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ON THE GHOST CENTRE OF LIE SUPERALGEBRAS

by Maria GORELIK

1. Introduction.

1.1. — Let 0 be a complex finite dimensional Lie algebra and Z(g)
be the centre of its universal enveloping algebra. Then Z{o) acts on a
simple ^-module by an infinitesimal character. If Q is semisimple, Duflo
proved in [D], that the annihilator of a Verma module is generated by the
kernel of the corresponding infinitesimal character.

Let Q = QQ (B 0i be a complex finite dimensional Lie superalgebra
and Z(o) be the (super)centre of its universal enveloping algebra ^(fl). All
^-modules considered below are assumed to be Za-graded and "^-simple
module" means simple as graded module. The centre Z(o) acts on a simple
^-module by an infinitesimal character, but, even in the "nice" case Q =
osp(l, 2^), the annihilator of a Verma module is not always generated by the
kernel of the corresponding infinitesimal character. In [GL] we described,
for the case Q == osp(l,2^), a polynomial subalgebra Z(o) of U(o) which
acts on a simple module by "supercharacter". The annihilator of a Verma
module is generated by the kernel of the corresponding supercharacter.

In this paper we introduce a notion of ghost centre Z(^) (see 2.1.2).
This is a subalgebra of U(o) which contains both Z{o) and the centre of
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1746 MARIA GORELIK

U(^) considered as an associative algebra. The algebra Z(g) acts on a simple
module by "supercharacter".

By definition, Z(o) is the sum of Z(o) and of the so-called anticentre
A(g). The last one is the set of invariants of U(o) with respect to a
"nonstandard adjoint action" ad's introduced in [ABF]. The anticentre
is a Zs-graded subspace ofU(g). The even part of the anticentre consists of
the even elements which anticommute with the odd elements of U{^) and
commute with the even ones. The odd part of the anticentre consists of the
odd elements which commute with all elements ofZ^(fl). Thus the product
of two elements from the anticentre belongs to the centre and the product
of an element from the centre and an element from the anticentre belongs
to the anticentre. Moreover, in the case when any non-zero central element
is a non-zero divisor, Z(o) H A(o) = {0} and so Z(o) = Z(o) ® A(o).

As well as Z(o) itself, Z(g) is not easy to describe and, in general, it
is not a noetherian algebra. However the anticentre can be described easily.
First of all, it is trivial if the dimension of 51 is infinite and it is pure even
(resp. odd) if the dimension offli is even (resp. odd) (see Corollary 3.1.3).
Moreover A(o) itself as well as its image in the symmetric algebra can be
described in terms of the adjoint action of QQ on its enveloping algebra ̂ (fio)
(see Theorem 3.3). In particular, in the case when the top external degree
A^^i of 0i is a trivial flo-module, this theorem gives a linear isomorphism
from the centre of U(Qo) onto A(o). The above condition on A^fli holds
for the simple finite-dimensional Lie superalgebras apart from the W (n)
type. For the simple Lie superalgebras of type W (n) the anticentre is zero.

The existence of non-zero anticentral elements implies two "negative"
results. The first one is that the direct generalization of the Gelfand-Kirillov
conjecture does not hold for a Lie superalgebra Q if dim 91 is a non-zero
even integer and A^^i is a trivial flo-module (see 3.5.2). In particular,
it does not hold for Q = osp(l,2Z); for osp(l,2) this was proven earlier
in [Mu2]. The second one is that Separation theorem does not hold for the
classical basic Lie superalgebras apart from the simple Lie algebras and the
superalgebras osp(l,2^) (see 4.5).

1.2. — In the case Q = osp(l, 21) Arnaudon, Bauer, Frappat ([ABF])
and Musson ([Mul]) constructed a remarkable even element T in the
enveloping algebra U(^). This element is ad'g-invariant and its Harish-
Chandra projection is the product of hyperplanes corresponding to the
positive odd roots. The element T has been called "Casimir's ghost"
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ON THE GHOST CENTRE OF LIE SUPERALGEBRAS 1747

in [ABF], since its square belongs to the centre.

In 3.3 we construct such an element T (E A(o) fo1' anv 0 such that
dim^i is finite and A^gi is a trivial flo-module. The image of T in the
symmetric algebra belongs to A^gi. In Section 4 we show that in the case
when 0 is a basic classical Lie superalgebra, the Harish-Chandra projection
of T is also the product of hyperplanes corresponding to the positive odd
roots.

In [S2] A. Sergeev described the set of "anti-invariant polynomials"
which are the invariants of the dual algebra U{^Y with respect to the
nonstandard adjoint action ad'fl.

1.3. Content of the paper. — In Section 3 we define our main
objects: the anticentre A{g) and the ghost centre Z(s). We describe the
action of Z(Q) on the modules of finite length in the case when Q is finite
dimensional.

In Section 3 we show that A{o) is equal to zero if dim^i is infinite.
Moreover all elements of A(^) are either even (if dim 51 is even) or odd
(otherwise). We describe A(^) and its image in <?(g) in Theorem 3.3.

In Section 4 we consider the case when Q is a complex classical basic
Lie superalgebra. In this case, the Harish-Chandra projection of Z(o) is
described by Kac and Sergeev (see [Sl]). In Corollary 4.2.4, we describe
the Harish-Chandra projection of A{Q).

We say that an element u € U(s) acts on a module M by a
superconstant if it acts by the multiplication by a scalar on each graded
component Mi (i = 0,1). In the case when Q is finite dimensional and dim gi
is even, any element of Z(o) acts on a simple module M by a superconstant
(see 2.2). In Corollary 4.4.4 we show that if Q is a basic classical Lie
superalgebra then any element of U(^) acting by a superconstant on each
simple finite dimensional module belongs to Z(Q). Moreover Z(g) coincides
with the centre (and the centralizer) of the even part U(o)o of the universal
enveloping algebra. For the case Q = osp(l,2^) the last result was proven
in [GL].

Acknowledgement. — I wish to express my gratitude to V. Hinich
and A. Vaintrob for reading this paper and providing numerous useful
suggestions. I would like to thank V. Serganova who pointed out at an
error in an earlier version. I am very grateful to M. Duflo, A. Joseph and
E. Lanzmann for fruitful discussions. I would like to thank the referee and

TOME 50 (2000) FASCICULE 6



1748 MARIA GORELIK

I. M. Musson for helpful remarks and references. It is finally a great pleasure
to thank my hosts in France, especially P. Littelmann and R. Rentschler,
whose hospitality and support are greatly appreciated.

2. Ghost centre.

In this paper the ground field is C. Let Q = 0o ^ Si be a Lie
superalgebra such that fli -^ 0. We consider Qo as a Lie subsuperalgebra of
0. All go-modules and g-modules are assumed to be Za-graded. We denote
by II the parity change functor: II(M)o := Mi, II(M)i := Mo. Denote by
U(Q) the enveloping superalgebra of Q and by Z{o) the (super)centre of
W

2.1. — For a homogeneous u € U{^) denote by d(u) its Z2-degree.
For a Z^(fii)-bimodule M one defines the adjoint action of Q on M by setting
(ad^)m := gm - {-lY^^mg where m € M,g e fl are homogeneous
elements and d(m) denotes the Z2-degree of m. Define a twisted adjoint
action ad' of Q on M as the adjoint action of g on the bimodule II(M). One
has

(ad'^n) = gm - (-l)^^^1)^.

Assume that M has a superalgebra structure such that g {m\ m^) =
g{m^)m-2, m^g^m^)) = ((^1)^)^2 and (m^m^)g = m^m^g for all
<7 6 0, 7ni,m2 C M. Then for any homogeneous mi, 7712 € M and g e 0
one has

(ad^)(7nim2) = ((ad^i^ + (-l^^m^d'g)m^
= ((ad'(7)mi)7n2 + (-l^^^+^miaad^).

Moreover if TTI is ad'0-invariant then

(1) (ad'^)(mim) = ((ad^)mi)m, (ad^)(mim) = ((ad'^)mi)m.

2.1.1. Example. — Let TV be a ̂ (fl)-module and End(TV) be the ring
of its C-linear endomorphisms. Then End(TV) admits a natural structure of
graded ^(5)-bimodule. Let 0 be the endomorphism of N which is equal to
id (resp. — id) on the even (resp. odd) component of N. Then 0 is an even
ad'^-invariant homomorphism which commutes with the even elements
of End(Ay) and anticommutes with the odd elements of End(TV). The
formulas (1) imply that the multiplication by 6 induces an isomorphism
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from End(TV) considered as ad^-module onto End(TV) considered as ad'g-
module. The similar assertion fails for U{^) (the structure ofL((g) as ad'^-
module is given in Lemma 3.1.2).

2.1.2. — Let us call anticentre A(o) the set of elements ofU(o) which
are invariant with respect to ad'. Remark that the anticentre is a Zs-
homogeneous subspace of Z^(s). The even part of the anticentre consists
of the even elements which anticommute with the odd elements of ^(s)
and commute with the even ones. The odd part of the anticentre consists
of the odd elements which commute with all elements ofZ^(fl). Clearly the
anticentre is a module over the centre and the product of any two elements
of the anticentre belongs to the centre. For example, for Q = osp(l,2Z),
A(o) is a free rank one module over ^(o) (see [GL], 4.4.1). This is not true
for a general Lie superalgebra.

Let us call ghost centre Z{o) the sum ofA(o) and ^(s)- It is clear that
Z(o) is a subalgebra ofZ^(^) which contains the centre ofZ^(fl) considered
as an associative algebra. Moreover 2(o) = Z(o) (B A(o) if any non-zero
element of ^(s) is a non-zero divisor.

In order to describe the action of ^(fl) on simple modules, note that
Schur's lemma for Lie superalgebras takes the following form (see [K2],
[BZ]).

2.1.3. LEMMA. — Let Q be a finite or countable dimensional Lie
superalgebra and M = MQ 0 M\ be a simple g-module. Then either
End(M)ad3 = kid or End(M)ad0 = kid^ka where the odd element a
provides a Q-isomorphism M ^—> II(M) and a2 == id.

2.1.4. — Using Example 2.1.1, we conclude that End(M)ad^ =
End(M)acl0^. This implies the following lemma describing the action of
^(o) on simple modules.

LEMMA. — Let Q be finite or countable dimensional Lie superalge-
bra, M = MQ 0 Mi be a simple Q-module and z be an element of Z(^).
Then the action of z on M is proportional to

id, ifz e ^(s) and z is even,
0, ifz C Z(o) and z is odd,
0, ifz e A(o) and z is even,
cr0, ifz C A(o) and z is odd.

TOME 50 (2000) FASCICULE 6
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2.2. Case dimgi is even. — In this case all elements of A(o)
are even (see 3.1.3). Denote by C the algebra spanned by id and 0. Then
C = C[0}/(02 - 1). Denote by TT the algebra involution of C sending 0 to
-0.

DEFINITION. — An algebra homomorphism \: Z(o) —> C is called
a supercharacter if\(Z(g)) == C and x(^(o)) c C0.

By Lemma 2.1.4, Z(^) acts on a simple modules M by a superchar-
acter \M' Moreover ^n(M) = TI-XM.

2.2.1. — The standard consequence of Schur's lemma is the follow-
ing statement. Any finite length module M has a unique decomposition into
a direct sum of submodules Mi such that, for any fixed i, all simple sub-
quotients of Mi have the same infinitesimal character and these characters
are pairwise distinct for different %. Similarly, one can deduce from Lemma
2.1.4, that any finite length module M has a unique decomposition into a
direct sum of submodules Mj such that, for any fixed j, all simple subquo-
tients of Mj have the same supercharacter and these supercharacters are
pairwise distinct for different j. This new decomposition is a refinement of
the previous one. For example, let L be a simple module such that A(Q)
does not lie in AnnL. Then L and II(L) have different supercharacters.
This, for instance, implies that though they have the same infinitesimal
character, there are no non-trivial extensions of L by II(L).

2.3. Case dim 51 is odd. — In this case all elements of A(g) are
odd (see 3.1.3). Retain notation of 2.2. The algebra spanned by id and a0
(see Lemma 2.1.3) is isomorphic to C. However if L is a simple module
such that aL -^ 0 for some a € A(fl), then the product of 0 and the image
of a in EndL provides an isomorphism s : L -^ II(L). One can choose
a such that s2 = id. There are two possible choices of such s which differ
by sign. As a consequence, in this case, it is more natural to define an odd
supercharacter as a pair of homomorphism (^, 7r\) where \ satisfies the
conditions given in Definition 2.2 and TT is the involution of C sending a0
to -a0. Observe that if L ̂  II(L) then \ = TT\.

As in 2.2.1, odd supercharacters allow us to construct a decomposition
of any module of finite length, but, probably, it always coincides with the
decomposition coming from the infinitesimal characters.

2.3.1. Example. — Let 0i be generated by x and QQ be generated

ANNALES DE L'lNSTITUT FOURIER
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by [x,x\. Then U(^) = C[x}, Z(fl) = C[x2} and ^(g) = C^x is a cyclic
^(^)-module generated by x. The list of the simple representations of Q is
the following:

a) Two trivial representations (one is even and one is odd). The
corresponding odd supercharacter sends A(o) to zero.

b) Two-dimensional representations L ( A ) ( A e C \ { 0 } ) spanned by v
and xv where x2v = Xv. The corresponding odd supercharacter sends x to
±V\a0. The representations L{\) and II(L(A)) are isomorphic.

3. Anticentre A{o).

In this section we describe the anticentre A(o). The anticentre is
trivial if ^i is not finite dimensional (see Corollary 3.1.3), so starting
from 3.2 we assume that fli is finite dimensional.

3.1. — Denote by F the canonical filtration of^(^) given by Fk :=
Qk. Recall that this is an ad g-invariant filtration and that the associated
graded algebra gr^L((o) = S(o) is supercommutative. For u G U(o) denote
its image in S(o) by gru. Remark that (o.^ x)(u) = 2xu — (ada;)(u) for
x € fli and u € ^(fl). Therefore
(2) gT((a.dfx)(u))=2(gTx)(gTu), V^e^(fl), xCQi s.t. gr(xu)={gTx){gru).

3.1.1. — Let L be an even vector space endowed by a structure of
flo-module. Denote by Ind^ L the supervector space U{o) ^(go) ^ (here
Li(o) is considered as a right ^(flo)-module) equipped with the natural left
U(o)-mod\i\e structure.

Let L be a submodule oiU(^o) with respect to ad QQ-o^ction. Denote by
(ad'{()(!/) the ad'fl-submodule ofU(o) generated by L. Note that there is a
natural surjective map from Ind0 L to (ad7 Q)(L) given by u^)m ̂  (ad' u)m
for u C U(Q)^m € L.

3.1.2. LEMMA. — Let L be a submodule ofU{Qo) with respect to
ad Qo-action. The natural map Ind0 L —> (ad'^/(fl))(L) is an isomorphism.
Moreover U{o) == (ad'^(fl))^(flo) and thus as ad'Q-module L((Q) is isomor-
phic tolnd|^(5o).

Proof. — Let {xi}i^i be an ordered basis of 0i. For any finite
subset J C I set Xj := riicJ^5 where the product is taken with

TOME 50 (2000) FASCICULE 6



1752 MARIA GORELIK

respect to the given order. Then the elements {gTXj}jci form a basis
of Afli c <S(s). Choose a basis {uj}j^s m L such that {gruj}j^s are
linearly independent in gr^(so). Since gr^(so) = A^i gr^(so) one has
gr(xjUj) = (grxj)(gruj) for any finite subset J C J and j € 5'. Using (2)
one concludes that gr(ad'rrj)^- = 2lJI(gr;rJ)(g^^^) for any finite subset
J C I and j € S. Therefore the elements {(ad' xj)uj}jcijes are linearly
independent. This proves the first assertion.

For the second assertion, note that grZ^(fl) is spanned by the el-
ements of the form (gra;j)(grit) with u e ^(flo)- Now (grxj)(gru) =
gr^ad^j)^)/^17! and so gr(ad'^(s))^(0o) = gr^(fl). Therefore ^(5) ==
(ad'Z^(0))^(9o) as required. D

The isomorphism U(o) ̂  Ind^^(so) is proven in [S2], 3.2.

3.1.3. COROLLARY. — If 5i has infinite dimension then A(e) = 0.
If dim 0i is even, all elements of A(^) are even and if dim 51 is odd, all
elements ofA{o) are odd.

Proof. — Retain notation of Lemma 3.1.2. Any element of U{o) can
be written in a form u = ̂ j(ad' xj)uj where uj € U(^o). Take u ^- 0 and
set m == max{[J| | uj ^ 0}. Assume that m < dim^i. Take J such that
|J| = m and uj ^ 0; take i € I \ J . Modulo Eij^m+^^^'Mflo) one
has

(8id/Xi)u= ^ (ad'^j/)nj/ /O.
1^1=7^

Thus if n € .4(0) then m = dim^i. Since A(o) is a Z2-graded subspace of
U{o)^ the assertion follows. D

In the rest of the paper ^i is assumed to be finite dimensional.

3.2. Ind and Coind. — Consider go as a (pure even) Lie superalge-
bra. Let L be a (graded) go-module. Denote by Coind0 L the supervector
space Hom^(^)(^(0),L) (here U(o) is considered as a left ^(go)-module)
equipped with the following left ^(fl)-module structure: (uf)(uf) := /(u'u)
for any / <E Hom^(^)(^(s),L), u,u1 G U(o).

The module Ind^ L is isomorphic to the module Coind0 ^L where
00-module ^L is obtained from L by a certain twist (see [BF], [Ch]). In this
subsection we give an explicit construction of this isomorphism.
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3.2.1. — Retain notation of Lemma 3.1.2. For k € N set

^= E ^(So)^.
JCI,\J\^k

One has x j x j ' = ±xjuj' modulo ^i71^17'1"1. This implies that F^T^ C
T^ and thus Fo is a filtration of U{s). In particular, T^ are ^(flo)-
bimodules and the nitration does not depend from the choice of {xi}i^i.

Consider U(o) and U(Qo) as left M(0o)-modules through the left
multiplication. Denote by i a flo-homomorphism from U(Q) to U(Qo) such
that ken = F\ and i(xi) = 1. Recall that ken does not depend
from the choice of basis in fli. Modulo .F^"1 for any g e So one has
gxi = xig + c(g)xi where c(^) stands for the eigenvalue of g in the one-
dimensional go-module A^^i. Thus

(3) i(ug) = i{u){g - c(g)), i(gu) = gi{u\ ^g € Qo,u € ^(fl).

Define a map (.|.) from U(o) ^>u{Qo) ̂ (s) to ^(So) by setting (n|H') =
L^UU'). For any subsets J , J ' of J set ^j^j/ = 1 if J = J ' and <5^j/ = 0
otherwise.

3.2.2. LEMMA. — For any J C J there exist ZAj,z>j e Z^(g) such
that (uj\xj') = (^j'|vj) = <^7,j/.

Proof. — We prove the existence of vj by induction on r = |J \ «7|.
For r == 0, J = I and vi = 1 satisfies the conditions.

Fix J C I . For any J ' C I such that |J7! < |J[, one has xj'xi\j =
^xi\juj' modulo ken = ^l7*"1. Thus {xj' \ Xi\j) = 0 for J -^ J ' and
{xj | a;j\j) = ±1. Set

v ''= xj\j - ^ v j ' ( x j > \ xi\j).
IJ'MJI

Then (xj'\v) = 0 for any J ' C J, J' ^ J and (^j|v) = =bl. This proves the
assertion.

The existence of uj can be shown similarly. D

3.2.3. — Consider fli as odd vector space endowed by the structure
of 0o-module. Then A^fli is a one-dimensional flo-module which is even
iff dim^i is even. For a (graded) go-module L denote by ^L the graded
go-module -L^A^^i. We will consider ^L as the vector space L (if dim^i
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is even) or II(L) (otherwise) equipped by a new structure of go-module
given by g * m := (g + c(g))m for any g ^ QQ^TTI ^ L.

3.2.4. PROPOSITION. — For any Qo-module L the linear map ^
denned by

^{v! (g) m){u) := (u\u') * m, Vm e L, n, u' € ^/(g)

provides an isomorphism Ind^ L -^ Coind^(L 0 A^^i).

Proof. — If dim^i is even then (^IZA') == 0 provided that n,i/ are
graded elements of distinct parity in U(o). Similarly, if dim^i is odd then
(u\u') = 0 provided that 'u, u' are graded elements of the same parity in
U(o). This shows that the map ^ respects the Zs-grading.

For any g 6 So and m € L one has, by (3)

(u\u'g) * m = i^uu'g) * m = ^i(uu'){g — c(g))) * m = (u\u') * (pm)

and thus ̂ (u'g^m) = ^{u' ^gm). Moreover ^{u1<S>m) is a So-linear map
since

^(u' <S> m)(gu) = {gu\u')m = ^(zAin^m = g}Sf(u/ (g) m)(n).

Hence ^ is a well-defined map from Ind^ L == Z^(s) 0^(go) ̂  to Coindj^ *L.

For any s € ̂  one has

^(sn'^m^n) = (ztls^^m = (us\u')m = ^(^/(g)m)(n5) = (s^r(n /(g)m))(u)

and so ^ is a homomorphism of left U{^) -modules.

Any element of Indj^ L can be written in the form ^Cjci ̂  ̂  m^
where mj € L. Fix J7 C J and choose ^j/ € ^/(fl) as in Lemma^.2.2. Then
^(Sjcj XJ ^ mJ)(n^/) == m^'- This implies that ker ̂  = 0.

Fix J C I and choose vj € ^/(fl) as in Lemma 3.2.2. Then for any
m € L one has ^(vj <S> m}(xj') == Sj^j'm. This implies the surjectivity of
^ and completes the proof. D

3.3. — Retain notation of Lemma 3.2.2.

THEOREM. — Assume that Q == Qo (B Qi is a Lie superalgebra such
that 0i is finite dimensional. Then the map 0 : z i—^ (ad'z^)^ provides
a linear isomorphism from the ^-invariants of U(Qo) 0 A^^i onto the
anticentre A(o). Moreover one has gi(/)(z) = xgr z where x is an element
ofA^P^i).
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Proof. — The proof follows from Lemma 3.1.2 and Proposition 3.2.4.
We give the full details below.

Set M(Qo) := ^(flo) ̂ A^Pfli. Using notation of Proposition 3.2.4 one
has

(Ind^^(0o))0 = ̂ ((Coind^ ^(flo))0).
For z e (*^(flo))00 denote by jz the linear map U(^) -^ C such that /^(l) =
2; and fz{oU(^)) = 0. The map z ^ jz provides a linear isomorphism
(*^(flo))00 -^ (Coind^ ^(flo))0. Therefore the map z ̂  ^~1^ provides
a linear isomorphism (*^(flo))00 -^ (Ind^l/(flo))0. Moreover ^I/"1^) =
V0 (g)z since (u\v^}z = 0 for u € ^(0)5 and (1^0)2; = 2:. Using Lemma 3.1.2,
one concludes that (f): z ^—> (ad' v^)z is a linear isomorphism (*^(flo))00 -^
w.

The proof of Lemma 3.2.2 shows that v^ = -^xi+^j^ xi\jdj where
dj are certain elements oiU(^o). Therefore
(4) (t>(z) := (adS)(^) == (ad' (^ + ̂ w))z

j^i
where cj are scalars. By the formula (2), gT(f)(z) == xgr z for re := grxj €
A^P^). This completes the proof. D

3.3.1. Remark. — If A^^i is a trivial flo-module, the map (f) of
Theorem 3.3 provides a linear isomorphism ^(flo) -^ ^4-(s)-111 particular,
A(o) 1=- 0 in this case, because Z(flo) contains the base field.

3.4. — A classification theorem of Kac (see [Kl], 4.2.1) states that
any complex simple finite dimensional Lie superalgebra is isomorphic either
to one of the classical Lie superalgebra or to one of the Cartan Lie
superalgebras W{n\ 5(n), S(n), H{n).

Evidently A^gi is a trivial 0o-module ifflo is a semisimple Lie algebra
or if 0i ^ 0^ as fio-module. In particular, A^^i is trivial for all simple
classical Lie superalgebras. It is easy to check that it is trivial also for the
Cartan Lie superalgebras S(n\S{n)^H(n).

On the other hand, if QQ is reductive and A^^i is not a trivial QQ-
module, then (^(flo) ^ A^Pfli)^0 == 0 and so A(o) = 0. In particular, for
the "strange" non-simple Lie superalgebras p(n) one has A(Q) = 0 (remark
that Z(g) = C, see [Sch]).

3.4.1. Example. — Consider a Cartan type Lie superalgebra Q :=
W(n) (n > 2). Let us show that A(o) = 0. Recall that W{n) is a Z-graded
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Lie superalgebra Q = (BfceZS^ so tnat go = C^2^, 0i = es^^ and
dimg^ = ^fcZi)' ̂ e ^le algebra g^ is isomorphic to gl(n). Denote by
e the image of the identity matrix in ^°\ One has [e, u\ == to for u € 0^.
In particular, e acts on A^^i by the multiplication on a positive integer.
Since the action of e on ^/(filo) is semisimple and all eigenvalues are non-
negative integers, [e,m] ^ 0 for any non-zero m € U{Qo) 0 A^^i. Hence
A{Q) == 0 by Theorem 3.3.

3.4.2. — Let A^SI be a trivial fio-module.

DEFINITION. — Denote by T a non-zero ad'^-invariant element
belonging to (ad'^(g))(l).

The element T is defined up to a non-zero scalar and it is even iff
dim^i is even. Observe that, up to a scalar, T is the unique element of the
anticentre whose image in <5(fl) belongs to A^^i).

3.5. Remarks.

3.5.1. — Consider U(g) as an associative algebra and denote its
centre by Z. Evidently Z H ^(g)o = Z(o) H ^(fl)o and Z H ^(5)1 =
A{^) nZY(^)i. Using Corollary 3.1.3 one concludes that

Z = Z(^) 0^(5)0 if dim^i is even or dim^i ==• oo,
Z = {Z(Q) n^(g)o) C A(Q) if dimsi is odd.

3.5.2. — In most of the cases U{^) is not a domain (see [AL]).
However, even if^(fl) is a domain (for example g = osp(l,2/)) the direct
generalization of the Gelfand-Kirillov conjecture does not hold for Lie
superalgebras.

In fact, let A; be a field of characteristic zero and A^(k) be a Weyl
algebra over k. Recall that the centre of a Weyl skew field Wn(k) coincides
with k and that An{k) = An{k) 0^ k where k stands for the algebraic
closure of k. Therefore a Weyl skew field does not contain non-central
elements whose squares are central.

Assume that Q = Qo © ^i is a Lie superalgebra such that dim^i is
even and non-zero, A^^i is a trivial ^o^odule and U(Q) ls a domain.
Then A(^) 7^ 0 by Theorem 3.3 and A(o) C Z^(s)o by Corollary 3.1.3. Take
any non-zero a € A(o). Since a is a non-zero divisor and ax + xa == 0 for
an odd element x, a ^ Z. However a2 e Z. This implies that a Weyl skew
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