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MODULATION OF CAMASSA-HOLM EQUATION

AND RECIPROCAL TRANSFORMATIONS

by Simonetta ABENDA & Tamara GRAVA

1. Introduction.

R. Camassa and D. Holm [7] proposed in 1993 a new equation

(1) ut + 3uux = (uxxt + 2uxuxx + uuxxx)− 2νux,

with ν a constant parameter, deriving it as the governing equation for
waves in shallow water when surface tension is present. This involves
an asymptotic expansion in small amplitude of the incompressible
Euler equation for unidirectional motion under the influence of gravity
that extends one order beyond the Korteweg-de Vries (KdV) equation.
Equation (1) is also an element in a class of equations introduced by
A. Fokas and B. Fuchssteiner [20] through the method of recursion operators
in 1981.

Equation (1) is strongly nonlinear, admits a bi-Hamiltonian structure
[20], a Lax pair [7] and it is formally integrable through the inverse scatter-
ing method [9]. The bi-Hamiltonian structure of the CH equation can be
described as follows

mt = P1
δH2

δm
, m = u − uxx, P1 = −∂x + ∂3

x,

with

(2) H2 =
1
2

∫
(u3 + uu2

x + 2νu2) dx,

Keywords: Camassa-Holm equation, Korteweg de Vries hierachy, modulation equations,
Whitham equations, reciprocal transformations, Hamiltonian stractures.
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1804 Simonetta ABENDA & Tamara GRAVA

or
mt = P2

δH1

δm
, P2 = −∂xm−m∂x − 2ν∂x,

and

(3) H1 =
1
2

∫
(u2 + u2

x) dx.

The bi-Hamiltonian structure implies that the CH equation has an infinite
number of conserved quantities. The functionals Hk, k ∈ Z, defined by

(4) P2
δHk

δm
= P1

δHk+1

δm
, k ∈ N,

are conserved quantities in involution with respect to the Poisson bracket
determined either by P1 or P2. The Hamiltonian H0 =

∫
mdx is the

Casimir of the first Poisson tensor P1. For k > 2 the Hamiltonian densities
of Hk are not local functions of u and its spatial derivatives.

In the case ν = 0, R. Camassa and D. Holm [7] proved the existence
of solutions that are continuous but only piece-wise analytic (peakons).
The CH equation possesses soliton solutions, periodic finite-gap solutions
[8], [10], [4], real finite-gap solutions [22] and, for ν = 0, multi-peakons [6].
In particular, the algebro-geometric solutions of (CH) are described
as Hamiltonian flows on nonlinear subvarieties (strata) of generalized
Jacobians. This implies that the associated finite dimensional integrable
systems may be described in the framework of integrable systems with
deficiency [36], [1] whose algebraic-geometrical structure has much in
common with the celebrated algebraically completely integrable systems
introduced and thoroughly studied by M. Adler and P. van Moerbeke [3].

In this work we derive the Whitham modulation equations for the
CH flows. Whitham modulation equations for a nonlinear evolution system
describe slow modulations of parameters over a family of periodic travelling
wave solutions (or families of multi-phase solutions which are so far known
to exist only for integrable systems). Contrary to the Korteweg de Vries
case [26], it is an open problem to show that the Cauchy problem for CH with
slowly varying initial data is described by the Whitham equations. Both for
KdV and CH equations, this approximation is physically meaningful when
the ratio between the water depth and the wavelength is very small [15].

The Whitham equations are a system of hydrodynamic type equa-
tions [12] and in the Riemann invariant coordinates take the form

uit + vi(u)uix = 0, i = 1, . . . , N, u = (u1, . . . , uN ),

where we denote fast and slow variables with the same letters x dans t and
upper indices denote contravariant vectors. The original evolution system

ANNALES DE L’INSTITUT FOURIER
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is usually Lagrangian or Hamiltonian and this property is usually inherited
by the equations of slow modulations. To average the original equations in
the Lagrangian form, Whitham [37] introduced the pseudo-phase method
and then he constructed the corresponding Hamiltonian structure. For
local Hamiltonian structures, B.A. Dubrovin and S.P. Novikov [12] intro-
duced a procedure for averaging local Poisson brackets and obtained
the corresponding modulation equations. A third method to derive the
Whitham modulation equations is the nonlinear analog of the WKB
method [11]. It can be proven that the three methods lead to the same
equations for the case in which the original equation has a local Hamiltonian
structure and local Hamiltonian densities (see [12] and references therein).

The Camassa-Holm equation does not possess a local Hamiltonian
structure: indeed in the variable u the Hamiltonian operator is strongly
nonlocal and the Hamiltonian densities of Hk are non-local for k > 2. In the
variablem the Hamiltonian densities ofHk are nonlocal for k > 0. Therefore
the CH equation does not fit into the method of averaging local Hamiltonian
structure [12] nor even in the Maltsev-Novikov method of averaging weakly
nonlocal Hamiltonian structures [28] (an Hamiltonian structure is weakly
nonlocal if it is polynomial in ∂x and its higher derivatives and linear in ∂−1

x )
or in the Maltsev method [29] of averaging weakly non-local symplectic
form (inverse of the Hamiltonian operator). The latter method applies to
Camassa-Holm only when averaging one-phase solutions [30].

The CH equation can be written as a local Lagrangian system and
we use the Whitham method (modulation equations in Lagrangian form)
to derive the modulation equations for the one-phase periodic solution.
The CH modulation equations for the Riemann invariants u1 < u2 < u3,
take the form

∂tu
i + Ci(u)∂xui = 0, i = 1, . . . , 3,

where

C1(u1, u2, u3) = u1 + u2 + u3 + 2ν + 2
(u1 + ν)(u1 − u2)Λ(K(s), ρ, s)

(u2 + ν)[K(s)− E(s)]
,

C2(u1, u2, u3) = u1 + u2 + u3 + 2ν +
2(u2 − u1)Λ(K(s), ρ, s)

K(s)− (u2 + ν)(u3 − u1)
(u1 + ν)(u3 − u2)

E(s)

,

C3(u1, u2, u3) = u1 + u2 + u3 + 2ν + 2
(u1 + ν)(u3 − u2)Λ(K(s), ρ, s)

(u2 + ν)E(s)
·

In the above formulas K(s) and E(s) are the complete elliptic integrals of
the first and second kind with modulus s2 = (u2−u1)(u3+ν)

(u3−u1)(u2+ν) and Λ(K(s), ρ, s)

TOME 55 (2005), FASCICULE 6
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is the complete elliptic integral of the third kind defined by

Λ(K(s), ρ, s) =
∫ K(s)

0

dv
1− ρ2 sn2 v

, ρ2 =
u2 − u1

u2 + ν
,

with sn the Jacobi elliptic function. The equations are hyperbolic
namely C1(u) < C2(u) < C3(u) for −ν < u1 < u2 < u3 where ν is
the parameter entering in the CH equation (1).

Then following Hayes [25] and Whitham [37] the equations can be
written in Hamiltonian form with a local Poisson bracket of Dubrovin-
Novikov type

uit = −Ci(u)uix = Aij
∂h

∂uj

where

(5) Aij = giiδij
d
dx
− giiΓjikukx

is the Hamiltonian operator and h the Hamiltonian density. As pointed out
by Dubrovin and Novikov, Aij defines a Hamiltonian operator if and only
if gii = gii(u) is a flat non degenerate metric and Γjik are the Christoffel
symbols of the corresponding Levi-Civita connection. We also find a second
local compatible Hamiltonian structure which is obtained from the flat
metric gii(u)(ui+ν) where ν is the constant in the CH equation. Therefore
the nonlocal bi-Hamiltonian structure of the original CH equation averages
to a local bi-Hamiltonian structure of Dubrovin Novikov type.

A reciprocal transformation is a closed form which changes the
independent variables of the equation and maps conservation laws into
conservations laws, but it does not preserve the Poisson structure as
shown by E.V. Ferapontov and M.V. Pavlov [18],[17]. The Camassa Holm
equation can be transformed by a reciprocal transformation into the first
negative flow of the KdV hierarchy [21] (also known as AKNS equation [2]).
An elegant treatment of the relations among positive and negative flows of
the CH and KdV hierarchies can be found in [27].

Let gKdV
ii and gKdV

ii /βi be the flat compatible metrics associated to
the bi-Hamiltonian structure of the KdV modulation equations [35], [13]
with respect to the usual Riemann invariants β1, β2, β3 as defined in [37].
Then the reciprocal transformation is generated by the Casimir H0 of the
Hamiltonian operator associated to the metric gKdV

ii /βi. According to the

ANNALES DE L’INSTITUT FOURIER
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results in [18], [17] the reciprocal transformation maps the two KdV flat
metrics to the CH metrics

gKdV
ii

H2
0

, gKdV
ii

H2
0β

i

which are not flat. The relation between the CH Riemann invariants
and the KdV Riemann invariants is βi = 1/(ui + ν). The corresponding
CH modulation equations are Hamiltonian with respect to two non-local
operators of Mokhov-Ferapontov and Ferapontov type [16], [17] which are
of the form (5) plus a nonlocal tail. However from the Lagrangian averaging,
we independently prove the existence of one local Hamiltonian structure.
We show that the two metrics

gKdV
ii

H2
0(βi)2

, gKdV
ii

H2
0(βi)3

are flat and define a flat pencil, that is, the CH modulation equations
are bi-Hamiltonian with respect to two local Hamiltonian operator of the
form (5). We remark that the two flat KdV metrics gKdV

ii and gKdV
ii /βi

are related to a semisimple Frobenius manifold [14]. More in general,
B. Dubrovin [14] proves that, under certain assumptions, a flat pencil of
contravariant metrics on a manifold induces a Frobenius structure on it.
One of the assumptions is the requirement that one of the two flat metrics is
of Egorov type (namely its rotation coefficients are symmetric). Since none
of the two CH flat metrics have the Egorov property, there is no Frobenius
structure associated to this system. Therefore, from the geometric point
of view, the KdV modulation equations and the CH modulation equation
belong to two different classes.

All the results presented here for the one-phase CH modulation
equations may be generalized to the multi-phase case in a straightforward
way. However, in the present paper we have decided to concentrate only
on the one-phase case to better clarify similarities and differences with the
KdV case, and we will present the discussion of the multi-phase case in a
future publication.

2. Whitham modulation equations.

In this section we use Lagrangian formalism to average the Camassa-
Holm equation in the genus one case and refer to [12], [31] for a general

TOME 55 (2005), FASCICULE 6
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exposition of the method we use. Introducing the potential

φ : φx = u,

equation (1) takes the form

φxt − φxxxt + 3φxφxx − 2φxxφxxx − φxφxxxx + 2νφxx = 0,

and a Lagrangian is

(6) L = − 1
2
φxφt + 1

2
φxxxφt − 1

2
φ3
x − νφ2

x + 1
4
φ2
xφxxx.

We consider 2π-periodic solutions of the form

u = η(θ), θ = kx− ωt.

Following Whitham [37], we introduce the pseudo-phase

φ = ψ + Φ(θ), ψ = βx− γt, θ = kx− ωt,

where Φ(θ) is a 2π periodic function of θ with zero average. The averaged
Lagrangian over the one-dimensional real torus is

L =
∮

dθ
[
− 1

2
(β + kΦθ)(γ − ωΦθ) + 1

2
k3Φθθθ(γ − ωΦθ)

− 1
2
(β + kΦθ)3 − ν(β + kΦθ)2 + 1

4
(β + kΦθ)2k3Φθθθ

]
.

Now we suppose that the constants β, k, γ and ω are slowly varying functions
of time, that is β = β(X,T ), γ = γ(X,T ), k = k(X,T ) and ω = ω(X,T )
with X and T “slow variables”. Then

L = L(k, ω, β, γ;X,T ).

The equations of slow modulation of the parameters k, ω, β, γ are the
extremals of the functional [37]∫

L(k, ω, β, γ) dX dT,

and take the form

(7)

{
∂XLk + ∂TLω = 0, kT + ωX = 0,

∂XLγ + ∂TLβ = 0, βT + γX = 0.

As in the KdV case, substituting the forth equation into the third in (7),
the X-derivative disappears and we get a constraint. Thus the number of
equations reduces from four to three.

ANNALES DE L’INSTITUT FOURIER
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We get to the same conclusion transforming the modulation equations
in Hamiltonian form. Following Hayes [25] and Whitham [37], let us
introduce the Hamiltonian density

H = H(k, ω, β, γ) = ωLω + γLγ − L.

Then the modulation equations are Hamiltonian with respect to the
canonical Poisson bracket{

k(X),Lω(Y )
}

= δ′(X − Y ),
{
β(X),Lγ(Y )

}
= δ′(X − Y ).

Since the constraint

Lγ = 1
2
β,

the number of fields reduces from four to three. This is connected with
the Dirac reduction. Therefore the Whitham equations can be written in
Hamiltonian form with a local Dubrovin-Novikov Poisson bracket [30]{

k(X),Lω(Y )
}

= δ′(X − Y ),
{
β(X), β(Y )

}
= 2δ′(X − Y )

and with Hamiltonian H = H(k, J, β), J = Lω. In these variables the
equations of motion are Hamiltonian

(8) kT = ∂XHJ , JT = ∂XHk, βT = ∂XHβ .

3. Modulation equations for CH in Riemann
invariant form.

The modulation equations (8) can also be written in Riemann
invariant form. For the purpose we introduce the spectral curve associated
to the periodic travelling wave solution u(x, t) = η(kx − ωt). When we
plug η(θ), θ = kx− ωt, into the CH equation (1), we get, after integration,

(9) k2(c− η)η2
θ + (2ν − c)η2 + η3 + 2Bη − 2A = 0,

where A and B are constants of integration and c = ω/k. The CH one-
phase solution u(x, t) = η(kx− ωt) is obtained by inverting the third kind
differential∫ u

u0

(η − c) dη√
(η − c)(η3 + (2ν − c)η2 + 2Bη − 2A)

= kx− ωt.

TOME 55 (2005), FASCICULE 6
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The inversion of the above integral is discussed in [4] where the solution
u(x, t) is expressed in terms of convenient generalized theta-functions
in two variables, which are constrained to the generalized theta-divisor.
Integration of (9) over θ yields the amplitude dependent dispersion relation
for the nonlinear dispersive wave

(10) k

∮
(η − c) dη√

(η − c)(η3 + (2ν − c)η2 + 2Bη − 2A)
= 2π,

where the integration is taken on a close path between e2 and e1 where
c > e1 > e2 > e3 are the roots of the polynomial

η3 − (c− 2ν)η2 + 2Bη − 2A,

with the constraint
2ν = c− e1 − e2 − e3.

Here and below, we indicate vectors with upper indices.

From now on, we will use small letters x, t for the ‘slow variables’ X,T
introduced in the previous section, since we deal only with modulation
equations and no ambiguity may occur.

THEOREM 3.1. — The one-phase CH modulation equations (8) take

the Riemann invariant form

(11) ∂tu
i + Ci(u)∂xui = 0, i = 1, . . . ,3,

where the Riemann invariants u = (u1 ,u2 ,u3), u1 < u2 < u3, are

u1 = 1
2

(e2 + e3), u2 = 1
2

(e1 + e3), u3 = 1
2

(e1 + e2),

and the speeds Ci(u) take the form

(12) Ci(u) =
∂uiω(u)
∂uik(u)

·

The wave number and frequency are given by the Abelian integrals

(13)


k = 2π

( ∮
a

(λ+ ν) dλ√
R(λ)

)−1

,

R(λ) = (λ+ ν)(λ− u1)(λ− u2)(λ− u3),

ω = (2ν + u1 + u2 + u3)k,

and the integration is taken on a close cycle a passing between u2 and u1

(see figure 1).

ANNALES DE L’INSTITUT FOURIER
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The existence of the Riemann invariants and equations (12) is proven
directly starting from (8) and using variational identities of Abelian
integrals. To write the velocities in an explicit form, we introduce the
integrals

(14) Ik =
∮
a

λk√
R(λ)

dλ, k ≥ 0,

where R(λ) is defined in (13).

b

u1 u

a

2
u3

− ν

Figure 1. The homology basis

Let σ1(λ) be the normalized third kind differential with first order
pole at (∞,±∞) with residue ±1, respectively, and let σ2 be the normalized
second kind differential with second order pole at infinity, namely

σ1(λ) =
P1(λ) dλ√

R(λ)
, P1(λ) = λ+ γ1,(15)

σ2(λ) =
P2(λ) dλ√

R(λ)
, P2(λ) = λ2 − 1

2
(u1 + u2 + u3 − ν)λ+ γ2(16)

where the constants γ1 = −I1/I0 and γ2 = −I2/I0+ 1
2 (u1+u2+u3−ν)I1/I0

are uniquely determined by

(17)
∮
a

σi(λ) = 0, i = 1, 2.

These constants are explicitly given by

(18)


γ2 =

1
2

[
u1u2 − νu3 + (u3 − u1)(u2 + ν)

E(s)
K(s)

]
,

γ1 = ν − (u1 + ν)
Λ(K(s), ρ, s)

K(s)
,

where

K(s) =
∫ 1

2 π

0

dψ√
1− s2 sin2 ψ

, E(s) =
∫ 1

2 π

0

dψ
√

1− s2 sin2 ψ

TOME 55 (2005), FASCICULE 6
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are the complete elliptic integrals of the first and second kind respectively
with modulus

s2 =
(u2 − u1)(u3 + ν)
(u3 − u1)(u2 + ν)

and

Λ(K(s), ρ, s) =
∫ K(s)

0

dv
1− ρ2 sn2 v

, ρ2 =
u2 − u1

u2 + ν
,

is the complete elliptic integral of the third kind with sn the Jacobi elliptic
function.

THEOREM 3.2. — The speeds Ci(u), i = 1,2,3 defined in (12) take

the form

(19)



C1(u1 ,u2 ,u3) = u1+u2+u3+2ν+2
(u1 + ν)(u1 − u2)Λ(K(s),ρ,s)

(u2 + ν)[K(s)− E(s)]
,

C2(u1 ,u2 ,u3) = u1+u2+u3+2ν+
2(u2 − u1)Λ(K(s),ρ,s)

K(s)− (u2 + ν)(u3 − u1)
(u1 + ν)(u3 − u2)

E(s)

,

C3(u1 ,u2 ,u3) = u1+u2+u3+2ν + 2
(u1 + ν)(u3 − u2)Λ(K(s),ρ,s)

(u2 + ν)E(s)

where K(s), E(s) and Λ(K(s),ρ,s) are the complete elliptic integrals of

first, second and third kind with modulus s2 = (u2−u1)(u3+ν)
(u3−u1)(u2+ν) .

The equations ∂tu
i + Ci(u)∂xui = 0 are hyperbolic namely

C1(u) < C2(u) < C3(u), for − ν < u1 < u2 < u3.

In the limit when two Riemann invariants coalesce, the modulation equation

reduce to the dispersionless CH equation

∂tu + (3u + 2ν)∂xu = 0.

To prove the theorem we introduce the normalized holomorphic
differential φ(λ)

φ(λ) =
dλ

I0
√
R(λ)

,
∮
a

φ(λ) = 1.

Next we observe that the wave number k defined in (13) takes the form

(20) k = −2π
φ(−ν)
σ1(−ν)

,

ANNALES DE L’INSTITUT FOURIER
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where

σ1(−ν) : =
2P1(−ν)√

(−ν − u1)(−ν − u2)(−ν − u3)
=

σ1(λ)
dt λ=−ν

, t2 = λ+ ν,

φ(−ν) : =
2

I0
√

(−ν − u1)(−ν − u2)(−ν − u3)
=

φ(λ)
dt λ=−ν

, t2 = λ+ ν,

with σ1(λ) defined in (15). The following variational formulas hold [23]:

(21)
∂

∂ui
φ(−ν) =

1
2
φ(ui)Ων(ui),

∂

∂ui
σ1(−ν) =

1
2
σ1(ui)Ων(ui),

where

(22) φ(ui) : =
φ(λ)
dt λ=ui

, Ων(ui) : =
Ων(λ)

dt λ=ui
, t2 = λ− ui,

and Ων(λ) is a second kind Abelian differential with second order pole
at λ = −ν with asymptotic behavior for λ→ −ν

Ων(λ) −→ dt
t2

, t2 = λ+ ν,

and normalized by the condition

(23)
∮
a

Ων(λ) = 0.

The differential Ων(λ) is explicitly given by the expression

(24)


Ων(λ) =

1√
R(λ)

Pν(λ) dλ√
(−ν − u1)(−ν − u2)(−ν − u3)

,

Pν(λ) =
−(ν + u1)(ν + u2)(ν + u3)

2(λ+ ν)
+ P2(−ν),

where P2(λ) has been defined in (16). Inserting (20) and (21) into (12), we
finally obtain the expression

(25) Ci(u) = u1 + u2 + u3 + 2ν − P1(−ν)
Pν(ui)

3∏
j=1
j �=i

(ui − uj), i = 1, 2, 3,

where the rational function P1(λ) and Pν(λ) are as in (15) and (24)
respectively. Finally inserting (18) into (25) we arrive at the formula (19).

TOME 55 (2005), FASCICULE 6



1814 Simonetta ABENDA & Tamara GRAVA

Next we prove hyperbolicity using the formula (25). Since −ν < u1 <

u2 < u3, and limλ→−ν+ Pν(λ) = −∞, by monotonicity, there is only one
point λ∗ > −ν for which

(ν + u1)(ν + u2)(ν + u3)
2(λ∗ + ν)

= P2(−ν);

moreover, because of (23), the point λ∗ satisfies the inequality u1 < λ∗ < u2.
Therefore

Pν(u1) < 0, Pν(u3) > Pν(u2) > 0.

In the same way, using (17) we conclude that P1(−ν) < 0. Using the above
inequalities, it is straightforward to verify that

C1(u) < C2(u) < C3(u), −ν < u1 < u2 < u3.

We end the proof of the theorem studying the behavior of the
speeds Ci(u), i = 1, 2, 3, when two of the Riemann invariants coalesce.
In the limiting case u2 = v − ε, u3 = v + ε, ε→ 0, we have

lim
ε→0

P1(λ) = λ− v, lim
ε→0

Pν(λ) =
1

2(λ+ ν)
(λ− v)(u1 + ν)(v + ν),

so that

lim
ε→0

P1(−ν)
Pν(u1)

(u1 − u2)(u1 − u3) = 2(v − u1),

lim
ε→0

P1(−ν)
Pν(u2)

(u2 − u1)(u2 − u3) = lim
ε→0

P1(−ν)
Pν(u3)

(u3 − u2)(u3 − u1).

Combining the above relations, we have

C2(u1, v, v) = C3(u1, v, v), C1(u1, v, v) = 3u1 + 2ν,

which gives the dispersionless CH equation ∂tu
1 + (3u1 + 2ν)∂xu1 = 0.

In the same way, it can be proved that, in the limit u2 = u1, the speeds
C1(u1, u1, u3) = C2(u1, u1, u3) and C3(u1, u1, u3) = 3u3 + 2ν.

3.1. Hamiltonian structure and integration.

In this section, we investigate the bi-Hamiltonian structure of the
one-phase Whitham equations

∂tu
i + Ci(u)∂xui = 0, i = 1, . . . , 3,

with Ci(u) as in (12) or (25). In section 2 we have proven that the above
equations are Hamiltonian with respect to a canonical Poisson bracket. In
the following we show that the CH modulation equations are bi-Hamiltonian
with respect to local Poisson brackets of Dubrovin-Novikov type.

ANNALES DE L’INSTITUT FOURIER
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PROPOSITION 3.3. — The speedsCi(u), i = 1,2,3, satisfy the following

relations

(26)
∂ujC

i

Cj − Ci = ∂uj log
√
gii ,

where gii = gii(u) is the covariant metric defined by the relation

(27) gii(u) = −4(ui + ν)
Res[λ=ui]{(Ων(λ))2/dλ}
Res[λ=−ν]{(σ1(λ))2/dλ}

,

with Ων(λ) the second kind differential defined in (24) and σ1(λ) the third

kind differential defined in (15). The metric gii(u) is flat. The metric gii(u)
is defined up to multiplication by an arbitrary function fi(ui). The metrics

(28)
gii(u)

2(ui + ν)
, gii(u)

4(ui + ν)2
, gii(u)

8(ui + ν)3
,

are respectively flat, of constant curvature Rijij = −1 and conformally flat

with curvature tensor Rijij = −(Ci(u) +Cj(u) + 2ν). The pencil of metrics

(29) gii(u) + λ
gii(u)

(ui + ν)

is flat for any real λ. None of the metrics defined in (27) and in (28) is of

Egorov type.

We denote the diagonal metric in covariant form by gii and its inverse
by gii. To derive (26) it is sufficient to use the variational formulas (21) and
the additional one

∂

∂ui
Ων(uj) =

1
2

Ων(ui)Ωui(uj),

where Ωui(λ) is a normalized second kind differential with second order
pole at λ = ui. The explicit form of Ωui(λ) can be obtained from (24)
by replacing −ν by ui. The quantities Ων(ui) and Ωui(uj) are defined
as in (22).

To prove the second part of the proposition we evaluate the non-zero
elements of the curvature tensor Riji�

Riji� = − 1
√
gii gjj

{
∂�rji − rj�r�i

}
, i = j = 4,(30)

Rijij = − 1
√
gii gjj

{
∂irij + ∂jrji +

∑
p�=i,j

rpjrpi

}
.(31)
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Here rij are the rotation coefficients defined by

(32) rij =
∂ui
√
gjj√
gii

, i = j.

A metric is of Egorov type if rij = rji, for all i = j. By direct calculation
we obtain

rij =
1
2

( uj + ν

ui + ν

)1
2 k

(
Ωui(uj)−

Ων(uj)σ1(ui)
σ1(−ν)

)
, k = 1, 0,−1,−2.

From the above formula it is clear that rij = rji, for all the four metrics
and therefore none of them is an Egorov metric. To evaluate (30)–(31) the
following additional variational formulas are needed

(33)


∂

∂ui
γ1 = − 1

2
+

1
4
σ1(ui)σ2(ui), i = 1, 2, 3,

∂

∂ui
γ2 =

1
4

(u1 + u2 + u3 − ν)− 1
2
ui +

1
4

(
σ2(ui)

)2
,

where σ1 and σ2 have been defined in (15) and (16) respectively and

σk(ui) : =
σk(λ)

dt λ=ui
, t2 = λ− ui, i = 1, 2, 3, k = 1, 2.

Using the variational formulas (33) we obtain that Riji� = 0 for all the four
metrics and

gii(u)→ Rijij = 0,
gii(u)

2(ui + ν)
→ Rijij = 0,

gii(u)
4(ui + ν)2

→ Rijij = −1,
gii(u)

8(ui + ν)3
→ Rijij = −(2ν + Ci(u) + Cj(u)).

The flatness of the pencil of metrics (29) can be obtained from the results
in [13]. An elegant proof of the flatness of the metrics, valid for any genus
can be obtained in a more convenient set of coordinates ui �→ 1/(ui + ν)
that makes the spectral curve odd with a branch point at infinity. We use
these coordinates in the next section to compare the Whitham equations
for CH and for KdV.

Remark 3.4. — The non-existence of a flat Egorov metric is related
to the non-existence of conservation laws of the form at = bx and bt = cx
(see [32]). Furthermore the non-existence of a flat Egorov metric implies that
the CH modulation equations cannot be associated to a Frobenius manifold.
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We recall that, under certain assumptions, a flat pencil of contravariant
metrics on a manifold induces a Frobenius structure on it [14]. One of the
assumptions is the requirement that one of the two flat metrics is an Egorov
metric. Therefore the geometric structure of the CH modulation equations
is substantially different from that of the KdV modulation equations.

To any flat diagonal Riemannian controvariant metric gii, Dubrovin
and Novikov [12] associate a local homogenous Poisson bracket of hydro-
dynamic type

{F,G} =
∫

δF

δui
Aij

δG

δuj

defined by the Hamiltonian operator

(34) Aij = giiδij
d
dx
− giiΓjikukx.

Indeed in [12], they prove that Aij defines a Poisson tensor if and only
if gii is a flat non-degenerate metric and Γjik are the Christoffel symbols
of the Levi-Civita connection compatible with the metric (the metric is
not necessary diagonal in their formulation). If the metric gii is not flat,
the Poisson tensor needs to be modified adding a non-local tail [17],[16]
of the form

(35) Aij = giiδij
d
dx
− giiΓjikukx + cuix

( d
dx

)−1

ujx,

for metrics of constant curvature c, and of the form

(36) Aij = giiδij
d
dx
− giiΓjikukx + ηiuix

( d
dx

)−1

ujx + uix

( d
dx

)−1

ηjujx,

for conformally flat metrics. In the above relation the affinors ηj satisfy the
equations

Rijij = ηi + ηj ,

where Rijij is the curvature tensor.

In the following let gii(u) be as in (27). Let Aij1 and Aij2 be the
Hamiltonian operators of the form (34) that correspond to the flat
metric gii(u) and to 1

2 gii(u)/(ui + ν), respectively. The linear combi-
nation Aij1 + λAij2 is an Hamiltonian operator for any λ because
gii(u) + λgii(u)/ui is a flat pencil of metrics for any λ.
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The Hamiltonian structure obtained in (8) coincides with Hamiltonian
operator A1. Indeed the coordinates k = k(u1, u2, u3), β = β(u1, u2, u3)
and J = J(u1, u2, u3) defined in (8) are the densities of the Casimirs for
the Hamiltonian operator Aij1 , namely

Aij1
δk

δuj
= Aij1

δβ

δuj
= Aij1

δJ

δuj
= 0,

and therefore they are the flat coordinates for the metric gii(u) (see [12]).
Defining

h0 : =
∮
mdθ = β = −2

P2(−ν)
P1(−ν)

− ν,

where P1 and P2 have been defined in (15) and (16) respectively, we obtain
the Hamiltonian densities hk = hk(u), k ≥ 0, by the recursion relation

Aij2
∂hk
∂uj

= Aij1
∂hk+1

∂uj
, k ≥ 0.

The CH modulation hierarchy takes the bi-Hamiltonian form

∂tku
i = Aij1

δhk+1

δuj
= Aij2

δhk
δuj

, i = 1, 2, 3.

THEOREM 3.5. — For k = 1 and t1 = t, the above equations coincide

with the modulation equations obtained in (11) and take the bi-Hamiltonian

form

uit = Aij1
δh2

δuj
= Aij2

δh1

δuj

where the Hamiltonian densities are the averaged Hamiltonians

h2 = 1
2

∮
(u3 + uu2

x + 2νu2) dθ, h1 = 1
2

∮
(u2 + u2

x) dθ.

Moreover, the generating function for the Hamiltonian densities hk, k ≥ 0,
is given by the coefficients of the expansion as λ→∞ of the differential

Ων(λ)
{Res[λ=−ν](σ1(λ))2/dλ} 1

2
−→ −

(
ξ0 + ξ1

1
λ

+ ξ2
1
λ2

+ · · ·
) dλ
λ2
·

In particular, the first Hamiltonians (modulo Casimirs) are

(37) h0 = 2ξ0 − ν = β, h1 = 2ξ1 + 2νξ0 , h2 = 8
3
ξ2 + 6νξ1.
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In the following we write the CH-modulation equation in Hamiltonian
form with respect to a nonlocal Hamiltonian operator of Mokhov-
Ferapontov and Ferapontov type. Let Aij3 be the Hamiltonian operator
of the form (35) associated to the metric 1

4 gii(u)/(ν + ui)2 of constant
curvature c = 1, and let Aij4 be the Hamiltonian operator of the form (36)
associated to the conformally flat metric 1

8 gii(u)/(ν + ui)3 with affinors
ηi = Ci + ν, i = 1, 2, 3.

The CH modulation equations (11) can also be written in a non-local
Hamiltonian form

∂tu
i = Aij3

δh0

δuj
= Aij4

δh−1

δuj
, i = 1, 2, 3,

where

h−1 = 1− ν{
Res[λ=−ν](σ1(λ))2/dλ

} 1
2
·

We remark that the Hamiltonian operators A3 and A4 can be obtained
from the recursion A3 = R2A1 and A4 = R3A1 where R = A2A

−1
1 is the

recursion operator and A−1
1 denotes the inverse of A1.

In the limit when two Riemann invariants coalesce, the Hamiltonian
operators Aij1 and Aij2 reduce to the “dispersionless limit” of the Poisson
operators of the CH equation

P1 = − d
dx

, P2 = −2(u + ν)
d
dx
− ux,

respectively. In the same limit, the Hamiltonian operators Aij3 and Aij4
reduce to P2P−1

1 P2 and P2P−1
1 P2P−1

1 P2, respectively.

3.2. Integration of the Whitham equations.

In this subsection we show how to integrate the Whitham equa-
tions (11). All hydrodynamic systems satisfying (26) are integrable, via the
generalized hodograph transform introduced by Tsarev [35]. Indeed such
systems (not necessarily with local Hamiltonian) possess an infinite number
of commuting flows

∂t′u
i = wi(u)∂xui,

where the wi are solutions of the linear overdetermined system

(38)
∂ujw

i

wi − wj =
∂ujC

i

Ci − Cj
, i = j,
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where Ci = Ci(u1, u2, u3), i = 1, 2, 3, are the speeds in (12). Then the
solution u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) of the so-called hodograph
transform

(39) x = −Ci(u) t+ wi(u) i = 1, 2, 3 ,

satisfies the system (11). Conversely, any solution (u1(x, t), u2(x, t), u3(x, t))
of (11) can be obtained in this way. For monotone decreasing initial data
x = f(u)|t=0, the general solution of the system (38) can be obtained
following the work of Fei-Ran Tian [34] and the algebraic-geometric
integration of Krichever [24]. For simplicity, we restrict ourselves to the
case ν = 0.

PROPOSITION 3.6. — For ν = 0, and monotone increasing initial data

x = f(u)|t=0, the solution of the system (38) is

(40) wi(u) = q(u) +
(
Ci(u)− u1 − u2 − u3

) ∂q(u)
∂ui

,

where the function q = q(u) solves the linear over-determined system of

Euler-Poisson-Darboux type

(41)

{
∂uiq(u)− ∂ujq(u) = 2(ui − uj)∂ui∂ujq(u),

q(u,u,u) = f(u).

The proof of the above statement follows from [33]. Equation (41) can
be integrated and the explicit expression of the function q(u1, u2, u3) is

q(u1, u2, u3)

=
1

2
√

2π

∫ +1

−1

∫ +1

−1

f
(

1+µ
2

1+η
2 u1 + 1+µ

2
1−η
2 u2 + 1−µ

2 u3
)√

(1− µ)(1− η2)
dµdη.

4. CH modulation equations versus KdV and
reciprocal transformations.

In this section we compare CH and KdV modulation equations. We
start recalling the reciprocal transformation which links the CH equation to
the first negative KdV flow. We show that the CH modulation equations (11)
are transformed to the modulation equations of the first negative KdV flow
by the averaged reciprocal transformation. Finally we compare the averaged
Hamiltonian operators of the two systems.
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4.1. A reciprocal transformation between Camassa Holm
equation and the first negative flow of KdV.

In this subsection we summarize the relation between the Camassa
Holm equation and the first negative flow of KdV hierarchy [21]. The
(associated) Camassa-Holm equation is transformed into the first negative
KdV flow by a reciprocal transformation. In the following, to distinguish
between CH and KdV, we use (x, t) for Camassa-Holm variables and (y, τ−)
for the KdV variables.

The change of dependent variable ρ2 = m+ν transforms the Camassa-
Holm equation

mt = −2mux − umx − 2νux, m = u − uxx.

into the associated Camassa-Holm equation

(42) ρt = −(uρ)x, ρ2 = u − uxx + ν,

which, via the reciprocal transformation introduced by Fuchssteiner [21],

(43) dy = ρdx− uρdt, dτ− = dt,

is finally transformed into

(44) u = ρ2 − ν − ρyτ− +
ρτ−ρy

ρ
,

( 1
ρ

)
τ−

= 2ρρy −
(
ρ
(

log ρ
)
yτ−

)
y
.

The transformation (43) is a reciprocal transformation because the 1-form
ρdx− uρdt is closed with respect to the CH flow.

The equation (44) is equivalent to the first negative flow of the KdV
hierarchy

(45) (∂2
y + 2U + Uy∂

−1
y )Uτ− = 0,

under the condition Uτ− = −2ρy. Equation (45) may be re-expressed as

(46) U =
ρ2
y − 2ρρyy − 1

2ρ2
,

( ρ2
y − 2ρρyy − 1

4ρ2

)
τ−

= −ρy.

Finally, we observe that
∫
ρ(x, t) dx is a Casimir of the second Hamiltonian

operator of the Camassa-Holm equation, P2 = m∂x + ∂xm+ 2ν∂x.
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The 2π-periodic solutions U(Θ), Θ = Ky − Ωτ , of the first negative
KdV flow (45) satisfy

(47) dΘ =
K dU√

−U3 + αU2 − βU + γ
·

We may express such solutions also in the form ρ(Θ) or u(Θ) and we easily
get

(48)


u2

Θ =
1

C2K2
(u − c)

(
u3 − (c− 2ν)u2 + 2Bu − 2A

)
,

ρ(Θ) = − C

u(Θ)− c
, U(Θ) = − 2

u(Θ)− c
,

where C = Ω/K and A,B, c are the constants defined in (9) which satisfy

(49) Bc+ νc2 −A = C2, α = − c
2 + 2B + 4νc

C2
·

The periodic solutions u(θ), ρ(θ), θ = kx−ωt of the (associated) Camassa-
Holm equation, satisfy

dθ =
k(u − c) du√

(u − c)(u3 − (c− 2ν)u2 + 2Bu− 2A)
·

We observe that the reciprocal transformation sends 2π-periodic solutions
in Θ into 2π-periodic solution in θ (and vice versa). Indeed, let T be the
period of u(θ), then

T =
k

K

∫ 2π

0

c− u

C
dΘ

= k

∮
(c− u) du√

(u − c)(u3 − (c− 2ν)u2 + 2Bu − 2A)
= 2π.

It is then natural to expect that the average of the reciprocal transformation
connects the CH modulation equations to the modulation equations of the
first negative KdV flow.

4.2. The modulation equations of the negative KdV flow.

In this subsection, we compute the modulation equations of the KdV
negative flow in the Riemann invariant coordinates used in the literature,
namely the branch points β1, β2, β3, of the odd elliptic curve [37]

(50) w2 = (η − β1)(η − β2)(η − β3),
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where β1 + β2 + β3 = α, with α defined in (47). It turns out from (49) that

(51) βi =
1

ui + ν
> 0, i = 1, 2, 3,

where ui are the CH Riemann invariants defined in Theorem 3.1. On the
Riemann surface (50) we define the second kind normalized differential

(52) dp(η) =
η + α1√

(η − β1)(η − β2)(η − β3)
dη,

where α1 is uniquely determined by the normalization condition∮
a

dp(η) = 0.

In the KdV literature dp(η) is known as quasi-momentum. Now we can
compute the velocities of the modulation equations of the negative
KdV flow.

PROPOSITION 4.1. — The one phase Whitham equations of the first

negative KdV flow are

(53) ∂τ−β
i + vi(β)∂yβi = 0,

where

(54) vi(β): =
∂iΩ(β)
∂iK(β)

=
2√

β1β2β3

(
1−

∏
j �=i(β

i − βj)
βi(βi + α1)

)
,

with α1 as in (52). In the above relations Ω and K are the frequency and

wave-number of the one-phase KdV negative flow.

The proof of the proposition is as follows. From (47) and (48), we
immediately get K = 2πJ−1

0 and Ω = CK = 4πJ−1
0 (β1β2β3)−

1
2 , where

J0 =
∮

dλ√
(λ− β1)(λ− β2)(λ− β3)

·

Then the expressions for the velocities (54) are computed from the definition
using the following variational formula

(55)
∂J0

∂βi
=

1
2
J0

βi + α1∏
j �=i(βi − βj)

, i = 1, 2, 3.
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Remark 4.2. — In the limit β2 = β3, equations (53) converge to
β1
τ− = −2(β1)−

3
2 β1

y , which is the dispersionless limit of the first negative
KdV flow.

Next, we write the negative KdV equations in Hamiltonian form.
In the βs’ coordinates, the flat metric associated to the first local KdV-
Whitham Hamiltonian operator is (see [13])

(56) gKdV
ii (β) = Res[η=βi]

{ ( dp(η))2

dη

}
, i = 1, 2, 3,

where the differential dp has been defined in (52).

Remark 4.3. — The flat metrics gKdV
ii (β) and gKdV

ii (β)/βi can be
related to a Frobenius manifold defined on the moduli space of elliptic
curves w2 = (η − β1)(η − β2)(η − β3) (see [14]).

Let J1 and J2 be the local KdV Hamiltonian operators of the
form (34) associated to the flat metrics 1

8 g
KdV
ii (β) and 1

4 g
KdV
ii (β)/βi.

Let J3 be the nonlocal Hamiltonian operator of the form (35) associated
to the metric 1

2 g
KdV
ii (β)/(βi)2 of constant curvature Rijij = − 1

2 . Let J4

be the nonlocal Hamiltonian operator of the form (36) associated
to the conformally flat metric gKdV

ii (β)/(βi)3 with Riemannian curvature
Rijij = − 1

8 (wi+ + wj+), where

(57) wi+ =
(
β1 + β2 + β3 +

2
∏
j �=i(β

i − βj)
βi + α1

)
,

with α1 defined in (52). The wi+, i = 1, . . . , 3, are the velocities (originally
obtained by Whitham [37]) of the usual positive KdV modulated flow

∂βi

∂τ+
+ wi+(β)

∂βi

∂y
= 0.

Remark 4.4. — The Hamiltonian operator J1 corresponds to the
average over a one-dimensional torus of the Gardner-Zakharov KdV
Hamiltonian structure P1 = 8∂y while the Hamiltonian operator J2

corresponds to the average over a one-dimensional torus of the Lenard-
Magri local Hamiltonian structure P2 = 2∂yyy + 2U∂y + 2∂yU . We use
this unusual normalization in order to be consistent with the normalization
of the CH equation. Defining the recursive operator R = P2(P1)−1, we
obtain the family of non-local Hamiltonian operators Pk+1 = RPk, k ≥ 1.
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The averaged KdV non-local Hamiltonian operators J3 and J4 corresponds
to the average over a one-dimensional torus of the non-local Hamiltonian
operators P3 and P4, respectively.

The modulation equations of the negative KdV flow can be written
in Hamiltonian form with Hamiltonian operator J1 and Hamiltonian
density H0, which is the average over the one dimensional torus of the
Casimir generating the KdV negative flow, namely

(58) H0 =
∮

dΘ
ρ(Θ)

·

LEMMA 4.5 (see [14]). — In the β’s coordinates

H0 = ip(0),

where p(η) is the Abelian integral of the quasi-momentum dp(η) defined

in (52).

To prove the lemma, we compute the integral in (58) in the β’s
coordinates obtaining

H0 =
∮

dΘ
ρ(Θ)

= −
√
β1β2β3α0 = −i (Λ0(η))

2dξ ξ=0
, η =

1
ξ2

,

where

(59) Λ0(η) =
√
−β1β2β3

η−1 + α0√
(η − β1)(η − β2)(η − β3)

dη.

Λ0(η) is a normalized third kind differential with first order poles at
the points O± = (0,±

√
−β1β2β3) with residue ±1, respectively. The

constant α0 in (59) is uniquely determined by the condition
∮
a
Λ0(η) = 0.

From the Riemann bilinear relation, it is finally immediate to verify that

(60) H0 = −i (Λ0(η))
2dξ ξ=0

= ip(0), η =
1
ξ2

,

where p(η) is the Abelian integral of the quasi-momentum dp(η) defined
in (52). Finally the following result holds.

LEMMA 4.6. — The first negative KdV averaged flow (53) can be

written in the Hamiltonian form

(61) βiτ− = J ij1
δH0

δβj
= J ij2

δH−1

δβj
= J ij3

δH−2

δβj
= J ij4

δH−3

δβj
,
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where H0 is the Casimir of J2 defined in (58) and the Hamiltonian densities

are determined by the recursion scheme

J ij1
δH−s
δβj

= J ij2
δH−s−1

δβj
, s ≥ 0.

The HamiltonianH−s, s ≥ 1, are generated by the expansion for η → 0
of the quasi-momentum dp(η). Indeed,

(62) i

∫ (η,w)

(η,−w)

dp(ξ) = 1
2

(H0 + ηH−1 + η2H−2 + 3
4
η3H−3 + · · ·), η → 0.

4.3. CH versus KdV modulation equations.

In the previous section we computed the modulation equations of
the first negative KdV flow. In this subsection, we compute the average of
the reciprocal transformation defined in section 4.1 and we show that the
negative KdV modulation equations are transformed to the CH modulation
equations. Finally, both KdV-Whitham and CH-Whitham systems are
Hamiltonian systems, so we end the section investigating how the reciprocal
transformation acts on the Hamiltonian structures of the two systems.

To compare KdV and CH, we first need to reduce the even spectral
curve of CH to the odd spectral curve of KdV. The natural change of
coordinates (λ, y) �→ (η, w)

η =
1

λ+ ν
, w2 = − y2

(λ+ ν)4
∏3
i=1(ν + ui)

,

maps the even spectral curve y2 = (λ + ν)(λ − u1)(λ − u2)(λ − u3) to the
odd KdV spectral curve

w2 = (η − βi)(η − β2)(η − β3), βi =
1

ν + ui
·

The differentials Ων(λ) and σ1(λ) defined in (24) and (15) transform to

Ων(λ) �−→ 1
2

dp(η),(63)

σ1(λ) �−→ Λ0(η),(64)

with dp(η) as in (52) and Λ0(η) as in (59). It follows from (63) and (64)
that the change of coordinates βi = 1/(ν+ui) transforms the speeds Ci(u)
defined in (25) to

(65) C̃i(β) =
1
β1

+
1
β2

+
1
β3
− ν + 2

α0

∏3
j �=i,j=1(β

i − βj)
βi(βi + α1)

·
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Now we show that the averaged reciprocal transformation maps the
modulation equations of the KdV negative flow to the CH modulation
equations. Indeed averaging over a period the inverse of (43)

dx =
1
ρ

dy + u dτ−, dt = dτ−,

we get the averaged reciprocal transformation

(66) dx = dy
∮

dΘ
ρ(Θ)

+ dτ−
∮

u(Θ) dΘ, dt = dτ−.

PROPOSITION 4.7. — The averaged reciprocal transformation (66)
takes the form

(67) dx = H0 dy +N dτ− , dt = dτ− ,

where H0 is the Casimir defined in (58) and

(68) N =
1
β1

+
1
β2

+
1
β3
− ν + 2α0 =

1
2

(∇H0)2 − ν ,

where (∇H0)2 =
∑
i(g

KdV
ii )−1(∂βiH0)2. Finally (67) is a reciprocal

transformation for the KdV-Whitham negative flow.

To prove the proposition we observed that the one form (67) is closed
by (68). The proof of (68) follows from the identity H0 = ip(0), and the
variational formula ∂βip(0) = 1

4 dp(βi)Λ0(βi).

Next we show that the modulation equations of the first negative
KdV flow are mapped by the reciprocal transformation (67) to the CH
modulation equations.

PROPOSITION 4.8. — The reciprocal transformation

dx = H0 dy +N dτ− , dt = dτ− ,

where H0 and N are as in (58) and (68) respectively, transforms the

modulation equations (53) of the first negative KdV flow

(69) ∂τ−β
i + vi(β)∂yβi = 0,

where vi(β), i = 1, . . . ,3 are as in (54) to the CH modulation equations

(70) ∂tβ
i + C̃i(β)∂xβi = 0,

where the CH velocities are defined in (65). Vice versa, the inverse reciprocal

transformation dy = (1/H0) dx− (N/H0) dt transforms (70) into (69).
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Indeed plugging (67) into (69) we get ∂tβi + V i(β)∂xβi = 0, where

V i(β) = vi(β)H0 +N = C̃i(β).

To compare the CH and KdV Hamiltonian structures, we express the
CH-Whitham Hamiltonian operators introduced in subsection 3.1 in the
βs’ coordinates. In these coordinates, using (60), (62) and (63), the CH flat
metric gii(u) defined in (27) takes the form

(71) g̃ii(β) =
−1

(βi)3
Res[η=βi]{( dp(η))2/dη}

1
4 p(0)2

=
gKdV
ii (β)

(βi)3H2
0

, i = 1, 2, 3.

The other metrics defined in (28) transform, respectively, to

(72)
gKdV
ii (β)

2(βi)2H2
0

, gKdV
ii (β)
4βiH2

0

, gKdV
ii (β)
8H2

0

,

and are, respectively, flat, of constant curvature and conformally flat.

Let Ã1 and Ã2 be the local Hamiltonian operators associated to the
CH flat metrics g̃ii(β) and 1

2 g̃ii(β)βi, respectively. Moreover, let Ã3 and Ã4

be the non-local Hamiltonian operators associated to the CH constant
curvature and conformally flat metrics, 1

4 g̃ii(β)(βi)2 and 1
8 g̃ii(β)(βi)3,

respectively. Then, in the βs’ coordinates the CH modulation equations in
Hamiltonian form are

(73) βit = Ãij1
δh̃2

δβj
= Ãij2

δh̃1

δβj
= Ãij3

δh̃0

δβj
= Ãij4

δh̃−1

δβj

where the Hamiltonians h̃j , i = −1, . . . , 2, are the averaged conservation
laws introduced in subsection 3.1 expressed in the βs’ coordinates. Indeed,
following (62), the positive CH Hamiltonians are obtained from the
coefficients of the expansion for η → 0 of the differential dp(η)/H0 and
take the form

(74) h̃−1 = 1− ν

H0

, h̃0 =
H−1

H0
− ν, h̃j =

H−j−1

H0
− ν H−jH0

, j ≥ 1,

where the H−k are defined in (62). The following theorem by Ferapontov
and Pavlov describes the action of a reciprocal transformation for an
Hamiltonian hydrodynamic equation and we use it to clarify the relation
between the Hamiltonian structures of the averaged KdV and CH Hamil-
tonian structures.
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THEOREM 4.9. — Let βiτ = J ij∂h/∂βj be an Hamiltonian system

associated to the local operator J ij = giiδji d/dy − giiΓjikβky . Then, under

the action of the reciprocal transformation

dx = Ady +B dτ , dt = dτ ,

where d(Ady + B dτ) = 0, the transformed system βit = J̃ ij∂h̃/∂βj is

Hamiltonian, with nonlocal operator

J̃ ij = g̃iiδij
d
dx
− g̃iiΓ̃jikβkx + w̃iβix

( d
dx

)−1

βjx + βix

( d
dx

)−1

w̃jβjx ,

and hamiltonian density h̃ = h/A. The transformed metric is g̃ii = gii/A
2,

Γ̃ is the Levi-Civita connection and

(75) w̃i = ∇i∇iA ·A−
1
2

(∇A)2

= gii
(
∂2
iA−

∑
j

Γjii∂jA
)
A− 1

2

∑
j

gjj(∂jA)2.

Moreover, the transformed metric is conformally flat with curvature tensor

R̃ijij = w̃i + w̃j .

By the above theorem and by inspection of (61) and (73), where the
metrics have been defined in (71), (72) and (56), we conclude that the local
KdV-Whitham Poisson operators, J1 and J2, are mapped to the nonlocal
CH-Whitham Poisson operators Ã4 and Ã3, respectively, by the reciprocal
transformation dx = H0 dy +N dτ−, dt = dτ−.

Remark 4.10. — The application of Theorem 4.9 deserves a special
attention in the case ν = 0 for the computation of the Hamiltonian
densities h̃k. Indeed neither the KdV-Hamiltonian operators Ji nor the
averaged negative KdV Hamiltonian densities H−s, s = 0, 1, 2, 3, depend
on the parameter ν while the CH averaged Hamiltonian densities h̃s,
s = −1, 0, 1, 2, in (74) do. To solve this apparent contradiction, we recall
that the Hamiltonian densities are defined modulo Casimirs.

In particular, the Casimir −νH0 of the second KdV-Whitham
Hamiltonian operator is transformed to the CH Hamiltonian density −ν
which generates the constant flow term associated to Ã3. Similarly, the
term−ν is mapped by the reciprocal transformation to the CH Hamiltonian
density −ν/H0 which generates the constant flow term associated to Ã4.
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Applying Theorem 4.9 to the local CH-Whitham Poisson operators,
we prove that the local Hamiltonian CH operators Ã1 and Ã2, are mapped
to the nonlocal KdV-Whitham Poisson operators J4 and J3, respectively, by
the reciprocal transformation dy = (1/H0) dx − (N/H0) dt. By the same
Theorem 4.9, the corresponding KdV Hamiltonian densities are related
to the CH ones by

h̃2H0 = H−3, h̃1H0 = H−2,

where the above identities again hold modulo Casimirs of the corresponding
KdV Hamiltonian operators. We summarize the results of this section in
the following.

THEOREM 4.11. — The reciprocal transformation

dx = H0 dy +N dτ− , dt = dτ− ,

maps the KdV local Hamiltonian operators J1, J2 and the corresponding

Hamiltonian densities H0, H−1 to

J ik1
δH0

δβk
�−→ Ãik4

δh̃−1

δβk
, J ik2

δH−1

δβk
�−→ Ãik3

δh̃0

δβk

where Ã4 is the CH nonlocal Hamiltonian operator associated to the

covariant conformally flat metric 1
8 g

KdV
ii (β)/H2

0 and h̃−1 = 1 − ν/H0 the

corresponding CH Hamiltonian density (h̃−1H0 = H0 modulo Casimir

of J1). The Hamiltonian operator Ã3 is the CH nonlocal Hamiltonian

operator associated to the constant curvature metric 1
4 g

KdV
ii (β)/H2

0β
i

and h̃0 = −ν + H−1/H0 the corresponding CH Hamiltonian density

(h̃0H0 = H−1 modulo a Casimir of J2).

The reciprocal transformation

dy =
1
H0

dx− NH0
dt, dτ− = dt

maps the local CH Hamiltonian operators Ã1, Ã2, and Hamiltonian densities

h̃2 = H−3/H0 − νH−2/H0, h̃1 = H−2/H0 − νH−1/H0 to

Ãik1
δh̃2

δβk
�−→ J ik4

δH−3

δβk
, Ãik2

δh̃1

δβk
�−→ J ik3

δH−2

δβk

where the non local KdV Hamiltonian operator J4 is associated to the

covariant conformally flat metric gKdV
ii (β)/(βi)3 and h̃2H0 = H−3 modulo
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a Casimir of J4. The nonlocal KdV Hamiltonian operator J3 is associated to

the covariant constant curvature metric 1
2 g

KdV
ii (β)/(βi)2 and h̃1H0 = H−2

modulo a Casimir of J3.

We conclude this section by illustrating with a table all the reciprocal
transformations between the various Hamiltonian operators.

KdV Poisson P1 P2 R2P1 R3P1

tensor

averaged KdV J1 J2 J3 J4

Poisson tensor

KdV metric
1

8
gKdV
ii (β)

gKdV
ii (β)

4βi
2(βi)2

gKdV
ii (β)

(βi)3

Curvature tensor Rijij 0 0 − 1
2

− 1
8
(wi+ + wj+)

averaged KdV H0 − ν H−1 − νH0 H−2 − νH−1 H−3 − νH−2

Hamiltonian

Reciprocal dx = H0 dy +N dτ ↑
transformation ↓ dy =

1

H0
dx− N

H0
dt

averaged CH Ã4 Ã3 Ã2 Ã1
Poisson tensor

CH metric
1

8H2
0

gKdV
ii (β)

gKdV
ii (β)

4H2
0β
i

gKdV
ii (β)

2H2
0(βi)2

gKdV
ii (β)

H2
0(βi)3

Curvature tensor Rijij −2ν − C̃i − C̃j −1 0 0

averaged CH
1− ν

H0

H−1

H0
− ν H−2

H0
− ν H−1

H0

H−3

H0
− ν H−2

H0Hamiltonian

Table 1. In the above table P1, P2 and R have been defined in Remark 4.4. The
averaged KdV Hamiltonian operators Ji, i = 1, . . . , 4 and corresponding metrics
have been defined at the begining of section 4.3. The quantities H−s are defined
in (58) and (62). The averaged KdV Hamiltonian densities for the operators Ji,

i = 1, 2, 3, 4 are defined modulo Casimirs. The CH Hamiltonian operators Ãs are
defined below formula (72) and the corresponding Hamiltonians are defined in (65).
The speeds wi+ are defined in (57) and the speeds C̃i are defined in (65).
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