

DE

L'INSTITUT FOURIER

Antonios D. MELAS

Universal functions on nonsimply connected domains

Tome 51, nº 6 (2001), p. 1539-1551.

<http://aif.cedram.org/item?id=AIF_2001__51_6_1539_0>

© Association des Annales de l'institut Fourier, 2001, tous droits réservés.

L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

UNIVERSAL FUNCTIONS ON NONSIMPLY CONNECTED DOMAINS

by Antonios D. MELAS

1. Introduction.

Let $\Omega \subseteq \mathbb{C}$ be a connected open set. For every function $f : \Omega \to \mathbb{C}$ holomorphic in Ω and $\zeta_0 \in \Omega$ we let

(1.1)
$$S_N(f,\zeta_0)(z) = \sum_{n=0}^N \frac{f^{(n)}(\zeta_0)}{n!} (z-\zeta_0)^n$$

denote the Nth partial sum of the Taylor development of f with center ζ_0 . This sequence of polynomials converges to f uniformly on compact subsets of the open disc $D(\zeta_0, \rho)$ where $\rho = \text{dist}(\zeta_0, \partial\Omega)$ and "generically" it will diverge on the complement of the closed disc $\overline{D(\zeta_0, \rho)}$. However certain subsequences of $(S_N(f, \zeta_0)(z))_{N=1}^{\infty}$ may have nice approximation properties outside Ω and this can be described by defining the following class.

DEFINITION 1.— A holomorphic function $f : \Omega \to \mathbb{C}$ is said to be universal with respect to Ω and ζ_0 if the following holds:

For every compact set $K \subseteq \mathbb{C}$ such that $K \cap \Omega = \emptyset$ and its complement K^c is connected, and every function $h: K \to \mathbb{C}$ continuous on K and holomorphic in the interior K^o (if nonempty), there exists a sequence (λ_n)

Keywords: Power Series – Overconvergence – Complex approximation. Math. classification: 30B30 – 30B10 – 30E60.

of nonnegative integers such that $S_{\lambda_n}(f)(z) \to h(z)$ uniformly on K. We denote by $\mathcal{U}(\Omega, \zeta_0)$ the class of all such functions.

Here the compact set K is allowed to contain pieces of the boundary $\partial\Omega$. The existence of such functions in the case where Ω is simply connected has been established in [7] where it actually has been shown that $\mathcal{U}(\Omega, \zeta_0)$ is a G_{δ} -dense subset of the Frechet space $H(\Omega)$ of all functions holomorphic in Ω . Similar definition but with K not allowed to meet the boundary $\partial\Omega$ has been given by Luh [4], where also existence has been proven when Ω is simply connected.

To explain this definition let us assume that $\zeta_0 = 0 \in \Omega$ and for $f \in \mathcal{U}(\Omega, 0)$ write $a_n = \frac{f^{(n)}(0)}{n!}$. Then the Taylor series $\sum_{n=0}^{\infty} a_n z^n$ defines a germ of analytic functions that can be analytically continued throughout Ω and its partial sums approximate everything one might hope in $\mathbb{C}\backslash\Omega$.

Several properties of these classes $\mathcal{U}(\Omega, \zeta_0)$ have been established in [5] in the case Ω is assumed to be contained in a half plane (actually in the complement of an angle suffices). Under this assumption it has been shown in [5]:

- (a) That the class $\mathcal{U}(\Omega, \zeta_0)$ is empty if Ω is not simply connected.
- (b) That $\mathcal{U}(\Omega, \zeta_1) = \mathcal{U}(\Omega, \zeta_2)$ for all $\zeta_1, \zeta_2 \in \Omega$.

(c) That for Ω simply connected any $f \in \mathcal{U}(\Omega, \zeta_0)$ has $\partial\Omega$ as its natural boundary, that is cannot be continued analytically across any portion of $\partial\Omega$, which answered a conjecture by J.-P. Kahane.

However nothing is known for the class $\mathcal{U}(\Omega, \zeta_0)$ in the case where Ω is not contained in the complement of an angle (except that it is G_{δ} -dense in $H(\Omega)$ if Ω is simply connected).

The only results known in this direction are that the corresponding class where the compact set is not allowed to meet the boundary $\partial\Omega$ is G_{δ} dense in $H(\Omega)$ if Ω is connected and equal to the complement of a connected compact set (see [1]) and that for the special case where $\Omega = \mathbb{C} \setminus \{1\}$ the class $\mathcal{U}(\mathbb{C} \setminus \{1\}, 0)$ is nonempty (see [8]). It is not known whether the class $\mathcal{U}(\mathbb{C} \setminus A, 0)$ is nonempty if A is a finite set or if the result in [1] extends for the class $\mathcal{U}(\Omega, \zeta_0)$ and also whether some of the above mentioned properties (a)-(c) hold in these cases.

Here we will give some answers to the above questions. First we will prove the following. THEOREM 1. — Let $K \subset \mathbb{C}$ be a connected compact set such that $\Omega = \mathbb{C} \setminus K$ is also connected. Then for every $\zeta_0 \in \Omega$ the class $\mathcal{U}(\Omega, \zeta_0)$ is a G_{δ} -dense subset of $H(\Omega)$, hence nonempty.

Thus the result in [1] actually does extend for the class $\mathcal{U}(\Omega, \zeta_0)$. We mention here that it is not known whether $\mathcal{U}(\Omega, \zeta_0)$ is nonempty when the compact set K in the above theorem is not assumed to be connected for example if Ω is equal to the complement of two disjoint closed discs and ζ_0 is any point of Ω .

To proceed with the other questions let E be any countable subset of $\mathbb{C}\setminus D$ (where D is the unit disc), let B be any discrete subset of $\mathbb{C}\setminus D$ such that $1 \in B$ and let $W = \mathbb{C}\setminus B$. We will denote by $\mathcal{V}(W, E)$ the class of all functions $f \in H(W)$ (if any) having the following property:

"For every finite subset $E' \subset E$ and any function $h: E' \to \mathbb{C}$ there exists a strictly increasing sequence of positive integers (λ_k) such that

(1.2)
$$S_{\lambda_k}(f,0)(z) \to h(z) \text{ for every } z \in E'.$$

Then we have the following.

THEOREM 2. — For every E and B as above the class $\mathcal{V}(W, E)$ is a G_{δ} -dense subset of H(W), hence nonempty.

By taking $E = (\mathbb{C}\backslash D) \cap (\mathbb{Q} + i\mathbb{Q})$ and $B = \{1\}$ then Theorem 2 provides us with an $F \in \mathcal{V}(\mathbb{C}\backslash\{1\}, E)$. Consider also any infinite discrete subset L of E such that $1 \in L$ and let $\Omega = \mathbb{C}\backslash L$. Then on the one hand clearly $f = F \mid_{\Omega} \in \mathcal{U}(\Omega, 0)$ (compact subsets of $\mathbb{C}\backslash\Omega$ are finite). However on the other hand f extends analytically to the larger domain $\mathbb{C}\backslash\{1\}$. Also $f \notin \mathcal{U}(\Omega, \zeta_0)$ for every $\zeta_0 \in \Omega$ such that $D(\zeta_0, |\zeta_0 - 1|) \cap L \neq \emptyset$ since then $\{(S_N(f, \zeta_0)(z)\}_{N=1}^{\infty}$ will converge to F(z) for any $z \in D(\zeta_0, |\zeta_0 - 1|) \cap L$, F being holomorphic in $\mathbb{C}\backslash\{1\}$ and so $\mathcal{U}(\Omega, 0) \neq \mathcal{U}(\Omega, \zeta_0)$ for every such ζ_0 . It is easy to see that we can arrange L so that every $\zeta_0 \in \Omega\backslash D$ has this property. Moreover the sequence $\{(S_N(f, 0)(z)\}_{N=1}^{\infty} \text{ will be dense for}$ every $z \in E \backslash L$ which is a nonempty subset of Ω . Hence we have proved the following.

COROLLARY 1. — There exists a nonsimply connected domain $\Omega \subseteq \mathbb{C}$ with $0 \in D \subseteq \Omega$ and $\mathbb{C} \setminus \Omega$ is infinite and discrete such that

(a) The class $\mathcal{U}(\Omega, 0)$ is G_{δ} -dense in $H(\Omega)$.

(b) $\mathcal{U}(\Omega, 0)$ contains functions that can be analytically continued on the larger domain $\mathbb{C}\setminus\{1\}$, hence Kahane's conjecture cannot be generalized in this case.

(c) $\mathcal{U}(\Omega, 0) \neq \mathcal{U}(\Omega, \zeta)$ for every $\zeta \in \Omega \setminus D \neq \emptyset$.

(d) There exists $f \in \mathcal{U}(\Omega, 0)$ such that sequence of complex numbers $\{(S_N(f, 0)(z)\}_{N=1}^{\infty} \text{ is dense for some points } z \text{ in } \Omega.$

Thus the situation is completely different if the complement of Ω is small. Property (d) appears to be completely new.

It is not known and natural to ask here how small must $\mathbb{C}\backslash\Omega$ be for Ω to share the above properties. For example if $\Omega = \mathbb{C}\backslash[1, +\infty)$, is there a function $f \in \mathcal{U}(\Omega, 0)$ that can be analytically continued across some subinterval of $(1, +\infty)$? Also in this case one may ask whether we can find $\zeta \in \Omega$ such that $\mathcal{U}(\Omega, 0) \neq \mathcal{U}(\Omega, \zeta)$.

In Section 2 we will prove Theorem 1. Then in Section 3 we will establish a technical proposition that will be used in Section 4 to prove Theorem 2.

2. Proof of Theorem 1.

Applying a translation, a rotation and a dilation we may assume that $\zeta_0 = 0, D \subset \Omega, 1 \in K$ and that there exists a real number $\alpha \ge 1$ such that $\alpha \in K$ and $\alpha = \max\{|z| : z \in K\}$.

By Lemma 3.3 in [1], for every open neighborhood V of K there is a connected and simply connected open set U such that $K \subset U \subset V$. Hence it is easy to construct an exhausting sequence $(L_m)_{m=1}^{\infty}$ of compact subsets of $\Omega = \mathbb{C}\backslash K$ such that for every m, $\mathbb{C}\backslash L_m$ has exactly two connected components, one of which is bounded and contains K and the other unbounded.

Now for every polynomial p and every $\varepsilon > 0$ we define

$$\Gamma(p,\varepsilon,\Omega) = \{f \in H(\Omega) : \text{ there exists } n \text{ such that } \max_{z \in K} |S_n(f,0)(z) - p(z)| < \varepsilon \}.$$

Then letting $(p_j)_{j=1}^{\infty}$ denote an enumeration of all polynomials with coefficients in $\mathbb{Q} + i\mathbb{Q}$ we have the following.

Lemma 1. — $\mathcal{U}(\Omega, 0) = \bigcap_{j,s=1}^{\infty} \Gamma(p_j, \frac{1}{s}, \Omega).$

The proof of the above lemma is well known (see for example [5]), noticing that every compact subset of Ω is of course contained in K.

It is also easy to show that each $\Gamma(p, \varepsilon, \Omega)$ is an open subset of $H(\Omega)$ (see [7], [5]). Hence, in view of Baire's Theorem, to complete the proof of Theorem 1 it suffices to prove the following.

LEMMA 2. — For every polynomial p and every $\varepsilon > 0$ the set $\Gamma(p, \varepsilon, \Omega)$ is dense in $H(\Omega)$.

Proof. — It suffices to show that for every $g \in H(\Omega)$, $\delta > 0$ and $m \ge 1$ there exists $f \in \Gamma(p, \varepsilon, \Omega)$ such that $\max_{L_m} |f - g| < \delta$.

By taking *m* sufficiently large we may assume that $\overline{D(0, \frac{1}{2})} \subset L_m$. Fix such g, δ, m . Then there exists $\beta > \alpha$ such that β belongs to the bounded component of $\mathbb{C} \setminus L_m$ and hence by Runge's Theorem there exists a rational function Q with poles only at β such that

(2.1)
$$\max_{L_m} |g - Q| < \frac{\delta}{2} \text{ and } \max_K |p - Q| < \frac{\varepsilon}{2}.$$

Since the Taylor development of Q with center 0 converges to Q uniformly on compact subsets of $D(0,\beta)$ and by the choice of α , β the compact set K is contained in $D(0,\beta)$ we conclude that

(2.2) $S_N(Q,0)(z) \to Q(z)$ uniformly for $z \in K$ as $N \to \infty$.

Hence in view of (2.1) there is N_0 sufficiently large such that

(2.3)
$$\max_{z \in K} |S_{N_0}(Q, 0)(z) - p(z)| < \frac{\varepsilon}{2}$$

Fix such a N_0 . The only problem is that Q is not holomorphic in Ω as β does not belong to K. However by applying again Runge's Theorem we conclude that there exists a sequence $(R_M)_{M=1}^{\infty}$ of rational functions with poles only at $\alpha \in K$ such that $R_M \to Q$ uniformly in L_m .

Since $\overline{D(0, \frac{1}{2})} \subset L_m$ the Cauchy's estimates imply that $S_{N_0}(R_M, 0)$ $(z) \to S_{N_0}(Q, 0)(z)$ uniformly for $z \in K$ as $M \to \infty$, since N_0 is fixed and K is compact.

Hence there is M_0 sufficiently large such that $f = R_{M_0} \in H(\Omega)$ satisfies

(2.4)
$$\max_{L_m} |f - Q| < \frac{\delta}{2} \text{ and } \max_{z \in K} |S_{N_0}(f, 0)(z) - S_{N_0}(Q, 0)(z)| < \frac{\varepsilon}{2}.$$

Therefore by (2.1), (2.3) and (2.4) we have $\max_{L_m} |f - g| < \delta$ and $f \in \Gamma(p, \varepsilon, \Omega)$. This completes the proof of the lemma and hence of Theorem 1.

3. A property of certain linear systems.

In this section we will prove a technical result that will be essential for the proof of Theorem 2.

For any positive integers m, N and any $z \in \mathbb{C}$ we define

(3.1)
$$A_N(m,z) = \sum_{n=1}^{N-1} n^m z^n.$$

If s is another positive integer and $z_1, ..., z_s \in \mathbb{C}$ we also define

(3.2)
$$\Delta_N(m, z_1, ..., z_s) = \det[A_N(m+r, z_j)]_{j,r=1}^s$$

the determinant of the corresponding $s \times s$ matrix.

Consider also the meromorphic function

(3.3)
$$\psi(\zeta) = \frac{1}{e^{\zeta} - 1}.$$

Then we have:

Lemma 3. — If $z = e^{\zeta} \in \mathbb{C}$ is such that $|z| \ge 1, z \ne 1$ then for every m > s > 1

(3.4)
$$N^{-m}z^{-N}A_N(m,z) = \sum_{\lambda=0}^{s-1} \binom{m}{\lambda} N^{-\lambda}\psi^{(\lambda)}(\zeta) + \rho_N(m,s,z)$$

where $|\rho_N(m, s, z)| \leq CN^{-s}$ the constant C depending only on m, s and z.

ANNALES DE L'INSTITUT FOURIER

1544

Proof.— Since $e^{\zeta} \neq 1$ we have

$$A_N(m,z) = \sum_{n=1}^{N-1} n^m e^{n\zeta} = \left(\frac{d}{d\zeta}\right)^m \left(\sum_{n=1}^{N-1} e^{n\zeta}\right) = \left(\frac{d}{d\zeta}\right)^m \left(\frac{e^{N\zeta} - 1}{e^{\zeta} - 1}\right)$$
$$= \sum_{\lambda=0}^m \binom{m}{\lambda} \left(\frac{d}{d\zeta}\right)^{m-\lambda} (e^{N\zeta} - 1)\psi^{(\lambda)}(\zeta)$$
$$= \sum_{\lambda=0}^{s-1} \binom{m}{\lambda} N^{m-\lambda} z^N \psi^{(\lambda)}(\zeta) + \sum_{\lambda=s}^{m-1} \binom{m}{\lambda} N^{m-\lambda} z^N \psi^{(\lambda)}(\zeta)$$
$$+ (z^N - 1)\psi^{(m)}(\zeta)$$

from which the lemma follows easily since $|z| \ge 1$.

LEMMA 4. — Let $z_1 = e^{\zeta_1}, ..., z_s = e^{\zeta_s} \in \mathbb{C} \setminus (D \cup \{1\})$ and $m \ge 1$. Then for all sufficiently large N we have

(3.5)
$$|\Delta_N(m, z_1, ..., z_s)| \ge c |z_1 ... z_s|^N N^{(m+1)s}$$

where c > 0 doesn't depend on N.

Proof. — By Lemma 2 we have

(3.6)
$$A_N(m+r,z_j) = N^{m+r} z_j^N \left(\sum_{\lambda=0}^{s-1} \binom{m+r}{\lambda} N^{-\lambda} \psi^{(\lambda)}(\zeta_j) + \rho_N(m+r,s,z_j) \right)$$

hence

$$(z_1...z_s)^{-N} N^{-sm-1-2-...-s} \Delta_N(m, z_1, ..., z_s) = \det[\psi(\zeta_j) + (m+r)\frac{\psi'(\zeta_j)}{N} + ... + \binom{m+r}{s-1}\frac{\psi^{(s-1)}(\zeta_j)}{N^{s-1}} + \rho_N(m+r, s, z_j)]_{j,r=1}^s.$$

Now it is easy to see that each column of the above determinant is the sum of s + 1 columns. The *r*th column is thus the sum of $[\psi(\zeta_j)]_{j=1}^s, ..., \left[\binom{m+r}{s-1} \frac{\psi^{(s-1)}(\zeta_j)}{N^{s-1}}\right]_{j=1}^s$ and the column of "errors" $[\rho_N(m+r,s,z_j)]_{j=1}^s$.

ANTONIOS D. MELAS

We can thus expand this determinant into a sum of $(s + 1)^s$ simple determinants. This sum can be further partitioned into two sums. The first consists of all determinants that don't contain any column of errors $[\rho_N(m+r,s,z_j)]_{j=1}^s$ and thus this sum is equal to the following determinant:

(3.7)
$$\det\left[\sum_{\lambda=0}^{s-1} \binom{m+r}{\lambda} N^{-\lambda} \psi^{(\lambda)}(\zeta_j)\right]_{j,r=1}^s$$
$$= \det[\psi^{(k-1)}(\zeta_j)]_{j,k=1}^s \cdot \det\left[N^{-k+1} \binom{m+r}{k-1}\right]_{k,r=1}^s$$

according to the determinant of the product formula.

Now det $\left[N^{-k+1} \binom{m+r}{k-1}\right]_{k,r=1}^s = N^{-(0+1+\ldots+(s-1))} \det \left[\binom{m+r}{k-1}\right]_{k,r=1}^s$ and it is easy to see by induction (using the formula $\binom{m+r+1}{k-2} - \binom{m+r}{k-2} = \binom{m+r}{k-2}$) that det $\left[\binom{m+r}{k-1}\right]_{k,r=1}^s = 1$.

The second sum consists of those determinants that contain at least one column of "errors" $[\rho_N(m+r,s,z_j)]_{j=1}^s$. Observing that such a determinant will be zero if it contains at least two columns of the same type i.e. $\left[\binom{m+r_1}{\lambda} \frac{\psi^{(\lambda)}(\zeta_j)}{N^{\lambda}}\right]_{j=1}^s$ and $\left[\binom{m+r_2}{\lambda} \frac{\psi^{(\lambda)}(\zeta_j)}{N^{\lambda}}\right]_{j=1}^s$ for $r_1 \neq r_2$ and for the same λ we conclude that each nonzero determinant in the second sum has absolute value at most

$$C'N^{-(0+1+\ldots+(s-2))}.N^{-s} = C'N^{-\frac{s(s-1)}{2}-1}$$

where C' dosn't depend on N. Hence the second sum has absolute value at most $CN^{-\frac{s(s-1)}{2}-1}$ where C depends only on m, s and the z_i 's.

Therefore

(3.8)
$$|\Delta_N(m, z_1, ..., z_s)| \ge |z_1 ... z_s|^N N^{s(m+1)} \left[\left| \det[\psi^{(k-1)}(\zeta_j)]_{j,k=1}^s \right| - \frac{C}{N} \right].$$

Hence to complete the proof of the lemma it suffices to prove that $\det[\psi^{(k-1)}(\zeta_j)]_{j,k=1}^s \neq 0$. But it is easy to show by induction that for every $k \geq 1$ we have

(3.9)
$$\psi^{(k-1)}(\zeta) = a_{1,k}\psi(\zeta) + \dots + a_{k,k}\psi(\zeta)^k$$

ANNALES DE L'INSTITUT FOURIER

1546

for certain constants $a_{1,k}, ..., a_{k,k} \in \mathbb{C}$ where $a_{k,k} = (-1)^k (k-1)! \neq 0$. Hence simplifying the corresponding determinant we get

(3.10)
$$\det[\psi^{(k-1)}(\zeta_j)]_{j,k=1}^s = a_{1,1}...a_{k,k} \det[\psi(\zeta_j)^k]_{j,k=1}^s \neq 0$$

since the last determinant is a Vandermonde one and the corresponding complex numbers $\psi(\zeta_1), ..., \psi(\zeta_s)$ are distinct. This completes the proof of the lemma.

Remark. — We can get a similar asymptotic behavior in the case that one of the z_j 's is equal to 1. However since we won't be needing this in the proof of Theorem 2 we don't include it.

Now we can prove the following.

PROPOSITION 1. — Let $z_1, ..., z_s \in \mathbb{C} \setminus (D \cup \{1\})$ be distinct and let $(\gamma_N^1), ..., (\gamma_N^s)$ be s sequences of complex numbers such that

(3.11)
$$\left|\gamma_{N}^{j}\right| \leqslant C \left|z_{j}\right|^{N} N^{d}$$

for all $N \ge 1$ and $1 \le j \le s$ where C, d are constants that do not depend on N. Then there exists an integer m > d such that for all sufficiently large N the linear system

(3.12)
$$\sum_{r=1}^{s} A_N(m+r, z_j) t_{r,N} = \gamma_N^j \text{ for } j = 1, 2, ..., s$$

has a unique solution $t_{1,N}, ..., t_{s,N} \in \mathbb{C}$ and moreover

$$(3.13) |t_{1,N}| + \dots + |t_{s,N}| \to 0 \text{ as } N \to \infty.$$

Proof. — We choose m = d + s(s + 3). Then for every sufficiently large N Lemma 3 implies that the determinant of the system (3.12) which is $\Delta_N(m, z_1, ..., z_s)$ satisfies the estimate (3.5) in particular it is nonzero and hence the system has a unique solution $t_{1,N}, ..., t_{s,N} \in \mathbb{C}$. Now each $t_{r,N}$ can be computed according to Cramer's rule and is equal to the ratio of two determinants, the one in the denominator being $\Delta_N(m, z_1, ..., z_s)$ and the other in the numerator is produced by $\Delta_N(m, z_1, ..., z_s)$ by replacing the *r*th column of $\Delta_N(m, z_1, ..., z_s)$ by $[\gamma_N^j]_{j=1}^s$. Expanding such a determinant we get a sum of s! terms of the form $\pm A_N(m+r_1, z_{j_1})...A_N(m+r_{s-1}, z_{j_{s-1}})\gamma_N^{j_s}$

where the $j_1, ..., j_s$ are distinct and $r_1 < ... < r_{s-1}$ belong to $\{1, 2, ..., s\}$. Since

(3.14)
$$|A_N(m+r,z)| \leq \sum_{n=1}^{N-1} n^{m+r} |z|^N < N^{m+r+1} |z|^N$$

whenever $|z| \ge 1$ we conclude that any such term has absolute value at most

$$N^{m+r_{1}+1} |z_{j_{1}}|^{N} \dots N^{m+r_{s-1}+1} |z_{j_{s-1}}|^{N} CN^{d} |z_{j_{s}}|^{N} \leq CN^{m(s-1)+3+\dots+(s+2)+d} |z_{1}\dots z_{s}|^{N}.$$

Therefore using Lemma 4 we conclude that for every sufficiently large ${\cal N}$ we have

$$(3.15) |t_{1,N}| + \dots + |t_{s,N}| \leq s \frac{Cs! N^{m(s-1)+3+\dots+(s+2)+d} |z_1\dots z_s|^N}{cN^{(m+1)s} |z_1\dots z_s|^N} \\ = s \frac{Cs!}{c} N^{-m+\frac{s(s+3)}{2}+d}$$

which tends to 0 as $N \to \infty$ by the choise of m. This completes the proof of the proposition.

4. Proof of Theorem 2.

In this section we will prove Theorem 2. For this purpose let $(h_\ell)_{\ell=1}^{\infty}$ be an enumeration of all functions $h: E' \to \mathbb{Q} + i\mathbb{Q}$ where $E' \subseteq E$ is finite. Then we define

$$\Gamma(\ell, k, W) = \left\{ f \in H(W) : \text{there exists } n \ge 1 \text{ such that} \\ |S_n(f, 0)(z) - h_\ell(z)| < \frac{1}{k} \text{ for every } z \in \text{dom } h_\ell \right\}.$$

It is easy to see that $\bigcap_{\ell,k=1}^{\infty} \Gamma(j,k,W) = \mathcal{V}(W,E)$ and it is also easy to see that each $\Gamma(\ell,k,W)$ is an open subset of H(W). Hence to prove Theorem 2 it suffices to prove the following.

PROPOSITION 2. — Let $\{z_1, ..., z_s\}$ be a finite subset of $\mathbb{C}\backslash D$, $a_1, ..., a_s \in \mathbb{C}$ and $\varepsilon > 0$. Then the set

$$\Gamma = \{ f \in H(W) : \text{there exists } n \ge 1 \text{ such that} \\ |S_n(f,0)(z_i) - a_j| < \varepsilon \text{ for every} j = 1, 2, ..., s \}$$

is a dense subset of H(W).

ANNALES DE L'INSTITUT FOURIER

1548

Proof.— It suffices to prove that given any $\delta > 0$, $g \in H(W)$ and compact set $L \subseteq W$ there exists $f \in \Gamma$ such that $\max_r |g - f| < \delta$.

Since $B = \mathbb{C} \setminus W$ is discrete we may assume that L is of the form $\{z \in \mathbb{C} : |z| \leq R \text{ and } \operatorname{dist}(z, B) \geq \eta\}$ for certain R > 2 and $\eta > 0$.

Then $\mathbb{C}\backslash L$ has finitely many bounded components each containing at least one point of B. Therefore by Runge's Theorem there exists a rational function Q with poles in $B \subseteq \mathbb{C}\backslash D$ such that $\max_{L} |g - Q| < \frac{\delta}{2}$. Expanding Q in simple fractions we may write

(4.1)
$$Q(z) = \sum_{\mu=1}^{M} \sum_{k=1}^{K} \frac{b_{\mu,k}}{(1 - z/w_{\mu})^{k}}$$

where $w_1, ..., w_M \in B$ and so each $|w_{\mu}| \ge 1$.

Since each $\frac{1}{(1-z/w_{\mu})^k} = \sum_{n=0}^{\infty} {\binom{n+k-1}{k-1} \left(\frac{z}{w_{\mu}}\right)^n}$ has partial sums with absolute value

(4.2)
$$\left|\sum_{n=0}^{N} \binom{n+k-1}{k-1} \left(\frac{z}{w_{\mu}}\right)^{n}\right| \leq C_{k} N^{k-1} \left|z\right|^{N}$$

for every z with $|z| \ge 1$ we conclude that

(4.3)
$$|S_N(Q,0)(z)| \leq C |z|^N N^{K-1}$$

for every $z \in \mathbb{C} \setminus D$ where C depends only on Q.

Now we define for any integer $p \ge 0$ the power series $\sum_{n=0}^{\infty} n^p z^n$. It is easy to see that there exist rational functions R_p with pole at 1 only such that

(4.4)
$$R_p(z) = \sum_{n=0}^{\infty} n^p z^n \text{ on } D.$$

In fact $R_0(z) = \frac{1}{1-z} - 1$ and $R_{p+1}(z) = \frac{d}{dz}(zR_p(z)).$

We fix a large integer m to be defined, choose a complex number of absolute value 1, $e^{i\theta} \notin \{z_1, ..., z_s\}$ belonging to the same component of $\mathbb{C} \setminus L$ that contains 1 (using $e^{i\theta}$ will not be necessary unless $1 \in \{z_1, ..., z_s\}$) and consider the function

(4.5)
$$G(z) = \sum_{r=1}^{s} \lambda_r R_{m+r}(ze^{-i\theta})$$

where $\lambda_1, ..., \lambda_s$ are to be determined.

Clearly G is a rational function with pole at $e^{i\theta}$ only.

Then

(4.6)
$$S_N(G,0)(z) = \sum_{r=1}^s A_N(m+r, ze^{-i\theta})\lambda_r$$

and so using (4.3) and chosing m as in Proposition 1 applied to the numbers $z_1 e^{-i\theta}, ..., z_s e^{-i\theta} \in \mathbb{C} \setminus (D \cup \{1\})$ we conclude that given $\varepsilon_1 > 0$ there exist N sufficiently large and $\lambda_1, ..., \lambda_s \in \mathbb{C}$ such that

(4.7)
$$S_N(G,0)(z_j) + S_N(Q,0)(z_j) = a_j \text{ for } j = 1, 2, ..., s$$

and

$$(4.8) |\lambda_1| + \dots + |\lambda_s| < \varepsilon_1.$$

We choose $\varepsilon_1 > 0$ such that (4.8) implies that

(4.9)
$$\max_{z \in L} |G(z)| < \frac{\delta}{2}$$

and fix the corresponding $N = N_0$ for which (4.7) and (4.8) hold. This is possible since L is compact and each $R_{m+r}(ze^{-i\theta})$ has no poles in L.

Then by Runge's Theorem there is a sequence $(F_q)_{q=1}^{\infty}$ of rational functions having poles only at 1 such that $F_q \to G$ uniformly on $T = \{z \in \mathbb{C} : |z| \leq R, |z-1| \geq \eta\}$. Since T contains a disc around 0 the Cauchy's estimates impy that

(4.10)
$$S_{N_0}(F_q, 0)(z_j) \to S_{N_0}(G, 0)(z_j) \text{ for } j = 1, 2, ..., s$$

as $q \to \infty$.

Therefore we can choose q_0 sufficiently large such that the rational function $F = F_{q_0}$ that has pole only at 1 satisfies

(4.11)
$$\max_{z \in L} |F(z)| < \frac{\delta}{2}$$

and $|S_{N_0}(F+Q,0)(z_j) - a_j| < \varepsilon$ for $j = 1, 2, ..., s$.

Then by taking $f = F + Q \in H(W)$ we have

(4.12)
$$\max_{L} |g - f| \leq \max_{L} |g - Q| + \max_{L} |F| < \delta$$

and

(4.13)
$$|S_{N_0}(f,0)(z_j) - a_j| < \varepsilon \text{ for } j = 1, 2, ..., s$$

ANNALES DE L'INSTITUT FOURIER

hence $f \in \Gamma$. This completes the proof of the proposition and hence of Theorem 2.

BIBLIOGRAPHY

- G. COSTAKIS, Some remarks on universal functions and Taylor series, Math. Proc. of the Cambr. Phil. Soc., 128 (2000), 157-175.
- [2] K.-G. GROSSE-ERDMANN, Universal families and hypercyclic operators, Bull. of the AMS, 36, n° 3 (1999), 345-381.
- [3] J.-P. KAHANE, Baire's category Theorem and Trigonometric series, Jour. Anal. Math., 80 (2000), 143-182.
- [4] W. LUH, Universal approximation properties of overconvergent power series on open sets, Analysis, 6 (1986), 191-207.
- [5] A. MELAS and V. NESTORIDIS, Universality of Taylor series as a generic property of holomorphic functions, Adv. in Math., 157, n° 2 (2001), 138-176.
- [6] V. NESTORIDIS, Universal Taylor series, Ann. Inst. Fourier, (Grenoble), 46-5 (1996), 1293-1306.
- [7] V. NESTORIDIS, An extension of the notion of universal Taylor series, Proceedings CMFT'97, Nicosia, Cyprus, Oct. 1997.
- [8] V. VLACHOU, A universal Taylor series in the doubly connected domain $\mathbb{C} \setminus \{1\}$, submitted.

Manuscrit reçu le 30 mars 2001, accepté le 11 mai 2001.

Antonios D. MELAS, University of Athens Department of Mathematics Panepistimiopolis 157-84 Athens (Greece). amelas@math.uoa.gr