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UNIVERSAL FUNCTIONS
ON NONSIMPLY CONNECTED DOMAINS

by Antonios D. MELAS

1. Introduction.

Let Q C C be a connected open set. For every function f : Q - C

holomorphic in Q and we let

denote the Nth partial sum of the Taylor development of f with center (o.
This sequence of polynomials converges to f uniformly on compact subsets
of the open disc D(~o, p) where p = and "generically" it will

diverge on the complement of the closed disc D( (0, p). However certain
subsequences of (SN( f, may have nice approximation properties
outside Q and this can be described by defining the following class.

DEFINITION l. A holomorphic function f : 0 ---+ (C is said to be

universal with respect to Q and (o if the following holds:

For every compact set K C C such that K n SZ = o and its comple-
ment K° is connected, and every function h : ~C 2013~ C continuous on K and

holomorphic in the interior KO (if nonempty), there exists a sequence (Àn)

Keywords: Power Series - Overconvergence - Complex approximation.
Math. classification: 30B30 - 30B 10 - 30E60.
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of nonnegative integers such that SÀn ( f ) (z) --4 h(z) uniformly on K. We
denote by U(Q, (0) the class of all such functions.

Here the compact set K is allowed to contain pieces of the boundary
0Q . The existence of such functions in the case where Q is simply connected
has been established in [7] where it actually has been shown that (o)
is a G5-dense subset of the Frechet space of all functions holomorphic
in Q. Similar definition but with K not allowed to meet the boundary 0Q
has been given by Luh [4], where also existence has been proven when Q is
simply connected.

To explain this definition let us assume that (o = 0 E 0 and for

f E U (Q, 0) write an = f ~ n; °~ . Then the Taylor series "0 o a,, z’ defines
a germ of analytic functions that can be analytically continued throughout
Q and its partial sums approximate everything one might hope in 

Several properties of these classes U(Q, (0) have been established in [5]
in the case Q is assumed to be contained in a half plane (actually in the
complement of an angle suffices). Under this assumption it has been shown
in [5] :

(a) That the class U(Q, (o) is empty if Q is not simply connected.

(b) That for all

(c) That for Q simply connected any f E has aS2 as its natural

boundary, that is cannot be continued analytically across any portion of
,9Q, which answered a conjecture by J.-P. Kahane.

However nothing is known for the class (o) in the case where Q
is not contained in the complement of an angle (except that it is G5-dense
in if Q is simply connected).

The only results known in this direction are that the corresponding
class where the compact set is not allowed to meet the boundary aS2 is G5-
dense in H (Q) if Q is connected and equal to the complement of a connected
compact set (see [1]) and that for the special case where S2 = the

class 0) is nonempty (see ~8~ ) . It is not known whether the class
is nonempty if A is a finite set or if the result in [1] extends for

the class U(Q, (0) and also whether some of the above mentioned properties
(a)-(c) hold in these cases.

Here we will give some answers to the above questions. First we will

prove the following.
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THEOREM l. Let K C C be a connected compact set such that
Q = is also connected. Then for every (0 E 0 the class U(Q, (o) is a
G5-dense subset hence nonempty.

Thus the result in [1] actually does extend for the class U(Q, (o). We
mention here that it is not known whether U(Q, (o) is nonempty when the
compact set K in the above theorem is not assumed to be connected for

example if Q is equal to the complement of two disjoint closed discs and (o
is any point of Q.

To proceed with the other questions let E be any countable subset of

(CBD (where D is the unit disc), let B be any discrete subset of CCBD such
that 1 C B and let W = CBB. We will denote by V(W, E) the class of all
functions f E H(W) (if any) having the following property:

"For every finite subset E’ C E and any function h : E’ - C there

exists a strictly increasing sequence of positive integers (Ak) such that

I for every

Then we have the following.

THEOREM 2. - For every E and B as above the class V(W, E) is a
G,5-dense subset of H(W), hence nonempty.

By taking E = (CBD) n (Q + iQ) and B 11 then Theorem 2
provides us with an F E V ((CB ~ 1 ~, E) . Consider also any infinite discrete
subset L of E such that 1 E L and let Q = CBL. Then on the one hand
clearly (compact subsets of are finite). However
on the other hand f extends analytically to the larger domain CB{1}. Also
f 1:- U (Q, to ) for every (o c Q such that D((o, 1 (o - 1 ~ ) n L ~ ~s since then

will converge to F(z) for any z E D ((o, 1(0 -11) n L,
F being holomorphic in C)(I) and so Ll (SZ, 0) ~ U (0, (o) for every such
(0. It is easy to see that we can arrange L so that every (o c- has

this property. Moreover the will be dense for

every z E EBL which is a nonempty subset of Q. Hence we have proved the
following.

COROLLARY 1. - There exists a nonsimply connected domain 0 C C
with 0 E D C 0 and CBO is infinite and discrete such that

(a) The class 0) is G,5-dense in H(Q).
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(b) contains functions that can be analytically continued on the
larger domain CB{1}, hence Kallane’s conjecture cannot be generalized in
this case.

(c) for every ( E 0.

(d) There exists f E such that sequence of complex numbers
is dense for some points z in Q.

Thus the situation is completely different if the complement of SZ is

small. Property (d) appears to be completely new.

It is not known and natural to ask here how small must be for

SZ to share the above properties. For example if Q = (~B ~1, +(0), is there
a function f E U(Q, 0) that can be analytically continued across some
subinterval of (1, +oo)? Also in this case one may ask whether we can find
~ E Q such that 0) ~ U(Q, ().

In Section 2 we will prove Theorem 1. Then in Section 3 we will

establish a technical proposition that will be used in Section 4 to prove
Theorem 2.

2. Proof of Theorem 1.

Applying a translation, a rotation and a dilation we may assume that
and that there exists a real number a ? 1 such that

By Lemma 3.3 in [1], for every open neighborhood V of K there is a
connected and simply connected open set U such that C U C V. Hence
it is easy to construct an exhausting sequence of compact subsets
of Q = (CBK such that for every m, has exactly two connected
components, one of which is bounded and contains K and the other

unbounded.

Now for every polynomial p and every E &#x3E; 0 we define

there exists n such that

Then letting denote an enumeration of all polynomials with
coefficients in Q + if we have the following.
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LEMMA 1.

The proof of the above lemma is well known (see for example [5]),
noticing that every compact subset of Q is of course contained in K.

It is also easy to show that each F(p, c, Q) is an open subset of 
(see [7], [5]). Hence, in view of Baire’s Theorem, to complete the proof of
Theorem 1 it suffices to prove the following.

LEMMA 2. - For every polynomial p and every E &#x3E; 0 the set F (p, c, 0)
is dense in 

Proof. It suffices to show that for every g e H ( SZ) , b &#x3E; 0 and

m &#x3E; 1 there exists f E r(p, e, Q) such that max If - g I  6.
L-

By taking m sufficiently large we may assume that D (o, 2 ) eLm. Fix
such g, 6, m. Then there exists 13 &#x3E; a such that ,~ belongs to the bounded
component of C)Lrn and hence by Runge’s Theorem there exists a rational
function Q with poles only at /3 such that

and

Since the Taylor development of Q with center 0 converges to Q
uniformly on compact subsets of D(O, (3) and by the choice of a, /3 the

compact set I~ is contained in D(0, $) we conclude that

(2.2) SN (Q, 0) (z) - Q(z) uniformly for z E K as N - oo.

Hence in view of (2.1) there is No sufficiently large such that

Fix such a No. The only problem is that Q is not holomorphic in SZ as
~3 does not belong to K. However by applying again Runge’s Theorem we
conclude that there exists a sequence of rational functions with

poles only at a E I~ such that RM - Q uniformly in Lm.

Since D (0, 2 C Lm the Cauchy’s estimates imply that 
(z) - 0) (z) uniformly for z E K as M - 00, since No is fixed and
K is compact.



1544

Hence there is Mo sufficiently large such that f - RMo E 
satisfies

and

Therefore by (2.1), (2.3) and (2.4) we have (  6 and
Lm

f E r(p, é, 0). This completes the proof of the lemma and hence of
Theorem 1. D

3. A property of certain linear systems.

In this section we will prove a technical result that will be essential

for the proof of Theorem 2.

For any positive integers m, N and any z E C we define

If s is another positive integer and zl, ..., z, E C we also define

the determinant of the corresponding s x s matrix.

Consider also the meromorphic function

Then we have:

LEMMA 3. - is such 1, z 34 1 then for every
77Z &#x3E; 5 &#x3E; 1

where IPN (M, s, z)1 ~ CN-’ the constant C depending only on m, s and z.
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Proof. Since e~ ~ 1 we have

from which the lemma follows easily since lzl &#x3E;- 1.

LEMMA 4. and

Then for all sufhciently large N ule have

where c &#x3E; 0 doesn’t depend on N.

Proof. By Lemma 2 we have

hence

Now it is easy to see that each column of the above determinant

is the sum of s -~ 1 columns. The rth column is thus the sum of

and the column of "errors" [PN(m +
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We can thus expand this determinant into a sum of (s + simple
determinants. This sum can be further partitioned into two sums. The
first consists of all determinants that don’t contain any column of errors

[PN(M+r, s, and thus this sum is equal to the following determinant:

according to the determinant of the product formula.

Now det det and

it is easy to see by induction (using the formula

that det /
The second sum consists of those determinants that contain at

least one column of "errors" pN ( m + Observing that such
a determinant will be zero if it contains at least two columns of the same

type i.e. [(M+,) N 1B IS-1 and l ’n+T2 ;, S for r2 and fortype i.e. (mtrl) l ’" 

j=l 
and ’" 

j=l 
for Tl =1= T2 and for

the same A we conclude that each nonzero determinant in the second sum

has absolute value at most

where C’ dosn’t depend on N. Hence the second sum has absolute value
’(-1) -1at most CN- 2 where C depends only on m, s and the zj’s.

Therefore

Hence to complete the proof of the lemma it suffices to prove that
0. But it is easy to show by induction that for every

k &#x3E; 1 we have
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for certain constants C where ak,k = (-1)~(1~ - 1)i ~ 0.

Hence simplifying the corresponding determinant we get

since the last determinant is a Vandermonde one and the corresponding
complex ...,~((g) are distinct. This completes the proof of
the lemma. D

Remark. - We can get a similar asymptotic behavior in the case that
one of the zj’s is equal to 1. However since we won’t be needing this in the
proof of Theorem 2 we don’t include it.

Now we can prove the following.

PROPOSITION l. Let zl, ..., zs E CB(D U {1}) be distinct and let
(~yN), ..., (TN) be s sequences of complex numbers such that

for all N &#x3E; 1 and where C, d are constants that do not depend on
N. Then there exists an integer m &#x3E; d such that for all sufhciently large
N the linear system

has a unique solution tl,N, and moreover

Proof. We choose m = d + s(s + 3). Then for every sufficiently
large N Lemma 3 implies that the determinant of the system (3.12) which
is ON (m, Zl, ..., zs) satisfies the estimate (3.5) in particular it is nonzero and
hence the system has a unique solution tl,N, ..., ts,N E C . Now each tr,N
can be computed according to Cramer’s rule and is equal to the ratio of two
determinants, the one in the denominator being ...,~) and the
other in the numerator is produced by AN (M, Zl, ..., zs) by replacing the rth
column of AN(M, zl , ..., zs ) by [7~=1. Expanding such a determinant we
get a sum of s! terms of the form ::I::AN(m+rl, 



1548

where the jl,..., js are distinct and ri  ...  belong to f 1, 2, ..., s 1.
Since

whenever Izl &#x3E; 1 we conclude that any such term has absolute value at

most

Therefore using Lemma 4 we conclude that for every sufficiently large
N we have

which tends to 0 as N --~ oo by the choise of m. This completes the proof
of the proposition. D

4. Proof of Theorem 2.

In this section we will prove Theorem 2. For this purpose let 

be an enumeration of all functions h : E’ --~ Q + iQ where E’ C E is finite.
Then we define

It is easy to see W) = V (W, E) and it is also easy
to see that each W) is an open subset of H(W). Hence to prove
Theorem 2 it suffices to prove the following.

PROPOSITION 2. - be a finite subset of (CBD, aI, ..., as
E (C and E &#x3E; 0. Then the set

there exists n &#x3E; 1 such that

E e for everyj

is a dense subset of H(W).
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Proof. It suffices to prove that given any 6 &#x3E; 0, g E H(W) and
compact set L C W there exists f E r such that max Ig - f  8.

L

Since B = (CBW is discrete we may assume that L is of the form
~ z E C : R and dist(z, B) &#x3E; 7J} for certain R &#x3E; 2 and 7J &#x3E; 0.

Then (CBL has finitely many bounded components each containing at
least one point of B. Therefore by Runge’s Theorem there exists a rational
function Q with poles in B C such that Q|  b/2. ExpandingL 2

Q in simple fractions we may write

where wl, ..., WM E B and so each 1.

Since each

absolute value

has partial sums with

for every z with I z I &#x3E;- 1 we conclude that

for every z E (CBD where C depends only on Q.
Now we define for any integer p &#x3E; 0 the power series npzn. It is

easy to see that there exist rational functions Rp with pole at 1 only such
that

andIn fact

We fix a large integer m to be defined, choose a complex number of
absolute value 1, {Zl, ..., belonging to the same component of (CBL
that contains 1 (using eie will not be necessary unless 1 E f zi, ...,2~}) and
consider the function

where Ai,..., A, are to be determined.
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Clearly G is a rational function with pole at e2e only.

Then

and so using (4.3) and chosing m as in Proposition 1 applied to the numbers
I... zse-iO E U {1}) we conclude that given Cl &#x3E; 0 there exist

N sufficiently large and Am , ..., As E C such that

and

We choose El &#x3E; 0 such that (4.8) implies that

and fix the corresponding N = No for which (4.7) and (4.8) hold. This is
possible since L is compact and each has no poles in L.

Then by Runge’s Theorem there is a sequence of rational

functions having poles only at 1 such that Fq -~ G uniformly on T = ~z E
~ : ~ z ~  R, ~ z - 1 ~ &#x3E; r~ ~ . Since T contains a disc around 0 the Cauchy’s
estimates impy that

as q - oo.

Therefore we can choose qo sufficiently large such that the rational
function F = Fqo that has pole only at 1 satisfies

Then by taking f = F + Q E H(W ) we have

and
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hence f E r. This completes the proof of the proposition and hence of
Theorem 2. D
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