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ON THE GHOST CENTRE OF LIE SUPERALGEBRAS

by Maria GORELIK

1. Introduction.

1.1. — Let g be a complex finite dimensional Lie algebra and Z(g)
be the centre of its universal enveloping algebra. Then Z(g) acts on a
simple g-module by an infinitesimal character. If g is semisimple, Duflo
proved in [D], that the annihilator of a Verma module is generated by the
kernel of the corresponding infinitesimal character.

Let g = go ® g1 be a complex finite dimensional Lie superalgebra
and Z(g) be the (super)centre of its universal enveloping algebra U(g). All
g-modules considered below are assumed to be Zy-graded and “g-simple
module” means simple as graded module. The centre Z(g) acts on a simple
g-module by an infinitesimal character, but, even in the “nice” case g =
osp(1, 2), the annihilator of a Verma module is not always generated by the
kernel of the corresponding infinitesimal character. In [GL] we described,
for the case g = osp(1,2l), a polynomial subalgebra Z(g) of U(g) which
acts on a simple module by “supercharacter”. The annihilator of a Verma
module is generated by the kernel of the corresponding supercharacter.

In this paper we introduce a notion of ghost centre Z (g) (see 2.1.2).
This is a subalgebra of U(g) which contains both Z(g) and the centre of
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U(g) considered as an associative algebra. The algebra zZ (g) acts on a simple
module by “supercharacter”.

By definition, Z(g) is the sum of Z (g) and of the so-called anticentre
A(g). The last one is the set of invariants of U(g) with respect to a
“nonstandard adjoint action” ad’g introduced in [ABF]. The anticentre
is a Zy-graded subspace of U(g). The even part of the anticentre consists of
the even elements which anticommute with the odd elements of ¢/(g) and
commute with the even ones. The odd part of the anticentre consists of the
odd elements which commute with all elements of U(g). Thus the product
of two elements from the anticentre belongs to the centre and the product
of an element from the centre and an element from the anticentre belongs
to the anticentre. Moreover, in the case when any non-zero central element
is a non-zero divisor, Z(g) N.A(g) = {0} and so Z(g) = Z(g) ® A(g).

As well as Z(g) itself, Z(g) is not easy to describe and, in general, it
is not a noetherian algebra. However the anticentre can be described easily.
First of all, it is trivial if the dimension of g; is infinite and it is pure even
(resp. odd) if the dimension of g; is even (resp. odd) (see Corollary 3.1.3).
Moreover A(g) itself as well as its image in the symmetric algebra can be
described in terms of the adjoint action of gy on its enveloping algebra U (go)
(see Theorem 3.3). In particular, in the case when the top external degree
AtPg; of g; is a trivial go-module, this theorem gives a linear isomorphism
from the centre of U(go) onto .A(g). The above condition on A*Pg; holds
for the simple finite-dimensional Lie superalgebras apart from the W(n)
type. For the simple Lie superalgebras of type W (n) the anticentre is zero.

The existence of non-zero anticentral elements implies two “negative”
results. The first one is that the direct generalization of the Gelfand-Kirillov
conjecture does not hold for a Lie superalgebra g if dimg; is a non-zero
even integer and A*°Pg,; is a trivial go-module (see 3.5.2). In particular,
it does not hold for g = osp(1,2l); for osp(1,2) this was proven earlier
in [Mu2]. The second one is that Separation theorem does not hold for the
classical basic Lie superalgebras apart from the simple Lie algebras and the
superalgebras osp(1, 2l) (see 4.5).

1.2. — Inthe case g = osp(1, 2/) Arnaudon, Bauer, Frappat ([ABF])
and Musson ([Mul]) constructed a remarkable even element T in the
enveloping algebra U(g). This element is ad’g-invariant and its Harish-
Chandra projection is the product of hyperplanes corresponding to the
positive odd roots. The element T has been called “Casimir’s ghost”
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in [ABF], since its square belongs to the centre.

In 3.3 we construct such an element T € A(g) for any g such that
dim g; is finite and A*°Pg; is a trivial go-module. The image of T in the
symmetric algebra belongs to A*Pg;. In Section 4 we show that in the case
when g is a basic classical Lie superalgebra, the Harish-Chandra projection
of T is also the product of hyperplanes corresponding to the positive odd
roots.

In [S2] A. Sergeev described the set of “anti-invariant polynomials”
which are the invariants of the dual algebra U(g)* with respect to the
nonstandard adjoint action ad’g.

1.3. Content of the paper. — In Section 3 we define our main
objects: the anticentre A(g) and the ghost centre Z(g). We describe the
action of Z(g) on the modules of finite length in the case when g is finite
dimensional.

In Section 3 we show that A(g) is equal to zero if dim g; is infinite.
Moreover all elements of .A(g) are either even (if dimg; is even) or odd
(otherwise). We describe A(g) and its image in S(g) in Theorem 3.3.

In Section 4 we consider the case when g is a complex classical basic
Lie superalgebra. In this case, the Harish-Chandra projection of Z(g) is
described by Kac and Sergeev (see [S1]). In Corollary 4.2.4, we describe
the Harish-Chandra projection of A(g).

We say that an element u € U(g) acts on a module M by a
superconstant if it acts by the multiplication by a scalar on each graded
component M; (i = 0,1). In the case when g is finite dimensional and dim g;
is even, any element of Z (g) acts on a simple module M by a superconstant
(see 2.2). In Corollary 4.4.4 we show that if g is a basic classical Lie
superalgebra then any element of U(g) acting by a superconstant on each
simple finite dimensional module belongs to Z(g). Moreover Z(g) coincides
with the centre (and the centralizer) of the even part U(g)o of the universal

enveloping algebra. For the case g = osp(1,2l) the last result was proven
in [GL).
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suggestions. I would like to thank V. Serganova who pointed out at an
error in an earlier version. I am very grateful to M. Duflo, A. Joseph and
E. Lanzmann for fruitful discussions. I would like to thank the referee and
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I. M. Musson for helpful remarks and references. It is finally a great pleasure
to thank my hosts in France, especially P. Littelmann and R. Rentschler,
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2. Ghost centre.

In this paper the ground field is C. Let g = go & g; be a Lie
superalgebra such that g; # 0. We consider gg as a Lie subsuperalgebra of
g. All go-modules and g-modules are assumed to be Z-graded. We denote
by II the parity change functor: II(M)q := My, II(M); := My. Denote by
U(g) the enveloping superalgebra of g and by Z(g) the (super)centre of
U(g).

2.1. — For a homogeneous u € U(g) denote by d(u) its Zo-degree.
For a U(g)-bimodule M one defines the adjoint action of g on M by setting
(ad g)m := gm — (=1)¥ 9™ mg where m € M,g € g are homogeneous
elements and d(m) denotes the Zy-degree of m. Define a twisted adjoint
action ad’ of g on M as the adjoint action of g on the bimodule II(M). One
has
(ad g)() = gm — (1)@ + Dy,

Assume that M has a superalgebra structure such that g(mimsg) =
g(mi)mz, mi(g(mz)) = ((mi1)g)mz and (mima)g = mi(me)g for all
g € g, my,mgy € M. Then for any homogeneous m;,ms € M and g € g
one has
(ad’ g)(mamz) = ((ad g)m1)ms + (=1) 4D ™m, ((ad’ g)ms)
= ((ad’ g)ma)mg + (1) Dm, ((ad g)m).

Moreover if m is ad’g-invariant then

(1) (ad g)(mim) = ((ad g)m1)m, (adg)(mim) = ((ad’ g)m1)m.

2.1.1. Example. — Let N be aU(g)-module and End(N) be the ring
of its C-linear endomorphisms. Then End(/N) admits a natural structure of
graded U(g)-bimodule. Let # be the endomorphism of N which is equal to
id (resp. —id) on the even (resp. odd) component of N. Then 6 is an even
ad’g-invariant homomorphism which commutes with the even elements
of End(N) and anticommutes with the odd elements of End(N). The
formulas (1) imply that the multiplication by # induces an isomorphism
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from End(N) considered as ad g-module onto End(N) considered as ad’g-
module. The similar assertion fails for 2(g) (the structure of U(g) as ad’g-
module is given in Lemma 3.1.2).

2.1.2. — Let us call anticentre A(g) the set of elements of U(g) which
are invariant with respect to ad’. Remark that the anticentre is a Zo-
homogeneous subspace of U(g). The even part of the anticentre consists
of the even elements which anticommute with the odd elements of U(g)
and commute with the even ones. The odd part of the anticentre consists
of the odd elements which commute with all elements of U(g). Clearly the
anticentre is a module over the centre and the product of any two elements
of the anticentre belongs to the centre. For example, for g = osp(1,2!),
A(g) is a free rank one module over Z(g) (see [GL], 4.4.1). This is not true
for a general Lie superalgebra.

Let us call ghost centre Z(g) the sum of A(g) and Z(g). It is clear that
Z(g) is a subalgebra of U(g) which contains the centre of U(g) considered
as an associative algebra. Moreover Z(g) = Z(g) @ A(g) if any non-zero
element of Z(g) is a non-zero divisor.

In order to describe the action of Z (g) on simple modules, note that

Schur’s lemma for Lie superalgebras takes the following form (see [K2],
[BZ)).

2.1.3. LEMMA. — Let g be a finite or countable dimensional Lie
superalgebra and M = My & M; be a simple g-module. Then either
End(M)*8 = kid or End(M)2® = kid ®ko where the odd element o
provides a g-isomorphism M —— II(M) and o2 = id.

2.1.4. — Using Example 2.1.1, we conclude that End(M)ad/g =
End(M )2499. This implies the following lemma describing the action of
Z(g) on simple modules.

LeEMMA. —  Let g be finite or countable dimensional Lie superalge-
bra, M = My ® M; be a simple g-module and z be an element of Z(g).
Then the action of z on M is proportional to

id, ifz € Z(g) and z is even,
0, ifze Z(g) and z is odd,
0, ifz e A(g) and z is even,
08, ifz € A(g) and z is odd.
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2.2. Case dimg,; is even. — In this case all elements of A(g)
are even (see 3.1.3). Denote by C the algebra spanned by id and 6. Then
C = C[6]/(6% — 1). Denote by 7 the algebra involution of C sending 6 to
—6.

DEFINITION. —  An algebra homomorphism X : Z (g) = C is called
a supercharacter if x(Z(g)) = C and x(A(g)) C C6.

By Lemma 2.1.4, Z (g) acts on a simple modules M by a superchar-
acter x . Moreover xm(m) = TXM-

2.2.1. — The standard consequence of Schur’s lemma is the follow-
ing statement. Any finite length module M has a unique decomposition into
a direct sum of submodules M; such that, for any fixed i, all simple sub-
quotients of M; have the same infinitesimal character and these characters
are pairwise distinct for different i. Similarly, one can deduce from Lemma
2.1.4, that any finite length module M has a unique decomposition into a
direct sum of submodules M; such that, for any fixed j, all simple subquo-
tients of M; have the same supercharacter and these supercharacters are
pairwise distinct for different j. This new decomposition is a refinement of
the previous one. For example, let L be a simple module such that A(g)
does not lie in Ann L. Then L and II(L) have different supercharacters.
This, for instance, implies that though they have the same infinitesimal
character, there are no non-trivial extensions of L by II(L).

2.3. Case dimg; is odd. — In this case all elements of .A(g) are
odd (see 3.1.3). Retain notation of 2.2. The algebra spanned by id and o6
(see Lemma 2.1.3) is isomorphic to C. However if L is a simple module
such that aL # 0 for some a € A(g), then the product of # and the image
of a in End L provides an isomorphism s : L —— II(L). One can choose
a such that s?> = id. There are two possible choices of such s which differ
by sign. As a consequence, in this case, it is more natural to define an odd
supercharacter as a pair of homomorphism (x,mx) where x satisfies the
conditions given in Definition 2.2 and 7 is the involution of C sending o6
to —of. Observe that if L 2 II(L) then x = 7.

Asin 2.2.1, odd supercharacters allow us to construct a decomposition
of any module of finite length, but, probably, it always coincides with the
decomposition coming from the infinitesimal characters.

2.3.1. Example. — Let g; be generated by =z and gy be generated
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by [z,z]. Then U(g) = C[z], Z(g) = C[z?] and A(g) = C[z?]z is a cyclic
Z(g)-module generated by . The list of the simple representations of g is
the following:

a) Two trivial representations (one is even and one is odd). The
corresponding odd supercharacter sends .A(g) to zero.

b) Two-dimensional representations L(A) (A € C\ {0}) spanned by v
and zv where z?v = \v. The corresponding odd supercharacter sends z to
++v/Acf. The representations L(\) and II(L())) are isomorphic.

3. Anticentre A(g).

In this section we describe the anticentre .A(g). The anticentre is
trivial if gy is not finite dimensional (see Corollary 3.1.3), so starting
from 3.2 we assume that g, is finite dimensional.

3.1. — Denote by F the canonical filtration of #(g) given by F* :=
g*. Recall that this is an ad g-invariant filtration and that the associated
graded algebra grrU(g) = S(g) is supercommutative. For u € U(g) denote
its image in S(g) by gru. Remark that (ad’ z)(u) = 2zu — (adz)(u) for
z € g1 and v € U(g). Therefore

(2) gr((ad o)(u)=2(gro)(gru), Vuel(g), s€g st. gr(zu)=(grz)(gru).

3.1.1. — Let L be an even vector space endowed by a structure of
go-module. Denote by Ind§ L the supervector space U(g) ®u(g,) L (here
U(g) is considered as a right U(go)-module) equipped with the natural left
U(g)-module structure.

Let L be a submodule of U(gg) with respect to ad go-action. Denote by
(ad’ g)(L) the ad’g-submodule of U(g) generated by L. Note that there is a
natural surjective map from Ind, L to (ad’ g)(L) given by u®m — (ad’ u)m
for u € U(g),m € L.

3.1.2. LEMMA. — Let L be a submodule of U(go) with respect to
ad go-action. The natural map Ind} L — (ad’U(g))(L) is an isomorphism.
Moreover U(g) = (ad’ U(g))U(go) and thus as ad’g-module U(g) is isomor-
phic to Tndg U(go)-

Proof. — Let {z;}ier be an ordered basis of g;. For any finite
subset J C I set x; := [];c;Z:i, where the product is taken with
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respect to the given order. Then the elements {grz;} ;c; form a basis
of Ag; C &(g). Choose a basis {uj}jes in L such that {gru;};cs are
linearly independent in grU(go). Since gr U(go) = Ag1 gr - U(go) one has
gr(zyu;) = (gras)(gru;) for any finite subset J C I and j € S. Using (2)
one concludes that gr(ad’ z;)u; = 2VV|(grz;)(gru;) for any finite subset
J C I and j € S. Therefore the elements {(ad’ z;)u;}sc1 jes are linearly
independent. This proves the first assertion.

For the second assertion, note that grif(g) is spanned by the el-
ements of the form (grz;)(gru) with u € U(go). Now (grz;)(gru) =
gr((ad’ z;)u)/2!Y! and so gr(ad'U(g))U(go) = grid(g). Therefore U(g) =
(ad'U(g))U(go) as required. ]

The isomorphism /(g) = Ind§ U(go) is proven in [S2], 3.2.

3.1.3. COROLLARY. — If g; has infinite dimension then A(g) = 0.
If dimg; is even, all elements of A(g) are even and if dimg; is odd, all
elements of A(g) are odd.

Proof. — Retain notation of Lemma 3.1.2. Any element of U(g) can
be written in a form u = Y~ ;(ad’ z;)us where u; € U(go). Take u # 0 and
set m = max{|J| | us # 0}. Assume that m < dim g;. Take J such that
|J] =m and uy # 0; take i € I'\ J. Modulo 3=, /| 41 (ad’ 2,5/ )U(go) one
has

(ad' z;)u = Z (ad’ z;x g )uy #0.

[J'|=m

Thus if u € A(g) then m = dim g;. Since A(g) is a Zy-graded subspace of
U(g), the assertion follows. O

In the rest of the paper g; is assumed to be finite dimensional.

3.2. Ind and Coind. — Consider go as a (pure even) Lie superalge-
bra. Let L be a (graded) go-module. Denote by Coindg0 L the supervector
space Homy(q,)(U(g), L) (here U(g) is considered as a left U(go)-module)
equipped with the following left ¢/(g)-module structure: (uf)(u') := f(u'w)
for any f € Homyg,)(U(g), L), u,u’ € U(g).

The module Indg0 L is isomorphic to the module Coindg0 +L where
go-module , L is obtained from L by a certain twist (see [BF], [Ch]). In this
subsection we give an explicit construction of this isomorphism.
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3.2.1. — Retain notation of Lemma 3.1.2. For k € N set
Fri= Y Ulgo)z.
JCI|J|<k

One has z x5 = £z, modulo .7-"¢‘,J’+|JII'1. This implies that F2FI C
FP+4 and thus F, is a filtration of U(g). In particular, F* are U(go)-
bimodules and the filtration does not depend from the choice of {x;};c;.

Consider U(g) and U(go) as left U(go)-modules through the left
multiplication. Denote by ¢ a go-homomorphism from U(g) to U(go) such
that kere = FI7! and t(zy) = 1. Recall that ker: does not depend
from the choice of basis in g;. Modulo .7-'(‘,”-1 for any g € go one has
gz; = x19 + c(g)xzr where c(g) stands for the eigenvalue of g in the one-
dimensional go-module A*Pg;. Thus

(3)  t(ug) = t(u)(g —cl9)), tlgu)=gu(u), Vg€ go,u € U(g).

Define a map (.|.) from U(g) ®u(g,) U(8) to U(go) by setting (ulu’) =
t(un'). For any subsets J,J' of I set 655 = 1if J = J" and 6550 =0
otherwise.

3.2.2. LEMMA. — For any J C [ there exist uy,v; € U(g) such
that (UJI.T,]I) = (CCJIIUJ) = 6J7JI.

Proof. — We prove the existence of v; by induction on r = |I'\ J|.
For r =0, J = I and v; = 1 satisfies the conditions.
Fix J C I. For any J’ C I such that |J'| < |J|, one has zyzp\; =

+xp yusr modulo ker: = FH=1 Thus (zg | zpg) = 0 for J # J' and
(l'_] | .’E[\J) = +1. Set

ViI=2Tng — Z v (x| 731\1)-
[71>1J]
Then (zj/|v) =0 for any J' C I,J’' # J and (xs|v) = £1. This proves the
assertion.

The existence of uj can be shown similarly. ]

3.2.3. — Consider g; as odd vector space endowed by the structure
of go-module. Then A*°Pg; is a one-dimensional go-module which is even
iff dimg; is even. For a (graded) go-module L denote by .L the graded
go-module L ® A*°Pg;. We will consider , L as the vector space L (if dim g,
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is even) or II(L) (otherwise) equipped by a new structure of go-module
given by g * m := (g + ¢(g))m for any g € go,m € L.

3.2.4. PROPOSITION. —  For any go-module L the linear map V¥
defined by
U(u' @ m)(u) := (u|u') *m, Ym € L, u,u’ € U(g)

provides an isomorphism IndgO L = Coindgo( L ® At°Pg,).

Proof. — 1If dimg, is even then (u|u’) = 0 provided that u,u’ are
graded elements of distinct parity in U(g). Similarly, if dim g, is odd then
(u|u') = 0 provided that u,u’ are graded elements of the same parity in
U(g). This shows that the map ¥ respects the Z2-grading.

For any g € go and m € L one has, by (3)
(ulu'g) * m = t(uu'g) ¥ m = (u(ur')(g — c(9))) * m = (ulu) * (gm)

and thus ¥(u'g®m) = ¥ (v’ @ gm). Moreover ¥(u' ® m) is a go-linear map
since

¥ (u' @ m)(gu) = (gulu)m = g(ulu)m = g¥ (v’ @ m)(u).
Hence ¥ is a well-defined map from Indg0 L =U(g) Ru(go) L to Coindg o *xL-
For any s € U one has
U(su' @ m)(u) = (ulsu')m = (us|u’)m = ¥(u' @m)(us) = (s¥ (v’ ®m))(u)
and so ¥ is a homomorphism of left ¢/(g)-modules.

Any element of Indg0 L can be written in the form Jcr%s @ my
where m; € L. Fix J' C I and choose u - € U(g) as in Lemma 3.2.2. Then
¥ (> jcr s ® my)(ugr) = my:. This implies that ker ¥ = 0.

Fix J C I and choose vy € U(g) as in Lemma 3.2.2. Then for any
m € L one has ¥(vy; ® m)(z;/) = 87, 5-m. This implies the surjectivity of

¥ and completes the proof. a
3.3. — Retain notation of Lemma 3.2.2.
THEOREM. —  Assume that g = go @ 91 is a Lie superalgebra such

that g, is finite dimensional. Then the map ¢ : z — (ad vp)z provides
a linear isomorphism from the go-invariants of U(go) ® A*°Pg; onto the

anticentre A(g). Moreover one has gr ¢(z) = x grz where x is an element
of A*°P(g;).
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Proof. — The proof follows from Lemma 3.1.2 and Proposition 3.2.4.
We give the full details below.

Set .U(go) := U(go) ® A*°Pg,. Using notation of Proposition 3.2.4 one

has
(Ind§, U(go))? = ¥~ ((Coind§, .U(go))?).

For z € (.U(go))?° denote by f, the linear map U(g) — C such that f,(1) =
z and f,(gU(g)) = 0. The map z — f, provides a linear isomorphism
(+U(g0))® — (Coind§ .U(go))?. Therefore the map z — ¥~ f, provides
a linear isomorphism (.(go))% —— (Ind§ U(go))®. Moreover ¥~}(f,) =
vg ® z since (ulvg)z = 0 for u € U(g)g and (1|vy)z = 2. Using Lemma 3.1.2,
one concludes that ¢ : z — (ad’ vg)z is a linear isomorphism (,U(go))% ——

A(g).

The proof of Lemma 3.2.2 shows that vy = +x; +ZJ¢@ zy\yd; where
d; are certain elements of U(go). Therefore

(4) 9(2) := (ad'v0) () = (ad’ (w1 +_cszs))z
JeI
where c¢; are scalars. By the formula (2), gr¢(z) = zgrz for ¢ :=grzy €
A*°P(g;). This completes the proof. O
3.3.1. Remark. — If A%Pg,; is a trivial go-module, the map ¢ of

Theorem 3.3 provides a linear isomorphism Z(go) — .A(g). In particular,
A(g) # 0 in this case, because Z(go) contains the base field.

3.4. — A classification theorem of Kac (see [K1], 4.2.1) states that
any complex simple finite dimensional Lie superalgebra is isomorphic either

to one of the classical Lie superalgebra or to one of the Cartan Lie
superalgebras W (n), S(n), S(n), H(n).

Evidently At°Pg, is a trivial go-module if gq is a semisimple Lie algebra
or if g; = g} as go-module. In particular, A*°Pg; is trivial for all simple
classical Lie superalgebras. It is easy to check that it is trivial also for the
Cartan Lie superalgebras S(n), S(n), H(n).

On the other hand, if go is reductive and A*Pg; is not a trivial go-
module, then (U(go) ® A*Pg;)8 = 0 and so A(g) = 0. In particular, for
the “strange” non-simple Lie superalgebras p(n) one has A(g) = 0 (remark
that Z(g) = C, see [Sch]).

3.4.1. Example. — Consider a Cartan type Lie superalgebra g :=
W(n) (n > 2). Let us show that A(g) = 0. Recall that W (n) is a Z-graded
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