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WEIGHTS IN COHOMOLOGY AND THE
EILENBERG-MOORE SPECTRAL SEQUENCE

by Matthias FRANZ & Andrzej WEBER(∗)

1. Introduction.

The following spectral sequence was constructed by Eilenberg and
Moore in [13]:

THEOREM 1.1. — Suppose we have a pull-back square of topological

spaces
A×B C = D → A

↓ ↓
C → B

with B simply connected and A → B a fibration. Then there exists a

spectral sequence converging to H∗(D) with

E−p,q2 = Torq,H
∗(B)

p (H∗(A), H∗(C)).

(*) Supported by KBN 1 P03A 005 26 grant, both authors supported by EAGER.
Keywords: Eilenberg-Moore spectral sequence, weight filtration, equivariant cohomology,
intersection cohomology, complex algebraic G-varieties.
Math. classification: 32S35, 14L30, 14F43, 55N33.



674 Matthias FRANZ & Andrzej WEBER

Cohomology is taken with rational coefficients. The torsion product is
a functor of homological type and therefore it is denoted by TorH

∗(B)
p (−,−).

It is positively graded. Additionally it has an internal grading. Its degree–q
piece is denoted by Torq,H

∗(B)
p (−,−). According to L. Smith [25, 26], the

entries of the spectral sequence are the cohomology groups of certain spaces
and the differentials are induced by maps between them. From this Smith
deduced that the sequence inherits all the structure of cohomology, such as
an action of the Steenrod algebra. We are interested in the weight filtration
of the rational cohomology of algebraic varieties. Since we want to prove
some results for singular spaces, we deal with intersection cohomology.
We show that Smith’s construction can be carried out in the category of
algebraic varieties, or rather in the derived category of sheaves on algebraic
varieties. Therefore the Eilenberg-Moore spectral sequence can be endowed
with a weight filtration which extends the filtration constructed by Deligne
[10]. The Eilenberg-Moore spectral sequence can equally be obtained from
a filtration of the bar complex B(Ω∗(A),Ω∗(B),Ω∗(C)), which is quasi-
isomorphic to Ω∗(A×B C) (where Ω∗(−) is a complex of differential forms
on a hyperresolution computing H∗(−), see [10]). According to Deligne,
these complexes live in the category of mixed Hodge complexes. By [17, §3]
and [18, §3], the bar complex inherits the mixed Hodge structure, hence
also the entries of the Eilenberg-Moore spectral sequence. We only study
the weight filtration, but we are interested in intersection cohomology as
well. We prove our results in the category of mixed sheaves of Saito ([22,
23]) or Beilinson-Bernstein-Deligne ([2]). We formulate our first theorem in
the following way:

THEOREM 1.2. — Let B be a simply connected complex algebraic

variety. Let F and G be bounded below mixed sheaves over B. Suppose

that F has constant cohomology sheaves. Then there is a spectral sequence

with

E−p,q2 = Torq,H
∗(B)

p

(
H∗(B;F ), H∗(B;G)

)
and converging to H∗(B;F ⊗G). The entries of the spectral sequence are

endowed with weight filtrations. The differentials preserve them.

Here H∗(B) denotes the cohomology of B with coefficients in the
constant sheaf Q. The choice of the category of mixed sheaves is motivated
by the following: In contrast to the topological situation, we would have
to deal with simplicial varieties instead of just varieties. That is because
in the construction of Smith’s resolution on the geometric level a quotient
of varieties appears. Such a quotient is no longer an algebraic variety. In
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WEIGHTS AND THE EILENBERG-MOORE SPECTRAL SEQUENCE 675

the world of simplicial varieties we can replace the quotient by a cone
construction, and every step of Smith’s original proof can be imitated. But
we are concerned with intersection homology, and we would therefore have
to introduce a simplicial intersection sheaf. We find it rather unnecessary
to develop a theory of intersection cohomology for simplicial varieties. On
the other hand it is much easier and more general to prove the result
for sheaves. If one looks carefully, one sees that Smith’s construction is
carried out in the stable category of topological spaces over B (at the end
of his argument he desuspends the spectral sequence). The rational stable
category of topological spaces over B is nothing but the derived category
of sheaves over B. The sheaves coming from algebraic geometry carry an
additional structure: the weight filtration. In a purely formal way we deduce
results from the fact that all maps strictly preserve the filtrations. In many
situations the higher differentials of the Eilenberg-Moore spectral sequences
vanish because otherwise they would mix weights. Hence, E2 = E∞ in these
cases. We note that if a variety is smooth, one could work with Hodge
complexes as in [10] instead of mixed sheaves.

Using the same notation as before, our main result reads as follows:

THEOREM 1.3. — If H∗(B), H∗(B;F ) and H∗(B;G) are pure (i.e.,

the degree-n cohomology group is entirely of weight n), then E−p,∗r is pure

for all r and p, and the Eilenberg-Moore spectral sequence degenerates on

the E2 level. The resulting filtration is the weight filtration

WνH
n(F ⊗G) =

⊕
q−p=n, q�ν

Torq,H
∗(B)

p (H∗(B;F ), H∗(B;G)) .

Suppose we have a pull-back square

(1.4)
A×B C = D

g̃−−→ A

f̃
� �f
C −−→

g
B

of algebraic varieties, where B is smooth and simply connected and the
map A → B is a fibration. (It is enough to assume that the map f is a
topological locally trivial fibration.) When we apply Theorem 1.3 to the
push forwards F = Rf∗ICA and G = Rg∗ICC of the intersection sheaves,
we obtain:

TOME 55 (2005), FASCICULE 2



676 Matthias FRANZ & Andrzej WEBER

THEOREM 1.5. — If H∗(B), IH∗(A) and IH∗(C) are pure, then

IHn(D) =
⊕

q−p=n
Torq,H

∗(B)
p (IH∗(A), IH∗(C)) .

The sum of terms with q � ν coincides with WνIH
∗(D).

Let G be a linear algebraic group. We assume that G is connected.
Our goal is to study the weight structure in the cohomology and equivariant
cohomology of algebraic G-varieties. If the equivariant cohomology is pure,
it determines the non-equivariant cohomology additively:

THEOREM 1.6. — If the rational equivariant cohomology H∗G(X) =
H∗(EG×GX) is pure, then the rational cohomology of X is given additively

by:

Hn(X) =
⊕

q−p=n
Torq,H

∗(BG)
p (H∗G(X),Q) .

The sum of terms with q � ν coincides with WνH
∗(X).

Theorem 1.6 follows from Theorem 1.5 by approximating BG in the
pull-back square

X → EG×G X

↓ ↓
point → BG

.

In the special case where X = G/H is a homogeneous spaces we recover a
result of Borel [5, Th. 25.1 or 25.2].

An analogous theorem can be formulated for intersection cohomology
or Borel-Moore homology. It remains to say when equivariant cohomology
is pure. Without difficulty, we find (see Propositions 4.3 and 4.5):

THEOREM 1.7. — If a G-variety X is smooth and has only finitely

many orbits, then H∗G(X) is pure. The rational cohomology of X is given

additively by:

H∗G(X) =
⊕

H∗−2c(BH) ,

where the sum is taken over all orbits O = G/H ⊂ X, and c = codim O.

For singular varieties the result holds for equivariant Borel-Moore
homology as defined in [12, Section 2.8]. The multiplicative structure of
H∗G(X) is harder. It involves Chern classes of normal bundles of orbits.

ANNALES DE L’INSTITUT FOURIER
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Except for special cases like toric varieties or some other spherical varieties,
we do not have a satisfactory description.

In order to apply Theorem 1.6 to intersection cohomology of singular
varieties, we have to show that IH∗G(X) is pure. An important class of
varieties having this property is that of spherical varieties. One can prove
it by using a local description of singularities as in [8].

Standing assumptions: Unless stated otherwise, all cohomology groups
are taken with rational coefficients. All algebraic varieties are defined over
the complex numbers. We consider only algebraic actions of linear algebraic
groups.

We would like to thank the referee for his great help and care.

2. Preliminaries.

2.1. Weight filtration.

The weight filtration in the cohomology of algebraic varieties can
be constructed in various ways: either using arithmetic methods, [9, §6]
or through analytic methods, [10]. To tackle not necessarily constant
coefficient systems one should work with the mixed Hodge modules of
M. Saito, [22, 23]. Our results will follow formally from the existence of a
weight filtration. Therefore, instead of going into various constructions, we
will list its properties. Let X be a smooth variety. We consider cohomology
with coefficients in Q. The weight filtration

0 = Wk−1H
kX ⊂WkH

kX ⊂Wk+1H
kX ⊂ . . . ⊂W2kH

kX = HkX

satisfies the following conditions:

1. WkH
kX = HkX if X is complete. (We say that the cohomology is

pure.)

2. Let f :X → Y be an algebraic map. The induced map in cohomology
strictly preserves weight, i.e., f∗WνH

kY = WνH
kX ∩ f∗HkY .

3. The weight filtration is strictly preserved by the maps in the Gysin
(localization) sequence

· · · −−→ HkX
j∗−−→ HkU

δ−−→ Hk+1−2cY
i!−−→ Hk+1X −−→ · · · .

TOME 55 (2005), FASCICULE 2
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Here i:Y ↪−→ X is a smooth subvariety of codimension 2c, and j is
the inclusion U = X \ Y ↪−→ X. The boundary map δ lowers weight
by 2c and i! raises it by 2c.

4. The weight filtration is defined for relative cohomology. The long
exact sequence of a pair strictly preserves it.

5. The weight filtration is also defined for simplicial varieties. This time
weights smaller than k can appear in Hk(X•). By hyperresolution
of singularities, the cohomology of singular varieties can be endowed
with a weight structure.

We deal with singular varieties, therefore we have to consider not
only constant sheaves, but also the “mixed sheaves” of [2, §5, p. 126].
In particular, we compute cohomology with coefficients in the intersection
sheaf ICX , that is, intersection cohomology [15]. In the main part of [2]
the varieties are actually defined over a field of finite characteristic. For
complex varieties we are allowed to work with “sheaves of geometric origin”
([2, §6.2.4]). For such sheaves it is possible to find a good reduction and
apply the results which are valid in finite characteristic. In particular we
have IH∗(XC);Q�) � IH∗(X

Fq
;Q�). (We recall that for varieties over

a finite field we have to use coefficients in Q�. The formalism of [9] which
allows to compute the cohomology with coefficients in a complex of sheaves
generalizes the construction of étale cohomology.) This way we transport
the weight filtration to the intersection cohomology of complex varieties.
The theory of M. Saito also applies: an intersection sheaf is an object in
the category of mixed Hodge modules. The weight filtration in IHk(X)
also starts with WkIH

kX as in the smooth case. It turns out that the
weight filtration is defined over rational numbers. We will use again just
formal properties of mixed sheaves. A suitable category to work with is
the category of mixed Hodge modules over a base B, i.e. Dmix(B). The
properties 3 and 4 above can be extended to the following:

6. For a distinguished triangle of mixed sheaves

A −−→ B −−→ C −−→ A[1]

the maps in the long exact sequence

· · · → Hk(X;A)→ Hk(X;B)→ Hk(X;C)→ Hk+1(X;A)→ · · ·

strictly preserve weights.

ANNALES DE L’INSTITUT FOURIER
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2.2. Varieties associated with a group action.

Let G be a connected linear algebraic group. The classifying space
of G as a simplicial variety has already been considered by Deligne [10]:

BG• =
{
pt ←−−←−− G

←−−←−←−− G×G · · ·
}

(the arrows are multiplications or forgetting the edge factors). In an
appropriate category, BG• represents the functor which associates to X

the isomorphism classes of Zariski-locally trivial G-bundles over X.

Another algebraic model BGét was described by Totaro [28], see
also [21, §4.2]. It classifies G-bundles which are étale-locally trivial. To-
taro’s BGét has the same cohomology as the simplicial BG•. The spaces
EGét and BGét are infinite-dimensional; one therefore has to approximate
them by U and U/G where U ⊂ V runs over all open G-invariant subsets in
representations G→ GL(V ), such that the geometric quotient U/G exists
and U → U/G is a G-bundle (étale locally trivial). We prefer to work with
this model. Both models have isomorphic cohomology.

The Borel construction of X is the simplicial variety

[X/G]• = (EG×G X)• =
{
X ←−−←−− X ×G

←−−←−←−− X ×G×G · · ·
}

(the arrows are the action, multiplications or forgetting the last factor). Of
course, [pt/G]• = BG•.

Note that in Totaro’s model the space U ×G X might not be an
algebraic variety. But it is so if all orbits admit G-invariant quasi-projective
neighbourhoods. See the discussion in [29].

Equivariant cohomology H∗G(X) is defined as the cohomology of
EG ×G X. It does not matter which model of EG → BG we use. For
a fixed degree i we have Hi

G(X) = Hi(U ×GX) if the codimension of V \U
is sufficiently large.

2.3. The weight filtration in H∗(BG) and in H∗(G).

The following observations were made by Deligne [10], §9.

THEOREM 2.1. — The cohomology of BG is pure, i.e.,

Wk−1H
k(BG) = 0 , WkH

k(BG) = Hk(BG) .

TOME 55 (2005), FASCICULE 2



680 Matthias FRANZ & Andrzej WEBER

For example, H∗(BC∗) � H∗(P∞) is a polynomial algebra on one
pure generator of degree 2.

Now let P • = P 1 ⊕ P 3 ⊕ P 5 ⊕ . . . be the space of primitive elements
of the Hopf algebra H∗G, so that H∗G =

∧
P •.

THEOREM 2.2. — Let k > 0. Then WkH
kG = 0 and Wk+1H

kG = P k

(which is 0 if k is even).

Hence one can filter the cohomology of G by “complexity”: CaH∗(G) =∧�a
P •. Then CaH

∗(G) ∩Hk(G) = Wa+kH
k(G).

3. Filtration in the Eilenberg-Moore spectral sequence.

Let us come back to the pull-back diagram 1.4 and the associated
Eilenberg-Moore spectral sequence. We want to endow its entries with a
weight filtration. The goal of this section is to repeat Smith’s construction
(as presented in [26]). We find it convenient to consider the category of
sheaves over B instead of the category of spaces over B as in Smith’s
papers. More precisely, we work in the category Dmix(B) of mixed sheaves
of [22, 23] or [2]. Instead of a map f :A→ B we consider the sheaf Rf∗ICA
since IH∗(A) = H∗(B;Rf∗ICA). The condition: f :A → B is a fibration

with the fibre X is replaced by: Rf∗ICA has constant cohomology sheaves

with stalks IH∗(X). Since we assume B to be simply connected there is
no need to consider locally constant cohomology sheaves. It is clear that if
f :A→ B is a fibration which is locally trivial with respect to the classical
topology, then Rf∗ICA has constant cohomology sheaves. Note that in this
case the weight filtration is constant, [2, Proposition 6.2.3], although the
Hodge structure might vary. Suppose that B is smooth. We claim that
the intersection cohomology of the pull-back is the cohomology of B with
coefficients in the tensor product Rf∗ICA ⊗Rg∗ICC :

IH∗(D) � H∗(B;Rf∗ICA ⊗Rg∗ICC)

or, more precisely, that f̄∗ICC⊗ ḡ∗ICA is quasi-isomorphic to ICD. Indeed,

• this sheaf is constant when restricted to the regular part of D, which
is equal to Creg ×B Areg;

ANNALES DE L’INSTITUT FOURIER
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• locally, for an open set U ⊂ C (in the classical topology) over which
the fibration is trivial, i.e., f̄−1(U) � U × X, we have (f̄∗ICC ⊗
ḡ∗ICA) � ICU ⊗ ICX .

Therefore our goal is to construct a spectral sequence converging
to cohomology with coefficients in a tensor product of mixed sheaves.
The same applies to constant sheaves instead of intersection sheaves.
For B = BG one can generalize our construction to equivariant sheaves
in the sense of Bernstein-Lunts, [3].

We set A∗ = H∗(B), and we write H∗F instead of H∗(B;F ) for a
mixed sheaf F .

THEOREM 3.1. — Let B be a simply connected complex algebraic

variety. Let F and G be bounded below mixed sheaves over B. Suppose

that F has constant cohomology sheaves. Then there is a spectral sequence

with

E−p,q2 = Torq,A
∗

p (H∗F,H∗G)

and converging to H∗(F ⊗G). The entries and differentials of the spectral

sequence lie in the category Dmix(point).

Proof. — Let π:B × B → B be the projection onto the first factor
and let ∆:B → B × B be the diagonal. For a mixed sheaf F over B we
define QF = Rπ∗π∗F . It comes with a map QF → F constructed in the
following way:

1. F → F = Rπ∗R∆∗F is the identity map over B,

2. π∗F → R∆∗F is the adjoint map,

3. applying Rπ∗, we obtain Rπ∗π∗F → Rπ∗R∆∗F = F .

The sheaf QF is isomorphic to Rε∗QB � F , where ε:B → point. The
cohomology of the stalk H∗x(QF ) is equal to A∗ ⊗ H∗x(F ). We note that
H∗QF is a free A∗-module and that the induced map H∗QF → H∗F is
surjective. Indeed, H∗QF = A∗ ⊗H∗F and the map to H∗F is the action
of A∗ on H∗F . Let us summarize the ingredients which L. Smith has used
to construct the spectral sequence (most of them are listed in [25]):

1. For all F ∈ Ob(Dmix(B)) the map QF → F satisfies the properties

a) H∗QF → H∗F is surjective,

b) H∗QF is a free A∗-module,

TOME 55 (2005), FASCICULE 2



682 Matthias FRANZ & Andrzej WEBER

c) if HqF = 0 for q < a, then HqF → HqQF is an isomorphism
for q < a + 2. (This condition is necessary for convergence,
see [26], p. 42.)

2. If F is a fibration (i.e., has constant cohomology sheaves), then so is
QF .

3. If H∗F is of finite type, then H∗QF is of finite type as well.

4. If F is a fibration and H∗F a free A∗-module, then the natural map

H∗F ⊗A∗ H∗G→ H∗(F ⊗G)

is an isomorphism for all G ∈ Ob(Dmix(B)).

5. Let F , G ∈ Ob(Dmix(B)) with F being a fibration. If HqF = 0
for q < a and HqG = 0 for q < b, then Hq(F ⊗G) = 0 for q < a + b.
(This is again necessary for convergence, compare [26], p. 43 and
Proposition A.5.2.)

Properties (4) and (5) follow from the Grothendieck spectral sequence

Ep,q
2 = Hp(HqF ⊗G)⇒ Hp+q(F ⊗G) .

Now we mimic Smith’s construction of a free resolution of H∗F . We
inductively define

• F0 = F ;

• Qp = QFp;

• Fp+1 is the fibre of Qp = QFp → Fp, i.e., it fits into the distinguished
triangle

Qp −−−−→ Fp.

↖ ↙ [+1]

Fp+1

We thus obtain a free resolution of H∗F coming on the level of sheaves
from

F = F0
[+1]−−−−→ F1

[+1]−−−−→ F2 . . .
[+1]−−−−→ Fp

[+1]−−−−→ Fp+1

↖ � ↙ � ↖ � ↙ � ↖ � ↙ � ↖ � ↙
Q0 ←−−−− Q1 . . . ←−−−− Qp ←−−−− Qp+1 . . .

Here , denotes a distinguished triangle and � a commutative triangle. The
sheaves Qp have constant cohomology. We tensor the entire diagram by G.

ANNALES DE L’INSTITUT FOURIER
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The triangles remain distinguished. Now we apply H∗(−). The Eilenberg-
Moore spectral sequence is obtained from the exact couple

⊕
pH
∗(Fp ⊗G)

[+1]−−−−−−−−→
⊕

pH
∗(Fp ⊗G).

↖ ↙⊕
pH
∗(Qp ⊗G)

This is an exact couple in the abelian category of vector spaces with
an action of the Frobenius automorphism. The maps strictly preserve
the weight filtration. If we worked with Saito’s category of mixed Hodge
sheaves, the cohomology groups would lie in the abelian category of
mixed Hodge structures; here the maps also strictly preserve the weight
filtration. The elements of the couple are bigraded by p and by the internal
degree q. The map → is of bidegree (1, 1), the map ↙ of bidegree (0, 0)
and the map ↖ of bidegree (1, 0). The resulting spectral sequence has
E−p,q1 = Hq(Qp ⊗G). By property (4) we have

E−p,∗1 = H∗(Qp ⊗G) = H∗Qp ⊗A∗ H∗G .

The E2 term is

E−p,∗2 = Hp(H∗(Q• ⊗G)) = TorA
∗

p (H∗F,H∗G) .

Remark 3.2. — The properties of this spectral sequence were studied
in detail by L. Smith in [26]. His arguments fit perfectly into the formalism
of the stable homotopy category over B. In the final step he desuspends
his spectral sequence [26, p. 38]. The formalism of the derived category of
sheaves over B is even better for this purpose.

The convergence of the Eilenberg-Moore spectral sequence is guaran-
teed by the following. Suppose that the mixed sheaves F and G have coho-
mology concentrated in non-negative degrees. Then the resulting spectral
sequence lies in the second quadrant. Inductively one checks that HqFp = 0
for q < 2p. Indeed, by property (1c) the map HqQp → HqFp is an isomor-
phism for q < 2p+2 and a surjection for q = 2p+2. Therefore HqFp+1 = 0
for q < 2p + 2. Now by property (5) Hq(Qp ⊗ G) = 0 for q < 2p (since
Hq(Qp) = Hq(Fp) = 0). We find that the terms E−p,q2 may be nonzero
only for 0 � q � 2p. �

The entries of the spectral sequence are cohomologies of objects in
Dmix(point), therefore:

TOME 55 (2005), FASCICULE 2



684 Matthias FRANZ & Andrzej WEBER

COROLLARY 3.3. — The Eilenberg-Moore spectral sequence inherits

a weight filtration.

Let us assume that A∗, H∗F and H∗G are pure. Then H∗Q0 =
A∗ ⊗H∗F is pure. The cohomology H∗F1 is the kernel of H∗Q0 →→ H∗F ,
hence also pure. Reasoning inductively, we find that H∗Qp is pure for
all p. Hence E−p,q1 = (H∗Qp ⊗A∗ H∗G)q is pure of weight q. Therefore
the differentials vanish from d2 on. We obtain:

THEOREM 3.4. — If A∗, H∗F and H∗G are pure, then E−p,∗r is pure.

Consequently, the Eilenberg-Moore spectral sequence degenerates and

WνH
n(F ⊗G) =

⊕
q−p=n, q�ν

Torq,A
∗

p (H∗F,H∗G) .

Remark 3.5. — Our construction is explicit. The spectral sequence
can be deduced from the simplicial sheaf F ⊗ Q•G. The term E−p,∗1 =
H∗(Qp ⊗G) can be identified with the bar complex

Barp(H∗F,A∗, H∗G) = H∗F ⊗ (A∗)⊗p ⊗H∗G .

Here A∗ = H
∗
(B) is the reduced cohomology of the base.

Remark 3.6. — We will apply the Eilenberg-Moore spectral sequence
to sheaves over BG. We can extend Theorem 3.4 to this case by approxi-
mating BG the way Totaro does.

4. Applications.

4.1. Rational cohomology of principal bundles.

Let G be a connected linear algebraic group and let X be a complete
complex algebraic variety. Let P → X be a principal algebraic G-bundle
which is étale locally trivial. It does not have to be Zariski-locally trivial,
but the map P → X is affine. In general a classifying map X → BG

might not exist in the category of algebraic varieties. Instead, we use a
construction of [28, Proof of Theorem 1.3]: Let V be a representation of G
and XV = P×GV → X the associated vector bundle. The algebraic variety

ANNALES DE L’INSTITUT FOURIER
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XV is homotopy equivalent to X. Let U be an open G-invariant subset
of V with a quotient U/G which approximates BGét. The intersection
cohomology of the open set XU = P ×G U ⊂ XV approximates IH∗(X)
as codim (V \U)→∞. Similarly IH∗(P ×U) approximates IH∗(P ). Now
there is a pull-back

P × U → BEét
↓ ↓
XU → BGét

Set B = BGét, A = EGét and C = limX ′′. The Eilenberg-Moore spectral
sequence (1.1) allows to compute the intersection cohomology of P . Since
IH∗(X) is pure (as is H∗(EG), of course), by (1.6) we obtain:

COROLLARY 4.1. —

WνIH
n(P ) =

⊕
q−p=n, q�ν

Torq,H
∗(BG)

p (IH∗(X),Q) .

The approximation is justified by the following proposition, which
follows simply from the fact that Tor can be computed from the bar-
resolution.

PROPOSITION 4.2. — Let A∗ be an inverse limit of graded rings A∗i
(i ∈ Z) and let M∗ and N∗ be graded A∗-modules which are inverse limits

of A∗i -modules M∗i and N∗i . We assume that the grading is nonnegative

and that for each degree n, the limits stabilize (i.e., An = An
i for large i

and analogously for M∗ and N∗). Then for a fixed q and sufficiently large i

Torq,A
∗

∗ (M∗, N∗) = Torq,A
∗
i∗ (M∗i , N

∗
i ).

4.2. From equivariant to non-equivariant cohomology.

Let G be as before and X a G-variety. Set B = BG, A = EG ×G X

and C = point. We list examples to which Theorem 1.6 applies, that is, for
which H∗(EG ×G X) = H∗G(X) or IH∗(EG ×G X) = IH∗G(X) are pure.
Let us start with some simple observations.

PROPOSITION 4.3. — Let X → Y be a fibration (in the classical

topology) with fibre, a homogeneous G-space. If Y is complete, then

IH∗G(X) is pure.
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Proof. — Consider the fibration EG ×G X → Y . The fibres are
homotopy equivalent to BH, where H is the stabilizer of a point in X.
Then by the Leray spectral sequence we find that IH∗(EG×GX) is pure.
(Note that this spectral sequence degenerates.) �

PROPOSITION 4.4. — Suppose X is equivariantly fibred over a homo-

geneous G-space. If the fibres are complete, then IH∗G(X) is pure.

Proof. — The fibration is of the form X → G/H. Let F be a fibre,
which is complete. Consider the fibration EG×GX → EG×GG/H � BH.
The fibres are again isomorphic to F . The Leray spectral sequence has
Ep,q

2 = Hp(BH; IHq(F )). (The coefficients might be twisted.) We have

Hp(BH; IHq(F )) = (Hp(B̃H)⊗ IHq(F ))π1(BH)

= (Hp(BH0)⊗ (IHq(F )))H/H
0
,

where H0 is the identity component of H. We see that Ep,q
2 is pure of

weight p + q. Therefore IH∗G(X) is pure. Moreover, the spectral sequence
degenerates. �

Now suppose that X is smooth. We show that purity is additive in
this case.

PROPOSITION 4.5. — Suppose that X is smooth and has a G-

equivariant stratification {Sα} such that each H∗G(Sα) is pure. Then

(1) H∗G(X) =
⊕
p

⊕
codimSα=p

H∗−2p
G (Sα)(p)

is pure.

Here (p) denotes the shift of weights by 2p.

Proof. — Consider the filtration of X by codimension of strata:

Up =
⋃

codimSα�p

Sα .

The resulting spectral sequence for equivariant cohomology has

Ep,q
1 = Hp+q

G (Up, Up−1) .
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By the Thom isomorphism,

Ep,q
1 =

⊕
codimSα=p

Hq−p
G (Sα) .

The Thom isomorphism lowers weight by 2p. Hence, Ep,q
1 is pure of

weight p + q because Hq−p
G (Sα) is pure of weight q − p. We conclude that

the spectral sequence degenerates, which was to be shown. �

By Theorem 2.1, Proposition 4.5 applies in particular to varieties with
finitely many orbits. Since the right hand side of (1) is the E1 term of a
cohomology spectral sequence, it carries a canonical product. For a toric
variety X defined by a fan Σ, this “is” the product in H∗G(X) (which equals
the Stanley-Reisner ring of Σ). The same holds for complete symmetric
varieties [4, Thm. 36] and, more generally, for toroidal varieties [6, §2.4].

Now we switch to the singular case.

Remark 4.6. — First we note that our results can be generalized
straightforwardly if we replace the constant sheaf by the dualizing sheaf.
This way one compares Borel-Moore homology with equivariant Borel-
Moore homology, defined in [12]. We will not develop this remark here.

Let us make some comments about intersection sheaves, which com-
pute intersection cohomology [15]. If the local intersection sheaf is point-
wise pure, we can argue as in the proof of Proposition 4.5. This condition
is satisfied if the singularities are quasi-homogeneous (as in [11], for in-
stance). Other examples are obtained from the decomposition theorem ([2,
Théorème 6.2.5], [24]):

PROPOSITION 4.7. — If X admits an equivariant resolution X̃ with

pure equivariant cohomology, then the equivariant intersection cohomology

of X is pure.

Proof. — Indeed, IH∗G(X) injects into H∗G(X̃) by the decomposition
theorem, and the inclusion preserves weights. �

There are lots of examples of G-varieties admitting a resolution which
can be stratified by Sα as in 4.5. If X is a spherical variety, one can prove
purity without appealing to the decomposition theorem. Here a precise
analysis of spherical singularities ([8] §3.2) shows that the intersection
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sheaf is pointwise pure. The stalk H∗xICX coincides with the primitive part
of intersection cohomology of some projective spherical variety of lower
dimension. We refer the reader to [7], Theorem 2 and [8], Theorem 3.2.
Filtering X by codimension of orbits, we find that

IH∗G(X) =
⊕
α

H∗(BGα;H∗xαICX) .

The sum is taken over all orbits G ·xα = G/Gα. The decomposition follows
from the purity of the summands. The coefficients may be twisted. The
intersection cohomology localized at the orbit G · xα is equal to

H∗(BGα;H∗xαICX) = H∗(BG0
α;H∗xαICX)Gα/G

0
α .

COROLLARY 4.8. — If X is a spherical variety, then IH∗G(X) is pure

and

IHn(X) =
⊕

q−p=n
Torq,H

∗(BG)
p (IH∗G(X),Q) .

The sum of terms with q � ν coincides with WνIH
∗(X).

This theorem generalizes a result for toric varieties, [30].

5. Koszul duality.

Our paper is motivated by the work of Goresky, Kottwitz and
MacPherson, [16]. One of their main results states that the nonequivari-
ant “cohomology” of a G-space X can be recovered from the “equivariant
cohomology” (and vice versa) through Koszul duality. But one has to be
careful, since here by “equivariant cohomology” we mean a complex C∗G(X)
(an object in a derived category) computing H∗G(X). Precisely, there is an
equivalence of derived categories

D (H∗(BG)-modules) � D (H∗(G)-modules)

such that C∗G(X) corresponds to C∗(X). The argument of [16] contains a
gap. A proof that the cohomology of the Koszul complex Ω∗G(X)⊗H∗(G)
is equal to H∗(X) appeared in [20] 1, while the correct action of H∗(G) has

1. The action of H∗(G) in [20] is not correct.
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been constructed in [19] and [1]. The question arises: can one recover H∗(X)
knowing only the cohomology groups H∗G(X), not the whole complex? In
general one cannot. The higher differentials can be expressed in terms of
Massey products in H∗G(X).

Remark 5.1. — A better question seems to be: Can one find interest-
ing spaces for which knowledge of H∗G(X) suffices to recover H∗(X)? This
property deserves to be called “formality” (or maybe BG-formality), but
unfortunately the word “formality” has been reserved for something else
(namely freeness over H∗(BG)). See the remarks in the introduction to
[30].

In general there is a spectral sequence converging to H∗(X) with

E1 = H∗G(X)⊗H∗(G) ,

d1 = Koszul differential .

This is just the Eilenberg-Moore spectral sequence. The cohomology of the
complex (E1, d1) is the torsion product:

E2 = TorH
∗(BG)(H∗G(X),C) .

Our Theorem 1.6 says that under suitable purity assumptions the higher
differentials vanish.

COROLLARY 5.2. — Suppose that H∗G(X) is pure then the cohomology

of X is the cohomology of the Koszul complex (H∗G(X)⊗H∗(G), d1).

There are still open questions: While Koszul duality allows one
to recover the H∗(G)-module structure of H∗(X), the Eilenberg-Moore
spectral sequence gives H∗(X) only additively.

QUESTION 5.3. — Suppose that a smooth complex algebraic variety

X consists of finitely many orbits. Is the cohomology of the Koszul complex

(H∗G(X)⊗H∗(G); d1).

isomorphic to H∗(X) as a module over H∗(G)?

By [14] this is the case for toric varieties.
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