{\beta}_1 + e_1, q(n_1 + m_1), \infty] \to [q(n_1 + m_1), \infty]$ be the function given by $\lambda^q(m) = q(n_1 + m_1) + \frac{m - qn_1 \bar{\beta}_1}{e_1} + 1$. For simplicity, set $i = m - qn_1 \bar{\beta}_1$. For any integer i such that $e_1 \leq i < n_1 \bar{\beta}_1 = n_1 m_1 e_1$, we have $1 + \left[\frac{i}{n_1 e_1} \right] + \left[\frac{1}{m_1 e_1} \right] \leq \left[\frac{i}{e_1} \right]$. Indeed this is true for $i = e_1$ and it follows by induction on i from the fact that for any pair of integers (b, a), we have $\left[\frac{b+1}{a} \right] = \left[\frac{b}{a} \right]$ if and only if $b + 1 \equiv 0 \mod a$ and $\left[\frac{b+1}{a} \right] = \left[\frac{b}{a} \right] + 1$ otherwise, since $i < n_1 m_1 e_1$. So $\delta^q(m) \leq [\lambda^q(m)]$.

But in the proof of corollary 4.8, we have checked that if $C^k_m \neq \emptyset$, then $\text{codim}(C^k_m, C^2_m) = [\gamma^k(m)]$. We have also checked that for $q \geq k$ and $m \geq q n_1 \bar{\beta}_1$, $\gamma^k(m) \geq \gamma^q(m)$. Finally in view of the definitions of γ^q and λ^q, we have $\gamma^q(m) \geq \lambda^q(m)$, so $[\gamma^q(m)] \geq [\lambda^q(m)] \geq \delta^q(m)$.

For $m = (q + 1)n_1 \bar{\beta}_1$, we have $\delta^q(m) = (q + 1)(n_1 + m_1) + 1$ by corollary 4.2. For $m \in [(q + 1)n_1 \bar{\beta}_1, (q + 1)n_1 \bar{\beta}_1 + e_1]$, we have $\text{Cont}^{q n_1}(x_0)_m = C^{q+1}_m \cup \text{Cont}^{q+1}(x_0)_m$ and

$$\text{Cont}^{q+1}(x_0)_m = V(x_0^{(0)}, \ldots, x_0^{(q+1)n_1}, x_1^{(0)}, \ldots, x_1^{((q+1)m_1)})$$

again by corollary 4.2. If in addition we have $m < (q + 1)n_1 \bar{\beta}_2$, then by proposition 4.5 $C^{q+1}_m = V(x_0^{(0)}, \ldots, x_0^{((q+1)n_1-1)}, x_1^{(0)}, \ldots, x_1^{((q+1)m_1-1)}, x_1^{((q+1)m_1)} - c_1 x_0^{((q+1)n_1-1)}) \cap D(x_0^{((q+1)n_1)}),$ thus we have $\text{Cont}^{q n_1}(x_0)_m = C^{q+1}_m$ and $\delta^q(m) = (q + 1)(n_1 + m_1) + 1$. We have $(q + 1)n_1 \bar{\beta}_1 + e_1 \leq (q + 1)n_1 \bar{\beta}_2$ if $q + 1 \geq n_2$, because $\bar{\beta}_2 - n_1 \bar{\beta}_1 \equiv 0 \mod (e_2)$. If not, we may have $(q + 1)n_1 \bar{\beta}_2 < (q + 1)n_1 \bar{\beta}_1 + e_1$, so for $(q + 1)n_1 \bar{\beta}_2 \leq m < (q + 1)n_1 \bar{\beta}_1 + e_1$, we have $C^{q+1}_m = \emptyset, \text{Cont}^{q n_1}(x_0)_m = \text{Cont}^{q+1}(x_0)_m$ and $\delta^q(m) = (q + 1)(n_1 + m_1) + 2$.

In both cases, for $m \in [(q + 1)n_1 \bar{\beta}_1, (q + 1)n_1 \bar{\beta}_1 + e_1]$, we have $\delta^q(m) \leq (q + 1)(n_1 + m_1) + 2$. Since $[\lambda^q(m)] = (q + 1)(n_1 + m_1) + n_1 m_1 + 1$, we conclude that $[\lambda^q(m)] \geq \delta^q(m)$, so for $1 \leq k \leq q$, if $C^k_m \neq \emptyset$, we have $[\gamma^k(m)] \geq \delta^q(m)$. This proves that the irreducible components of C^0_m are the $C^{m'}_m$ for $1 \leq k \leq q$ and $C^k_m \neq \emptyset$, and $\text{Cont}^{q n_1}(x_0)_m$, hence the claim in view of the characterization of the nonempty C^k_m's given in proposition 4.5. \square

COROLLARY 4.10. — Under the assumption of theorem 4.9, let $q_0 + 1 = \min\{\alpha \in \mathbb{N}; \alpha(n_2 - n_1 \bar{\beta}_1) \geq e_1\}$. Then $0 \leq q_0 < n_2$. For $1 \leq m < (q_0 + 1)n_1 \bar{\beta}_1 + e_1$, C^0_m is irreducible and we have $\text{codim}(C^0_m, C^2_m) = 2 + \left[\frac{m}{\bar{\beta}_0} \right] + \left[\frac{m}{\bar{\beta}_1} \right]$ for $0 \leq q < q_0$ and $qn_1 \bar{\beta}_1 + e_1 \leq m < (q + 1)n_1 \bar{\beta}_1$

or $0 \leq q \leq q_0$ and $(q + 1)n_1 \bar{\beta}_2 \leq m < (q + 1)n_1 \bar{\beta}_1 + e_1$.

TOME 61 (2011), FASCICULE 6
that the empty C with $1 \leq k \leq q$ and $(q+1)n_1 \beta_1 \leq m < (q+1) \beta_2$

or $(q_0 + 1)n_1 \beta_1 \leq m < (q_0 + 1)n_1 \beta_1 + e_1$.

For $q \geq q_0 + 1$ in \mathbb{N} and $qn_1 \beta_1 + e_1 \leq m < (q+1)n_1 \beta_1 + e_1$, the number of irreducible components of C^0_m is:

$$N(m) = q + 1 - \sum_{j=2}^{g} \left(\left\lfloor \frac{m}{\beta_j} \right\rfloor - \left\lfloor \frac{m}{n_j \beta_j} \right\rfloor \right)$$

and $\text{codim}(C^0_m, C^2_m) =$

$$2 + \left\lfloor \frac{m}{\beta_0} \right\rfloor + \left\lfloor \frac{m}{\beta_1} \right\rfloor \text{ for } qn_1 \beta_1 + e_1 \leq m < (q+1)n_1 \beta_1.$$

$$1 + \left\lfloor \frac{m}{\beta_0} \right\rfloor + \left\lfloor \frac{m}{\beta_1} \right\rfloor \text{ for } (q+1)n_1 \beta_1 \leq m < (q+1)n_1 \beta_1 + e_1.$$

Proof. — We have already observed that $n_2(\beta_2 - n_1 \beta_1) \geq e_1$ because $\beta_2 - n_1 \beta_1 \equiv 0 \mod (e_2)$, so $1 \leq q_0 + 1 \leq n_2$.

For $qn_1 \beta_1 + e_1 \leq m < (q+1)n_1 \beta_1 + e_1$, with $q \geq 1$, we have seen in the proof of theorem 4.9 that the irreducible components of C^0_m are the C^k_m for $1 \leq k \leq q$ and $C^k_m \neq \emptyset$, and $\text{Cont}^{\text{qm}}(x_0)_m$. We thus have to enumerate the empty C^k_m for $1 \leq k \leq q$. By proposition 4.5, $C^k_m = \emptyset$ if and only if $j := \max\{l; l \geq 2 \text{ and } k \equiv 0 \mod n_2 \cdots n_{l-1}\} \leq g$ and $m \geq k - n_2 \cdots n_{j-1} \beta_j$.

Now recall that $\beta_{i+1} > n_i \beta_1$ for $1 \leq i \leq g - 1$ and that $\beta_2 - n_1 \beta_1 \geq e_2$. This implies that for $3 \leq j \leq g$, we have $\beta_j - n_1 \cdots n_{j-1} \beta_1 > n_2 \cdots n_{j-1} (\beta_2 - n_1 \beta_1) \geq n_2 \cdots n_{j-1} e_2 > e_1$. So if $j \geq 3$ and κ is a positive integer such that $m \geq \kappa \beta_j$, we have $\frac{m-\kappa \beta_j}{n_1 \beta_1} > \kappa n_2 \cdots n_{j-1}$, hence $q = \left\lfloor \frac{m-\kappa \beta_j}{n_1 \beta_1} \right\rfloor \geq \kappa n_2 \cdots n_{j-1}$.

Therefore for $j \geq 3$, there are exactly $\left\lfloor \frac{m}{n_j \beta_j} \right\rfloor$ integers $\kappa \geq 1$ such that $m \geq \kappa \beta_j$ and $\kappa n_2 \cdots n_{j-1} \leq q$, among them $\left\lfloor \frac{m}{n_j \beta_j} \right\rfloor$ are $\equiv 0 \mod (n_j)$.

Similarly if $(q+1)n_1 \beta_1 + e_1 \leq (q+1) \beta_2$, or equivalently $q \geq q_0$, and if κ is a positive integer such that $m \geq \kappa \beta_2$, we have $\kappa \leq \frac{m}{\beta_2} < q + 1$. Therefore if $q \geq q_0 + 1$, we conclude that there are $\sum_{j=2}^{g} \left(\left\lfloor \frac{m}{\beta_j} \right\rfloor - \left\lfloor \frac{m}{n_j \beta_j} \right\rfloor \right)$ empty C^k_m’s with $1 \leq k \leq q$. Moreover we have shown in the proof of theorem 4.9 that $\text{codim}(C^0_m, C^2_m) = \text{codim}(\text{Cont}^{\text{qm}}(x_0)_m, C^2_m) = 2 + \left\lfloor \frac{m}{\beta_0} \right\rfloor + \left\lfloor \frac{m}{\beta_1} \right\rfloor$ if $m < (q+1)n_1 \beta_1$ (resp. $1 + (q + 1)(n_1 + m_1) = 1 + \left\lfloor \frac{m}{\beta_0} \right\rfloor + \left\lfloor \frac{m}{\beta_1} \right\rfloor$ for $m \geq (q+1)n_1 \beta_1$). Also note that $q_0 \beta_2 < q_0 n_1 \beta_1 + e_1 < (q_0 + 1)n_1 \beta_1 + e_1 \leq (q_0 + 1) \beta_2 < n_2 \beta_2 < \beta_3 \cdots$. Therefore for $q_0 n_1 \beta_1 + e_1 \leq m < (q_0 + 1)n_1 \beta_1 + e_1$, we have $\left\lfloor \frac{m}{\beta_2} \right\rfloor = q_0, \left\lfloor \frac{m}{n_2 \beta_2} \right\rfloor = \left\lfloor \frac{m}{\beta_3} \right\rfloor = \cdots = 0$, so $N(m) = 1$, i.e. C^0_m is irreducible.
Finally, assume that \(qn_1\beta_1 + e_1 \leq m < (q + 1)n_1\beta_1 + e_1 \) with \(q \geq 1 \) and \(q < q_0 \). Since \(q_0 < n_2 \), for \(1 \leq k \leq q \) we have \(k \not\equiv 0 \mod(n_2) \) and \(m \geq qn_1\beta_1 + e_1 > q\beta_2 \), hence for \(1 \leq k \leq q \), \(C_m^k = \emptyset \) and \(C_m^0 = \text{Cont}^{qn_1}(x_0)_m \) is irreducible. (The case \(q = q_0 \) was already known.) So for \(n_1\beta_1 \leq m < (q_0+1)n_1\beta_1 + e_1 \), \(C_m^0 = \text{Cont}^{qn_1}(x_0)_m \) is irreducible. (Recall that for \(1 \leq m < q_0n_1\beta_1 + e_1 \), the irreducibility of \(C_m^0 \) is already known.) It only remains to check the codimensions of \(C_m^0 \) for \(1 \leq m \leq q_0n_1\beta_1 + e_1 \). Here again we have seen in the proof of Theorem 4.9 that \(\text{codim}(C_m^0, C_m^2) = \text{codim}(\text{Cont}^{>qn_1}(x_0)_m, C_m^2) =: \delta^q(m) \) for any \(q \geq 1 \) and \(qn_1\beta_1 + e_1 \leq m < (q + 1)n_1\beta_1 + e_1 \) and that

\[
\delta^q(m) = 2 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \text{ for any } q \geq 1 \text{ and } qn_1\beta_1 + e_1 \leq m < (q + 1)n_1\beta_1
\]

\[
(q + 1)(n_1 + m_1) + 1 = 1 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \text{ for } q < q_0 \text{ and } (q + 1)n_1\beta_1 \leq m < (q + 1)\beta_2
\]

\[
(q + 1)(n_1 + m_1) + 2 = 2 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \text{ for } q < q_0 \text{ and } (q + 1)\beta_2 \leq m < (q + 1)n_1\beta_1 + e_1.
\]

This completes the proof. \(\square \)

In [6], Igusa has shown that the log-canonical threshold of the pair \(((\mathbb{C}^2, 0), (C, 0))\) is \(\frac{1}{\beta_0} + \frac{1}{\beta_1} \). Here \((\mathbb{C}^2, 0)\)(resp.\((C, 0)\)) is the formal neighborhood of \(\mathbb{C}^2 \) (resp. \(C \)) at 0. Corollary 4.10 allows to recover corollary B of [2] in this special case.

Corollary 4.11. — If the plane curve \(C \) has a branch at 0, with multiplicity \(\beta_0 \), and first Puiseux exponent \(\beta_1 \), then

\[
\min_m \frac{\text{codim}(C_m^0, C_m^2)}{m + 1} = \frac{1}{\beta_0} + \frac{1}{\beta_1}.
\]

Proof. — For any \(m, p \neq 0 \) in \(\mathbb{N} \), we have \(m - p \left[\frac{m}{p} \right] \leq p - 1 \) and \(m - p \left[\frac{m}{p} \right] = p - 1 \) if and only if \(m + 1 \equiv 0 \mod(p) \); so for any \(m \in \mathbb{N}, 2 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \geq (m + 1)(\frac{1}{\beta_0} + \frac{1}{\beta_1}) \) and we have equality if and only if \(m + 1 \equiv 0 \mod(\beta_0) \) and \(\beta_0 \) or equivalently \(m + 1 \equiv 0 \mod(n_1\beta_1) \) since \(n_1\beta_1 \) is the least common multiple of \(\beta_0 \) and \(\beta_1 \). If not we have \(1 + \left[\frac{m}{\beta_0} \right] + \left[\frac{m}{\beta_1} \right] \geq (m + 1)(\frac{1}{\beta_0} + \frac{1}{\beta_1}) \). Now if \((q + 1)n_1\beta_1 \leq m < (q + 1)n_1\beta_1 + e_1 \) with \(q \in \mathbb{N} \), we have \((q + 1)n_1\beta_1 < m + 1 \leq (q + 1)n_1\beta_1 + e_1 < (q + 2)n_1\beta_1 \), so \(m + 1 \neq 0 \mod(n_1\beta_1) \). If \((q + 1)n_1\beta_1 \leq m < (q + 1)\beta_2 \) with \(q \in \mathbb{N} \) and \(q < q_0 \), then \((q + 1)n_1\beta_1 < m + 1 \leq (q + 1)n_1\beta_1 + e_1 < (q + 2)n_1\beta_1 \), so \(m + 1 \neq 0 \mod(n_1\beta_1) \).
(n_1 \bar{\beta}_1). So in both cases, we have $1 + \left[\frac{m}{\bar{\beta}_0}\right] + \left[\frac{m}{\bar{\beta}_1}\right] \geq (m + 1)(\frac{1}{\bar{\beta}_0} + \frac{1}{\bar{\beta}_1}).$ The claim follows from corollary 4.10. \hfill \Box

It also follows immediately from corollary 4.10.

Corollary 4.12. — Let $g_0 \in \mathbb{N}$ as in corollary 4.10. There exists $n_1 \bar{\beta}_1$ linear functions, $L_0, \cdots, L_{n_1 \bar{\beta}_1 - 1}$ such that $\text{dim}(C^0_m) = L_i(m)$ for any $m \equiv i \mod (n_1 \bar{\beta}_1)$ such that $m \geq g_0 n_1 \bar{\beta}_1 + e_1$.

The canonical projections $\pi_{m+1,m} : C^0_{m+1} \to C^0_m$, $m \geq 1$, induce infinite inverse systems

$$
\cdots B_{m+1} \to B_m \cdots \to B_1
$$

and finite inverse systems

$$
\cdots C_{(m+1)\kappa I} \to C_{m\kappa I} \cdots \to C_{(\kappa \beta_0 \bar{\beta}_1 + e_1)\kappa I} \to B_{\kappa \beta_0 \bar{\beta}_1 + e_1 - 1}
$$

for $2 \leq j \leq g$, and $\kappa \not\equiv 0 \mod (n_j)$.

We get a tree $T_{C,0}$ by representing each irreducible component of C^0_m, $m \geq 1$, by a vertex $v_{i,m}$, $1 \leq i \leq N(m)$, and by joining the vertices $v_{i,m+1}$ and $v_{i,m}$ if $\pi_{m+1,m}$ induces one of the above maps between the corresponding irreducible components.

This tree only depends on the semigroup Γ.

Conversely, we recover $\bar{\beta}_0, \cdots, \bar{\beta}_g$ from this tree and $\max\{m, \text{codim}(B_m, C^2_m) = 2\} = \bar{\beta}_0 - 1$. Indeed the number of edges joining two vertices from which an infinite branch of the tree starts is $\beta_0 \bar{\beta}_1$. We thus recover $\bar{\beta}_1$ and e_1. We recover $\bar{\beta}_2 - n_1 \bar{\beta}_1, \cdots, \bar{\beta}_j - n_1 \cdots n_{j-1} \bar{\beta}_1, \cdots, \bar{\beta}_g - n_1 \cdots n_{g-1} \bar{\beta}_1$, hence $\bar{\beta}_2, \cdots, \bar{\beta}_g$ from the number of edges in the finite branches.

Corollary 4.13. — Let \mathcal{C} be a plane branch with $g \geq 1$ Puiseux exponents. The tree $T_{C,0}$ described above and $\max\{m, \text{dim} C^0_m = 2m\}$ determines the sequence $\bar{\beta}_0, \cdots, \bar{\beta}_g$ or equivalently the equisingularity class of \mathcal{C} and conversely.

We represent below the tree for the branch defined by

$$f(x, y) = (y^2 - x^3)^2 - 4x^6 y - x^9 = 0,$$

whose semigroup is $< \bar{\beta}_0 = 4, \bar{\beta}_1 = 6, \bar{\beta}_2 = 15 >$, and for which we have $e_1 = 2$, $e_2 = 1$ and $n_1 = n_2 = 2$.
BIBLIOGRAPHY

Manuscrit reçu le 7 mai 2010, accepté le 26 novembre 2010.

Hussein MOURTADA
Université de Versailles Saint-Quentin
Laboratoire de Mathématiques de Versailles
45 avenue des États-Unis
78035 Versailles CEDEX (France)
mourtada@math.uvsq.fr

ANNALES DE L’INSTITUT FOURIER