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ANALYTIC EXTENSION FROM NON-PSEUDOCONVEX

BOUNDARIES AND A(D)-CONVEXITY

by Ch. LAURENT-THIÉBAUT and E. PORTEN

1. Introduction.

Let D C C C’ be a domain with smooth boundary. A compact
K C 8D is called removable if every continuous CR-function f on 
has a holomorphic extension to all of D. In this paper we are interested
in the link between removability and convexity properties of K. For any
compact L C D, we define its A(D)-convex hull as

where A(D) denotes as usual the space of holomorphic functions which are
continuous up to the boundary. If L = A(D)- hull(L), L is called A(D)-
convex. Following [5], we call a compact K C 8D CR-convex, if it satisfies
A(D)- hull(K) n aD = K.

The main result of this paper is the following.

THEOREM 1. - Let D be a bounded domain in 2, with
connected boundary of class C2 and K c aD be a compact CR-convex
set such that aDBK is connected. Then each continuous CR-function u
on admits a holomorphic extension ü E O(DBA(D)-hull(K)) n

Keywords: Holomorphic hulls and holomorphic convexity - CR functions - Removable
singularities.
Math. classification: 32V25 - 32DlO - 32D15 - 32D20.
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The following removability result is an immediate consequence.

COROLLARY 2. - Let D be a bounded domain in 2, with
connected boundary of class C2 and K C 9D be a compact set such that

8D)K is connected. If K is A(D)-convex, then K is removable.

The theorem is best commented in its historical context.

For the case that D is a Stein compact, analogous results were proved
by E. L. Stout [14] and G. Lupacciolu [9], but with hypotheses formulated
with respect to the O(D)- hull, which can be larger than the A(D)-hull
in the situation of Theorem 1. However in these papers more general
results were stated, in [14] for weakly pseudoconvex domains, in [9] even
for non-pseudoconvex domains. Later J. M. Ortega [12] discovered that the
construction of the integral kernels used in [14] and [9] requires that D
possess a Stein neighborhood basis.

In [8], the first author gave the first complete proof of a result of this
type for non-pseudoconvex domains, namely Theorem 4 quoted below. In
contrast to [14], [9], the convexity condition on K is formulated with respect
to the holomorphic functions defined on some uniform neighborhood of D,
and not with respect to O(D).

In [5], B. Joricke proved Theorem 1 for weakly pseudoconvex domains,
assuming sharper hypotheses on A(D)-convex hulls. Furthermore she was
the first to attack the problem by a global version of the continuity
principle, in contrast to the integral formula methods in the preceding
articles. The reader may consult [5] for explanations of additional features
in the pseudoconvex case. In particular, no assumption on connectedness
of is needed.

As a starting point to the non-pseudoconvex setting, let us look at
two examples illustrating the assumptions in Theorem 1.

Example 3. - a) Consider L
c2 denotes the ball of radius r centered at z. The compact 
aD : x1 &#x3E; 2 ~ is A(D)-convex. Then has two components, whereas

DBA(D)-hull(K) = fz E D : xl  11 is connected. Hence CR functions

do not extend analytically from to DBA(D)-hull(K) in general. By
rounding off the corner we get an example with smooth boundary.

b) If we drop CR-convexity, we run into monodromy problems:
Consider _
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small constant. ~, then is connected. Since

A(D)-hull(K) = D n {7/2 = 01, 8DBA(D)-hull(K) has three connected
components
1 - e) &#x3E; 0 ~ , T3 = (0D &#x3E; 0})B?2. We can define a univalent
holomorphic function u near ODBK which coincides near every z E 
with some branch of log(z2). But we cannot extend u to DBA(D)-hull(K)
without loosing the coincidence near T2 or T3. 0

Theorem 1 was first proved by the second author in his thesis [13].
His method combines the continuity principle with special constructions
relying on geometrical properties of Stein manifolds. The essential point
both in [5] and in [13] are monodromy problems of increasing difficulty,
which are typical, if one tries to construct hulls by direct application of the
continuity principle. Therefore techniques designed to handle this aspect
should be of independent interest. This provided the motivation for further

joint research of B. Joricke and the second author [7], which led to a new
version of the proof of Theorem 1, where all essential steps are executed
by extension along suitable families of complex curves.

The argument presented in the present paper goes back to the obser-
vation of the first author how to adapt the integral formula constructions
of [8] to the case at hand. In the present paper we do not make explicit use
of integral formulas but reduce Theorem 1 by geometric arguments to the
main result of [8], which we state for later reference.

THEOREM 4. - Let SZ be a Stein manifold of complex dimension
n &#x3E;, 2, K an O(Q)-convex compact subset, and D c 0 a relatively
compact domain such that 0D)K is a connected hypersurface of class C1.
Then every continuous CR-function u on admits a holomorphic
extension u C O(DBK) n C((DBK) U 

The main argument is explained in Section 3. In Section 2, we use a
device of [5] in order to reduce the problem to the extension of holomorphic
boundary values.

Finally a comment on dimensions is in order. Some authors ([14],
[5], [7]) prefer to state results of the type of Theorem 1 only in complex
dimension 2. The reason is that it is known that in dimension n &#x3E; 3 ad-

ditional extension phenomena occur, which are principally overlooked by
assumptions on the hull of the singularity. In fact the continuity principle
tells that families of complex curves give rise to holomorphic extension.
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On the other hand the proofs based on the continuity principle [5], [7],
exhibit Theorem 1 as a result on extension along families of complex hy-
persurfaces. This difference between n = 2 and n &#x3E;, 3 also gets transparent
in the characterization of removability for strongly pseudoconvex domains,
where holomorphic convexity of the singularity is only adequate in dimen-
sion 2 (cf. [3]), whereas in higher dimension the relevant properties are of
cohomological nature (cf. [10]).

Acknowledgement : We would like to thank B. Joricke for many

inspiring discussions on the topic. Especially the second author, who
was her thesis student, is indebted to her for the introduction into the

topic. Both authors are grateful to the European TMR research network
ERBFMRXCT 98063 for generous support.

Finally it is a pleasure to thank the referee for very valuable remarks,
which helped to ameliorate the presentation of the article.

2. Extension to one-sided neighborhoods.

In this section we reduce the proof of Theorem 1 to an analogous
statement with holomorphic boundary data.

Let H C C’ be a hypersurface. A one-sided neighborhood of H is an
open set V such that, for every z E H and for every euclidean ball B of

sufficiently small radius centered at z, at least one of the two components
of BBH is contained in V. A piecewise differentiable curve q : [a, b] - H
is called CR-curve, if its (one-sided) derivatives are contained in TC H. For
z E H, the CR-orbit Oz of z in H is defined as the set of all points w E H
which can be joint with z by a CR-curve in H. For detailed information on
CR-orbits the reader may consult [15], [6].

We shall use the following lemma from [5].

LEMMA 5. - Let D, K be as in Theorem l. Then there is a

connected one-sided neighborhood V of such that every continuous

CR-function on extends to V.

For the reader’s convenience we give a proof, which makes explicit
use of the by now familiar concept of CR-orbits.

Proof of Lemma 5. - We observe that it is enough to show that
8D)K has only one CR-orbit. Indeed, in this case contains a point
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z in which aDBK is minimal in the sense of Tumanov, i.e., there is no
local holomorphic hypersurface X c OD passing through z (otherwise the
complex tangent bundle would be Frobenius integrable, and all
orbits would be complex hypersurfaces immersed in M). The theorem of
Trépreau [16] yields one-sided analytic extension near z, and this property
propagates along CR-curves to all points of 9DBK by propagation results
of [17], [5].

Assume that has several CR-orbits. It is well-known that CR-

orbits of a real hypersurface are either subdomains or injectively immersed
smooth holomorphic hypersurfaces. The union of all lower-dimensional CR-
orbits is relatively closed and forms a lamination. Hence the connectedness
of 0D)K implies the existence of a lower-dimensional CR-orbit C~. By
general properties of laminations the relative closure L of 0 in 0D)K
is a union of lower-dimensional orbits, and each of these is dense in L.

Pick some z E L and a function f E A(D) with f (z) - 1 and

maXK |f| I  1/2. Then the modulus of flL attains a maximum at some
z’ E L. By the maximum principle, f is constant on and, by density,
also on L. So L has positive distance from K and must be compact. But a
non-void compact union of holomorphic submanifolds of positive dimension
is impossible. Indeed, for such an L one finds a closed euclidean ball B
containing L such that L 0. But this leads to a contradiction to
the maximum principle on the varieties passing through points of L n aB
(cf. [4], § V, Lemma 5). 0

Remark 6. - As the referee pointed out, the original proof of [5],
which was given for n = 2, can be extended to boundaries of class C 1 by
using techniques from [2]. For n &#x3E; 2, some additional slicing arguments
would be necessary. 0

Let V be as in the lemma. After shrinking V conveniently, we can
suppose that (i) D’ = int(D U V) is a domain which contains K in its

boundary, and that (ii) every f E A(D) extends to a function in A(D’).
For (ii), we have to observe that f extends holomorphically through a point
z if V contains near z the exterior side of aD. By (ii), A(D) can
be identified with A(D’), and we have A(D)-hull(K) = A(D’)-hull(K).

Near every point z E V contains at least one side of 0D.

Slightly deforming 0D)K into V, we can construct a third domain D"
such that 0D" is of class C2 and , we can
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choose 8D"BK so close to DBK that

holds true. Observe that the analytic extension to V of a given CR-function
on DBK induces holomorphic data on 0D")K. Writing again D instead of
D", the proof of Theorem 1 is now reduced to the following intermediate
statement.

PROPOSITION 7. - Let D be a bounded domain in cn with bound-

ary of class C2 and K C 0D be a compact set with connected. Let

D be a bounded domain satisfying K C OD’, K = A(D’)-hull(K) n
0D, and DBK C D’. Then each function u which is holomorphic in a

neighborhood U of 9DBK has (after shrinking U if necessary) a holomor-
phic extension to DBA(D’)-hull(K).

3. Proof of Theorem 1.

As explained in Section 2, it is enough to prove Proposition 7.

First we observe that we cannot immediately apply Theorem 4 by
taking Q as the envelope of holomorphy of D’. Of course D need not be
relatively compact in Q. In what follows we will derive Proposition 7 by an
exhaustion argument.

For every w E DBA(D’)-hull(K), there is a function fw E A(D’) with
1 and maxzEK 1/4. By a standard covering argument,

we select a subsequence f 1, f 2 , ... , such that

1=1

Note that a given compact subset of DBA(D’)-hull(K) is already contained
in the finite union I if k is sufficiently large.

Let p E C2 (D) be a defining function of D, i.e., a function with 0

on OD and D = {p  01. We can choose a strictly decreasing sequence of
positive numbers r; 1 0 and domains D., = ~p  so that for every

j the intersection i is contained in U

(the neighborhood of where u is defined). If Q denotes the envelope
of holomorphy of D’, we can consider each Dj as a relatively compact
subdomain of S2. Define
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Q is holomorphically convex, Kj is compact in Q. By construction, we have

D : &#x3E; 1/2} C U. For later use we remark DJ BKj C 
Observe that we cannot immediately apply Theorem 4 because (i) 
may have several components, and (ii) the intersection of the closure of a
component of D3BKj with need not be connected.

In order to meet (i), we choose subdomains G. C Dj in the follow-
ing way: Let Gl be an arbitrary component of ~z E I &#x3E; 3/4}.
By induction we choose, for every j &#x3E; 1, G. as the unique component of

with C G3. Because 8DBK is connected
and DBA(D’)-hull(K) has, by the maximum principle, no components
which are relatively compact in D, DBA(D’)-hull(K) is connected. As men-
tioned above, every compact arc in DBA(D’)-hull(K) is contained in almost
every finite union U,,=Ifz 3 E D : ] &#x3E; 3/4}. Since DBA(D’)-hull(K) is
connected, we deduce 1

As indicated in (ii), there is no reason for BKj to be connected. We
shall use an elementary topological property of Stein manifolds to handle
this difficulty.

LEMMA 8. - Let Q be a Stein manifold of dimension n &#x3E; 2 and L a

compact subset. Let M be a connected, properly embedded,
orientable real hypersurface of class Cl such that M U L is compact.
Then Q) (M U L) contains exactly one relatively compact component.

Of course Lemma 8 is a byproduct of E. M. Chirka’s relative version
of the Harvey-Lawson theorem ([I], Theorem 19.6.2). For the reader’s
convenience, we provide an elementary proof, based on an argument
communicated by N. Shcherbina. The assumption that M be orientable
is not necessary, since our proof also works with Z/2Z-valued intersection
numbers.

Proof. By the maximum principle, has no relatively compact
components. Hence every component has accumulation points
on M. As M is connected, has at most two components. Because
Q has only one end and M U L is compact, there is a unique unbounded

component. Consequently the second component, if it exists, has to be

relatively compact.
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Assume that there is no relatively compact component ofOB(MUL).
Then we can easily construct a smoothly embedded oriented loop Y C QBL
which intersects M transversely in only one point. Hence the intersection
number of y and M equals ±1, the sign depending on the orientations
we choose for ~ and M. We shall obtain a contradiction to the homotopy
invariance of intersection numbers by deforming 7 within SZBL to a loop
contained in Q) (M U L).

As L is O(Q)-convex, an elementary construction gives a smooth
plurisubharmonic non-negative exhaustion function 0 of Q such that L =

f 0 = 01 and 0 is strictly plurisubharmonic on (being exhaustive
means that 10  c} is relatively compact for any c E R). Fix cl , c2 &#x3E; 0

such that M U L  c2 } and y OE (ci  0  C2 1. After a slight
modification, we can assume that 0 is a Morse function on a neighborhood
of x c2 ~ (for information on Morse theory we refer to [11]). Then
there are finitely many critical points in C21- It is

a well-known consequence of strict plurisubharmonicity that the Morse-
indices at the points cannot exceed n. This implies that the
associated stable manifolds

are at most of dimension n, in particular of codimension at least n &#x3E; 2.

Here denotes the time-t-map of a vectorfield X and the gradient
with respect to some fixed riemannian metric on Q. After an arbitrarily
small deformation of q, we can assume ~ n = 0. This means that,
for every p E q, we have &#x3E; c2, if t is sufficiently large. Now a
compactness argument yields that there exists T &#x3E; 0 such that 

is disjoint from {4&#x3E; ~ C21 D M U L for t &#x3E; T, a contradiction to the

homotopy invariance of intersection numbers. 0

In the situation of Lemma 8, we shall call the relatively compact
component of U L) the inner domain of M U L. For j fixed, let Cj
be the set of connected components of Since Kj is O(Q)-convex,
Lemma 8 associates to any T E Cj the inner domain BT of T U Kj. Hence
we may introduce a partial order on Cj by writing T2 if BTl C BT2.
Reflexivity and transitivity are obvious. The following lemma contains
antisymmetry and the existence of a unique maximal element.

LEMMA 9. - a) If Tl - T2,?2 ~ Tl, for Tl, T2 E C~, then Tl = T2.

b) There is a unique maximal component Mj E Cj, which is the
unique element of Cj which belongs to the closure of the unbounded
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connected component of OB(Gj U Kj). Moreover its inner domain Bm,
contains Gj and all the other inner domains BT, T E C~ .

Proof. a) If we assume T2,?2 - Tl, and T2, then
the definition of - implies Tl C BT2 and T2 C Hence BTl U BT2
is a relatively compact domain whose boundary is contained in Kj, a
contradiction to the O(Q)-convexity of Kj and the maximum principle.

b) Lemma 8 implies that there is at most one Mj E Cj belonging
to the closure of the unbounded connected component of OB(Gj U Kj). If
there were no such Mj, then Gj would be contained in a relatively compact
component of which is in contradiction with the maximum principle.
Hence Mj is uniquely defined, and we have Gj.

Let T be another component of Then (Gj U T) C Bm, by
connectedness of Gj , and BT C BM3 by definition of BT and BM~ . 0

By Theorem 4, the restriction of u to a sufficiently small neighborhood
of Mj extends to a function uj E O(Gj) which coincides with u
near Mj. It is not yet clear, whether uj coincides with u near all components
of So we must carefully check that we can produce the desired
extension of u by gluing the u~ .

For this purpose we fix some compact subset L C DBA(D’)-hull(K).
By construction, L C Gi for sufficiently large j. According to the following
lemma, the sequence (uj) gets stable near L thus suggesting a natural
candidate for the final extension near L.

LEMMA 10. - There is kL E I‘~ and a neighborhood V of L such
that the functions uj coincide on V, for all j ~&#x3E;- k.

Proof. Choose c E 3/4, such that C = {p C Q : f 1 (p) = e}
is a smooth complex curve which intersects transversally. Since
does not contain compact complex curves, there is some po E which

is an accumulation point of a non-relatively compact component of CBD.
Near po, C intersects the hypersurfaces 8 D and 8 D j, for j sufficiently

large, in a family of almost parallel short segments Aj which are all

contained in U. Hence for large j, the segments Àj are adherent to

an unbounded component of CBDj by transversality. Fix some jo for a
moment. Then is contained in all Gj, if j 1 is sufficiently
large. For j &#x3E; jl, we deduce Àj C As Àj lies in the closure of an
unbounded component of we even obtain Aj C My
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If we take j2 &#x3E; jl so large that j2, then all the functions
j2, coincide near L. Indeed we can connect a given point p E L with

Àj2 by an are y C U yj2 and compare the functions uj , j &#x3E; j2, along -y.
Hence we can take kL == j2 - 11

Proposition 7 follows from Lemma 10 without difhculties: Let us take
some exhaustion of DBA(D’)-hull(K) by compact sets Ll C L2 C ...

satisfying Lj C By Lemma 10 we get near every Lj a natural
candidate iij by taking the restriction of some Since the

Lj are monotonously increasing sets, it is clear from Lemma 10 that the

Uj glue to a well-defined function U E Finally the
connectedness of c)DK implies the coincidence of u and U near 0D)K.
Proposition 7 and Theorem 1 are proved. D
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