KRZYSZTOF KURDYKA

On gradients of functions definable in o-minimal structures

<http://www.numdam.org/item?id=AIF_1998__48_3_769_0>
ON GRADIENTS OF FUNCTIONS
DEFINABLE IN O-MINIMAL STRUCTURES

by Krzysztof KURDYKA

0. Introduction.

Many results in subanalytic or semialgebraic geometry of \mathbb{R}^n hold true in a more general setting called “the theory of o-minimal structures on the real field” (see [DM]). This theory has presented a strong interest since 1991 when A. Wilkie [W1] proved that a natural extension of the family of semialgebraic sets containing the exponential function $((\mathbb{R}, \exp)$-definable sets) is an o-minimal structure. A similar extension of subanalytic sets $((\mathbb{R}_{an}, \exp)$-definable sets) was then treated by L. van den Dries, A. Macintyre, D. Marker in [DMM] (geometric proofs of these facts were found recently by J-M. Lion and J.-P. Rolin [LR1], [LR2]). Another type of o-minimal structure $((\mathbb{R}_{an}^K)$-definable sets) was obtained by C. Miller [Mi], by adding to subanalytic sets all functions $x \rightarrow x^r$, $r \in K$, where K is a subfield of \mathbb{R}. We give a list and examples of o-minimal structures in section 1. An extension of semialgebraic and subanalytic geometry was also undertaken by M. Shiota [S1], [S2].

Theorem 1 (Section 2), the first main result of this paper, is an o-minimal generalization of the famous Łojasiewicz inequality $\|\nabla f\| \geq |f|^\alpha$ with $\alpha < 1$, where f is an analytic function in a neighborhood of $a \in \mathbb{R}^n$, $f(a) = 0$. We prove that if f is a differentiable function in a

This research was partially supported by KBN grant 0844/P3/94/07.

Key words: o-minimal structure – Subanalytic sets – Łojasiewicz inequalities – Trajectories of gradient.

bounded domain, definable in some o-minimal structure, then there exists a \(C^1 \) function \(\Psi \) in one variable such that \(\| \text{grad} \Psi \circ f \| \geq c > 0 \). It is rather surprising that the result holds also for infinitely flat functions. Theorem 1 implies that the set of asymptotic critical values of \(f \) is finite (Proposition 2). We recall in the beginning of the section the already known o-minimal version of another Lojasiewicz inequality for continuous definable functions on a compact set.

The main result of Section 3 is Theorem 2 which states: if \(U \) is an open, bounded subset of \(\mathbb{R}^n \), \(f : U \to \mathbb{R} \) is a \(C^1 \) function definable in some o-minimal structure, then all trajectories of \(-\text{grad} f \) (i.e. solutions of the equation \(\dot{x} = -\text{grad} f \)) have their length bounded by a constant independent of the trajectory. The function \(f \) may be unbounded and may not have a continuous extension on \(\bar{U} \). We prove also, that for a non negative definable \(g \), the flow of \(-\text{grad} g \) defines a deformation retraction onto \(g^{-1}(0) \). Some applications of this result in the real analytic case can be found in [Si], [Sj]. We finish the paper by a discussion of Thom's Gradient Conjecture for o-minimal structures.

In Section 1 we gather basic facts on o-minimal structures. To make the paper self-contained and accessible for a wider audience we add a proof of Lemma 2 (on definable functions in one variable). We give also an elementary proof (suggested by C. Miller and J-M. Lion) of the curve selection lemma, the crucial tool in the proof of Theorem 1.

General references of various facts, when not specified, will be as follows: for semialgebraic geometry – [BCR], for subanalytic geometry – [BM] or [L4], for o-minimal structures – [DM].

In this paper we take the gradient with respect to the canonical euclidian metric in \(\mathbb{R}^n \).

1. o-minimal structures on the real field.

Definition 1. — Let \(\mathcal{M} = \bigcup_{n \in \mathbb{N}} \mathcal{M}_n \), where each \(\mathcal{M}_n \) is a family of subsets of \(\mathbb{R}^n \). We say that the collection \(\mathcal{M} \) is an o-minimal structure on \((\mathbb{R}, +, \cdot) \) if:

1. each \(\mathcal{M}_n \) is closed under finite set-theoretical operations;
2. if \(A \in \mathcal{M}_n \) and \(B \in \mathcal{M}_m \), then \(A \times B \in \mathcal{M}_{n+m} \).
(3) let $A \in \mathcal{M}_{n+m}$ and $\pi : \mathbb{R}^{n+m} \longrightarrow \mathbb{R}^n$ be projection on the first n coordinates, then $\pi(A) \in \mathcal{M}_n$;

(4) let $f, g_1, \ldots, g_k \in \mathbb{Q}[X_1, \ldots, X_n]$, then $\{x \in \mathbb{R}^n : f(x) = 0, g_1(x) > 0, \ldots, g_k(x) > 0\} \in \mathcal{M}_n$;

(5) \mathcal{M} consists of all finite unions of open intervals and points.

For a fixed o-minimal structure \mathcal{M} on $(\mathbb{R}, +, \cdot)$ we say that A is an \mathcal{M}-set if $A \in \mathcal{M}_n$ for some $n \in \mathbb{N}$. We say that a function $f : A \longrightarrow \mathbb{R}^m$, where $A \subset \mathbb{R}^n$, is an \mathcal{M}-function if its graph is an \mathcal{M}-set.

Axiom (5) will be called the o-minimality of \mathcal{M}.

Examples. — We give below a list of o-minimal structures on $(\mathbb{R}, +, \cdot)$ (see also [DM] for detailed definitions and comparisons between the above examples) with examples of functions definable in those o-minimal structures:

(1) Semialgebraic sets (by Tarski-Seidenberg); $f(x, y) = \sqrt{x^4 + y^4}$.

(2) Global subanalytic sets (by Gabrielov);

$f(x, y) = \frac{y}{\sin x}$, $x \in (0, \pi)$.

(3) (\mathbb{R}, \exp)-definable sets (by Wilkie);

$f(x, y) = x^2 \exp\left(-\frac{y^2}{x^4 + y^2}\right) \ln x$.

(4) (\mathbb{R}_{an}, \exp)-definable sets (by van den Dries, Macintyre, Marker);

$f(x, y) = x^{\sqrt{2}} \ln(\sin y)$, $x > 0, y \in (0, \pi)$.

(5) (\mathbb{R}_{an}^R)-definable sets (by Miller);

$f(x, y) = x^{\sqrt{2}} \exp\left(\frac{x}{y}\right)$, $0 < x < y < 1$.

Recently another example of an o-minimal structure was found by van den Dries and Speissegger [DS] which is larger than \mathbb{R}_{an}^R but polynomially bounded (i.e any definable function in one variable is bounded by a polynomial at infinity). Finally we mention a result of Wilkie [W2] in which he gives a general method for construction of o-minimal structures; this method can be applied to Pfaffian functions.

In the rest of this paper \mathcal{M} will denote some fixed, but arbitrary, o-minimal structure on $(\mathbb{R}, +, \cdot)$. We will give now several elementary properties of \mathcal{M}-sets and \mathcal{M}-functions.

Remark 1. — Let E be an \mathcal{M}-set in \mathbb{R}^{n+1}. Axioms (1)--(4) imply
that the sets
\[\{ x \in \mathbb{R}^n : \exists x_{n+1} \ (x, x_{n+1}) \in E \} \] and
\[\{ x \in \mathbb{R}^n : \forall x_{n+1} \ (x, x_{n+1}) \in E \} \]
are \(\mathcal{M} \)-sets. Actually the first set is the image of \(E \) by projection, the second
is the complement of the image of the complement of \(E \) by projection.

Remark 2. — The sum, product, inverse, composition of \(\mathcal{M} \)-functions is again an \(\mathcal{M} \)-function. Also the image and inverse image of an
\(\mathcal{M} \)-set by an \(\mathcal{M} \)-function are again \(\mathcal{M} \)-sets. Proofs of these facts are quite
standard applications of Remark 1 and axioms (1)-(4) and actually the
same as in the semialgebraic case (see e.g. [BCR]).

Lemma 1. — Let \(f : A \rightarrow \mathbb{R} \) be an \(\mathcal{M} \)-function such that \(f(x) \geq 0 \)
for all \(x \in A \). Let \(G : A \rightarrow \mathbb{R}^m \) be an \(\mathcal{M} \)-mapping and define a function
\(\varphi : G(A) \rightarrow \mathbb{R} \) by
\[\varphi(y) = \inf_{x \in G^{-1}(y)} f(x). \]
Then \(\varphi \) is an \(\mathcal{M} \)-function.

Proof. — Write a formula for the graph of the function \(\varphi \) and apply
Remark 1.

Corollary 1. — Let \(A \) be an \(\mathcal{M} \)-set in \(\mathbb{R}^n \). Then the distance
function \(d_A : \mathbb{R}^n \rightarrow \mathbb{R} \) is an \(\mathcal{M} \)-function, where \(d_A(x) = \inf_{y \in A} |x - y| \).

Corollary 2. — Let \(A \) be an \(\mathcal{M} \)-set in \(\mathbb{R}^n \). Then \(\overline{A} \) and \(\text{Int} A \) are
\(\mathcal{M} \)-sets.

Proof. — Actually by Corollary 1 we know that \(d_A \) is an \(\mathcal{M} \)-function,
hence \(\overline{A} = d_A(0)^{-1} \) is an \(\mathcal{M} \)-set. To prove that the interior of \(A \) is an \(\mathcal{M} \)-set
we use the fact that by axiom (1) the complement of an \(\mathcal{M} \)-set is an \(\mathcal{M} \)-set.

Lemma 2 (Monotonicity Theorem). — Let \(f : (a, b) \rightarrow \mathbb{R} \) be an
\(\mathcal{M} \)-function. Then there exist real numbers \(a = a_0 < a_1 < \ldots < a_k = b \) such
that \(f \) is continuously differentiable on each interval \((a_i, a_{i+1}) \). Moreover
\(f' \) is an \(\mathcal{M} \)-function and the function \(f \) is strictly monotone or constant on
every interval \((a_i, a_{i+1}) \).

Proof (Due essentially to van den Dries [vD]). — We may assume
that the set \(f((a, b)) \) is infinite. First we prove that \(D(f) \), the set of
discontinuity points of \(f \), is finite.
Writing the definition of continuity of a function at a point and using Remark 1 we deduce that $D(f)$ is an M-set in \mathbb{R}, hence by o-minimality, it is enough to prove that f is continuous at some point of (a, b). Since the set $f((a, b))$ is an infinite M-set it contains an open interval. Thus by induction we can construct a descending sequence of intervals $[\alpha_n, \beta_n] \subset (a, b)$ such that $\alpha_n < \alpha_{n+1}$, $\beta_{n+1} < \beta_n$, $\beta_n - \alpha_n < 1/n$ and $f([\alpha_n, \beta_n])$ is contained in an interval of length smaller than $1/n$. Clearly f is continuous at the point $\bigcap_{n \in \mathbb{N}} [\alpha_n, \beta_n]$. So we have proved that the complement of $D(f)$ is dense in (a, b), hence $D(f)$ is finite.

We can assume now that f is continuous on (a, b). To prove differentiability observe first that by o-minimality we have:

Observation. — For each $x \in (a, b)$ and each $c \in \mathbb{R}$ there exists an $\varepsilon > 0$ such that $f(t) \geq f(x) + c(t - x)$ for all $t \in (x, x + \varepsilon)$ or $f(t) \leq f(x) + c(t - x)$ for all $t \in (x, x + \varepsilon)$.

Let us write $f'_-(x) = \lim_{t \to 0^-} \frac{1}{t}(f(x + t) - f(x))$ for $x \in (a, b]$ and $f'_+(x) = \lim_{t \to 0^+} \frac{1}{t}(f(x + t) - f(x))$ for $x \in [a, b)$. Note that f'_+ and f'_- are M-functions, by Remark 1. From the above observation it is not difficult to obtain the following consequences:

i) for each $x \in (a, b)$ the values of $f'_-(x)$ and $f'_+(x)$ are well defined (possibly equal to $+\infty$ or $-\infty$),

ii) for each $x \in (a, b)$ there exists y arbitrary close to x, $y > x$ such that $f'_+(y) \leq f'_+(x)$, $f'_-(y) \leq f'_-(x)$ or $f'_+(y) \geq f'_+(x)$, $f'_-(y) \geq f'_-(x)$.

Clearly the sets

$$\{x \in (a, b); f'_+(x) = +\infty\}, \{x \in (a, b); f'_+(x) = -\infty\}$$

are M-sets, hence are finite unions of open intervals and points. By ii) these sets are finite. So we can assume that f'_+ and f'_- take values in \mathbb{R}. Since f'_+ and f'_- are M-functions we may also assume that these functions are continuous on (a, b). It follows easily now from ii) that $f'_+ = f'_-$ on (a, b), but this means that f is C^1 on (a, b).

We proved also that f' is an M-function, hence the claim on monotonicity follows from the fact that $\{f' = 0\}$ is an M-set and so is a finite union of points and open intervals.

Writing the definition of partial derivatives and using Remark 1 we obtain:
Lemma 3. — Let \(f : U \rightarrow \mathbb{R}^k \) be a differentiable \(\mathcal{M} \)-function, where \(U \) is open in \(\mathbb{R}^n \). Then \(\partial f / \partial x_j, j = 1, \ldots, n \) are \(\mathcal{M} \)-functions, and hence \(\text{grad} \ f \) is an \(\mathcal{M} \)-mapping.

Proposition 1 (Curve Selection Lemma). — Let \(A \) be an \(\mathcal{M} \)-set in \(\mathbb{R}^n \) and suppose that \(a \in A \setminus \{a\} \). Then there exists an \(\mathcal{M} \)-function \(\gamma : [0, \varepsilon) \rightarrow \mathbb{R}^n \) which is \(C^1 \) on \([0, \varepsilon) \) and such that
\[
a = \gamma(0) \quad \text{and} \quad \gamma((0, \varepsilon)) \subset A \setminus \{a\}.
\]

Proof. — The key point is to construct a “definable” selection operator \(e \), which assigns to each nonempty set \(A \in \mathcal{M}_n \) an element \(e(A) \in A \). Let \(n = 1 \). Then \(e(A) \) is the smallest element of \(A \) if \(A \) has one. Otherwise, let \(a := \inf A \) and let \(b \in \mathbb{R} \cup \{+\infty\} \) be maximal such that \((a, b) \subseteq A \). If \(a, b \in \mathbb{R} \), then \(e(A) := (a + b)/2 \). If \(a \in \mathbb{R} \) and \(b = +\infty \), then \(e(A) := a + 1 \). If \(a = -\infty \) and \(b \in \mathbb{R} \), then \(e(A) := b - 1 \). If \(a = -\infty \) and \(b = +\infty \) (i.e., \(A = \mathbb{R} \)), then \(e(A) := 0 \). Assume \(e(A) \) has been defined for all nonempty \(A \in \mathcal{M}_n \). Let \(B \in \mathcal{M}_{n+1} \) be nonempty, and let \(A \) be its image in \(\mathbb{R}^n \) under the projection map \((x_1, \ldots, x_n, x_{n+1}) \mapsto (x_1, \ldots, x_n) \). Put \(a := e(A) \). Then \(e(B) := (a, e(B_a)) \) where \(B_a := \{r \in \mathbb{R} : (a, r) \in B\} \).

This selection operator \(e \) has several applications, and Curve Selection is only one of them: let \(A \in \mathcal{M}_n \) and \(a \in A \setminus \{a\} \). By \(\mathcal{O} \)-minimality the set \(\{|a - x| : x \in A\} \in \mathcal{M}_1 \) contains an interval \((0, \varepsilon), \varepsilon > 0 \). For \(0 < t < \varepsilon \), let \(\gamma(t) := e(\{x \in A : |a - x| = t\}) \). It is routine to check that \(\gamma : (0, \varepsilon) \rightarrow A \) belongs to \(\mathcal{M} \). By the monotonicity theorem \(\gamma \) is \(C^1 \) after suitable shrinking of \(\varepsilon \). After composition on the right with a sufficiently flat (at 0) function in \(\mathcal{M} \) (e.g. the inverse of the biggest component of \(\gamma \)) we can further arrange that \(\gamma \) extends to a \(C^1 \)-function on \([0, \varepsilon) \).

2. Lojasiewicz inequalities for \(\mathcal{O} \)-minimal structures.

We begin this section recalling an already well-known generalization of the Lojasiewicz inequality for continuous \(\mathcal{M} \)-functions on a compact set. This result was observed by T. Loi [Lo] for \((\mathbb{R}, \exp) \)-definable sets (actually his version is more precise than the theorem stated below); M. Shiota [S1], [S2] and L. van den Dries and C. Miller [DM] also noticed this fact.

Theorem 0. — Let \(K \) be a compact subset of \(\mathbb{R}^n \) and let \(f,g : K \rightarrow \mathbb{R} \) be two continuous \(\mathcal{M} \)-functions. If \(f^{-1}(0) \subset g^{-1}(0) \), then there
exists a strictly increasing positive \mathcal{M}-function $\sigma : \mathbb{R}_+ \to \mathbb{R}$ of class C^1, such that for any $x \in K$ we have
\[|f(x)| \geq \sigma(g(x)). \]

The idea of the proof goes back to the original argument of Łojasiewicz (see [L2], [KLZ]). Let $\Sigma \subset \mathbb{R}^2$ be the image of K by the mapping $K \ni u \to (g(u), f(u)) = (x, y)$. Clearly Σ is an \mathcal{M}-set; moreover it is compact and $\Sigma \cap \{y = 0\} = \{(0,0)\}$. It is not difficult to find (by Lemma 2) a strictly increasing positive \mathcal{M}-function $\sigma : \mathbb{R}_+ \to \mathbb{R}$ of class C^1, such that $\Sigma \subset \{y \geq \sigma(x), x \geq 0\}$. It is proved in [DM] that for each $k \in \mathbb{N}$ one can find σ of class C^k.

We state now the main result of this section. Recall that \mathcal{M} is any fixed o-minimal structure on $(\mathbb{R}, +, \cdot)$.

Theorem 1. Let $f : U \to \mathbb{R}$ be a differentiable \mathcal{M}-function, where U is an open and bounded subset of \mathbb{R}^n. Suppose that $f(x) > 0$ for all $x \in U$. Then there exists $c > 0, \rho > 0$ and a strictly increasing positive \mathcal{M}-function $\Psi : \mathbb{R}_+ \to \mathbb{R}$ of class C^1, such that
\[\|\text{grad}(\Psi \circ f)(x)\| \geq c, \]
for each $x \in U$, $f(x) \in (0, \rho)$.

The proof is given in the end of the section. We shall see now that in the subanalytic case our Theorem 1 is equivalent to the classical Łojasiewicz inequality for gradients of analytic functions (see [L1], [L2], [BM]). We state this result in the form generalized in [KP]:

Theorem (LI). Let $f : \Omega \to \mathbb{R}$ be a subanalytic function which is differentiable in $\Omega \setminus f^{-1}(0)$, where Ω is an open bounded subset of \mathbb{R}^n. Then there exist $C > 0, \rho > 0$ and $0 \leq \alpha < 1$ such that:
\[\|\text{grad} f(x)\| \geq C|f(x)|^\alpha, \]
for each $x \in \Omega$ such that $|f(x)| \in (0, \rho)$. If in addition $\lim_{x \to a} f(x) = 0$ for some $a \in \overline{\Omega}$ (which holds in the classical case, where f is analytic and $a \in \Omega$, $f(a) = 0$), then the above inequality holds for each $x \in \Omega \setminus f^{-1}(0)$ close to a.

To see that in the subanalytic case (LI) \Rightarrow Theorem 1 it is enough to put $\Psi(t) = t^{1-\alpha}$. To prove the converse in the subanalytic case, recall first that every subanalytic function in one variable is actually
semianalytic (see [L2], [KLZ]). Hence Ψ has the Puiseux expansion of the form $\Psi(t) = \sum_{\nu=0}^{\infty} a_{\nu} t^{\nu}$. Thus, for t small enough we have $|\Psi'(t)| \leq D t^k$ for some $D > 0$. The last inequality and Theorem 1 yield

$$\|\nabla f(x)\| = \frac{\|\nabla (\Psi \circ f)(x)\|}{|\Psi'(f(x))|} \geq \frac{c}{D} |f(x)|^{1-k}.$$

Remark. — The above argument and Theorem 1 imply that (LI) holds in any polynomially bounded o-minimal structure on $(\mathbb{R}, +, \cdot)$.

We discuss now a consequence of Theorem 1. Let $f : U \to \mathbb{R}$ be a differentiable function, where U is an open subset of \mathbb{R}^n. We shall say that $\lambda \in \mathbb{R} \cup \{-\infty, +\infty\}$ is an asymptotic critical value of f if there exists a sequence $x_n \in U$ such that

$$f(x_n) \to \lambda \quad \text{and} \quad \nabla f(x_n) \to 0.$$

Clearly any “true” critical value of f (i.e. $\lambda = f(x)$ and $\nabla f(x) = 0$, for some $x \in U$) is also an asymptotic critical value. Notice that this notion depends heavily on the domain U, in particular on whether U is bounded or not.

Suppose now that U is bounded and that our f is an \mathcal{M}-function, where \mathcal{M} is an o-minimal structure on $(\mathbb{R}, +, \cdot)$. Let λ be an asymptotic critical value of f. It follows immediately from Theorem 1 that f has no asymptotic critical values in $(\lambda - \rho, \lambda) \cup (\lambda, \lambda + \rho)$ for some $\rho > 0$. But on the other hand the set of all asymptotic critical values of f is an \mathcal{M}-subset of \mathbb{R}, so it must be finite. Thus we have proved:

Proposition 2. — If U is bounded and f is an \mathcal{M}-function, then the set of all asymptotic critical values of f is finite.

It is easily seen that $-\infty$ and $+\infty$ cannot be an asymptotic critical value of an \mathcal{M}-function defined in a bounded set. As the following example shows the assumption of boundness on U is necessary.

Example. — The function $f(x, y) = \frac{x}{y}$ on $U = \{y > 0\} \subset \mathbb{R}^2$, being semialgebraic, belongs to any o-minimal structure on $(\mathbb{R}, +, \cdot)$. But clearly any $\lambda \in \mathbb{R}$ is an asymptotic critical value of f.

Proof of Theorem 1. — It follows from Lemma 3 that $\nabla f(x) \to 0$ for any $x \in U$ is a \mathcal{M}-function. We may suppose that $f^{-1}(t) \neq \emptyset$ for any $t \in \mathbb{R}$. Theorem 1. — It follows from Lemma 3 that $\nabla f(x) \to 0$ for any $x \in U$ is a \mathcal{M}-function. We may suppose that $f^{-1}(t) \neq \emptyset$ for any $t \in \mathbb{R}$.
small enough \(t > 0 \), since otherwise, by \(\alpha \)-minimality, the theorem is trivial. Hence the function

\[
\varphi(t) = \inf \{ \| \text{grad} f(x) \| : x \in f^{-1}(t) \}
\]

is well-defined in some interval \((0, \varepsilon)\). By Lemma 1, \(\varphi \) is an \(\mathcal{M} \)-function.

Claim. There exists \(\varepsilon' > 0 \) such that \(\varphi(t) > 0 \) for any \(t \in (0, \varepsilon') \).

Assume that this is not the case and put

\[
\Sigma = \{ x \in U : \| \text{grad} f(x) \| < (f(x))^2 \}.
\]

Clearly \(\Sigma \) is an \(\mathcal{M} \)-set. Let \(f|_\Sigma \) denote the graph of \(f \) restricted to \(\Sigma \). If the claim doesn’t hold, then there exists a sequence of positive numbers \(t_n \to 0 \) such that \(\varphi(t_n) = 0 \) for all \(n \in \mathbb{N} \). Let \(x_n \in \Sigma \) be a sequence such that \(f(x_n) = t_n \), in other words \((x_n, t_n) \in f|_\Sigma \). Let \(b \) be an accumulation point of \(\{x_n\} \), then \((b, 0)\) belongs to the closure of the set \((f|_\Sigma \setminus \{(b, 0)\})\).

By the curve selection lemma (Proposition 1) we have an \(\mathcal{M} \)-function (arc) \(\tilde{\gamma} : (-\delta, \delta) \to \mathbb{R}^n \times \mathbb{R} \) of class \(C^1 \), such that \(\tilde{\gamma}(0) = (b, 0) \), and \(\tilde{\gamma}(0, \delta) \subseteq f|_\Sigma \). Write \(\tilde{\gamma}(s) = (\gamma(s), f \circ \gamma(s)) \), where \(\gamma(s) \in \Sigma \subseteq \mathbb{R}^n \). Let \(h(s) = f \circ \gamma(s) \) for \(s \in (0, \delta) \), then clearly \(\lim_{s \to 0^+} h(s) = 0 = \lim_{s \to 0^+} h'(s) \), since \(\gamma(s) \in \Sigma \). Of course \(h \) and \(h' \) are \(\mathcal{M} \)-functions, so by Lemma 2 we may suppose that \(h \) and \(h' \) are monotone; actually they must be strictly increasing. Thus we have

\[
0 < h'(s) \leq A(h(s))^2, \quad \text{for} \quad s \in (0, \delta),
\]

where \(A \) is a bound for \(\| \gamma'(s) \| \). But by the Mean Value Theorem we have \(h(s) \leq sh'(s) \), because \(h' \) is increasing. Finally, we get \(0 < h'(s) \leq As^2(h'(s))^2 \) for any \(s \in (0, \delta) \), which is impossible since \(\lim_{s \to 0^+} h'(s) = 0 \).

So we have proved that \(\varphi(t) > 0 \) for all \(t \in (0, \varepsilon) \), provided that \(\varepsilon > 0 \) is small enough. We define now:

\[
\Delta = \{ x \in U \setminus f^{-1}(0) : f(x) < \varepsilon, \| \text{grad} f(x) \| \leq 2\varphi(f(x)) \}.
\]

Observe that \(\Delta \) is also an \(\mathcal{M} \)-set and moreover \(\Delta \cap f^{-1}(t) \neq \emptyset \) for every \(t \in (0, \varepsilon) \). Hence as before there exists \(d \in \overline{U} \) such that \((d, 0) \in f|_\Delta \setminus \{(d, 0)\} \).

Applying again the curve selection lemma to \(f|_\Delta \) at the point \((d, 0)\) we obtain an \(\mathcal{M} \)-function (arc) \(\tilde{\eta} : (-\delta, \delta) \to \mathbb{R}^n \) of class \(C^1 \), such that \(\tilde{\eta}(0) = (d, 0) \), and \(\tilde{\eta}(0, \delta) \subseteq f|_\Delta \). Write as before \(\tilde{\eta}(s) = (\eta(s), f \circ \eta(s)) \), where \(\eta(s) \in \Delta \subseteq \mathbb{R}^n \). Let \(g(s) = f \circ \eta(s) \) for \(s \in (0, \delta) \), then clearly \(\lim_{s \to 0^+} g(s) = 0 \) and \(g(s) > 0 \) for each \(s \in (0, \delta) \). It follows from Lemma 2 that for \(\delta' > 0 \) small enough the function \(g : (0, \delta') \to \mathbb{R} \) is a diffeomorphism onto \((0, \rho)\), for some \(\rho > 0 \). We put

\[
\Psi(t) = g^{-1}(t) \quad \text{for} \quad t \in (0, \rho).
\]
We shall check now the inequality claimed in Theorem 1. Let B be some bound for $|\eta'(s)|$ in $(0, \delta')$. Take any $x \in U$ such that $t = f(x) \in (0, \rho)$, and write $s = \Psi(t) = g^{-1}(t)$. Then we have
\[
\|\text{grad} \Psi \circ f(x)\| = \Psi'(f(x))\|\text{grad} f(x)\| \\
\geq \Psi'(t) \frac{1}{2} \|\text{grad} f(\eta(s))\| \geq \frac{\Psi'(t)}{2B} (f \circ \eta)'(s) = \frac{1}{2B} = c,
\]
since $\|\text{grad} f(\eta(s))\| \|\eta'(s)\| \geq \langle \text{grad} f(\eta(s)), \eta'(s) \rangle = (f \circ \eta)'(s)$ and $B \geq \|\eta'(s)\|$. Theorem 1 follows.

3. Trajectories of gradients of \mathcal{M}-functions.

Let $f : U \rightarrow \mathbb{R}$ be a C^1 function, where U is an open subset of \mathbb{R}^n. We shall consider a vector field,
\[
U \ni x \mapsto -\text{grad} f(x) \in \mathbb{R}^n.
\]
Let $\alpha, \beta \in \mathbb{R} \cup \{-\infty, +\infty\}$. We shall say that $\gamma : (\alpha, \beta) \rightarrow U$ is a trajectory of the vector field $-\text{grad} f$ if it is a maximal differentiable curve verifying $\gamma'(t) = -\text{grad} f(\gamma(s))$. Actually we shall consider γ as an equivalence class of all curves obtained from γ by a strictly increasing C^1 reparametrization. Observe that if ψ is an increasing C^1 diffeomorphism between two intervals in \mathbb{R}, then the trajectories of $-\text{grad} \psi \circ f$ and those of $-\text{grad} f$ are the same.

Let $a, b \in \gamma$. We denote by $|\gamma(a, b)|$ the length of γ between a and b.

Lojasiewicz derived (see [L1], [L3]) from (LI) that all trajectories of $-\text{grad} f$ are of finite length, when f is analytic in a neighborhood of a compact \overline{U}. We have:

\textbf{Theorem 2.} — Let $f : U \rightarrow \mathbb{R}$ be a function of class C^1, where U is an open and bounded subset of \mathbb{R}^n. Suppose that f is an \mathcal{M}-function, for some o-minimal structure \mathcal{M}.

a) Then there exists $A > 0$ such that all trajectories of $-\text{grad} f$ have length bounded by A.

b) More precisely, there exists $\sigma : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ a continuous strictly increasing \mathcal{M}-function, with $\lim_{t \rightarrow 0} \sigma(t) = 0$, such that if γ is a trajectory of $-\text{grad} f$ and $a, b \in \gamma$, then
\[
|\gamma(a, b)| \leq \sigma(|f(b) - f(a)|).\]
Proof of theorem 2. — Taking, if necessary the composition $\psi \circ f$, where $\psi(t) = \frac{t}{\sqrt{1+t^2}}$, we may suppose that f is bounded; more exactly that the image of f lies in $(-1,1)$. We consider again the \mathcal{M}-function $\varphi : (-1,1) \to \mathbb{R}$ defined by

$$\varphi(t) = \inf\{\|\text{grad } f(x)\| : x \in f^{-1}(t)\},$$

when $f^{-1}(t) \neq \emptyset$, and $\varphi(t) = 1$ when $f^{-1}(t) = \emptyset$. Let Σ be the set of all asymptotic critical values of f. Observe that $\lambda \in \Sigma$ if $\varphi(\lambda) = 0$, or $\lim_{t \searrow \lambda} \varphi(t) = 0$, or $\lim_{t \nearrow \lambda} \varphi(t) = 0$.

Let $I \subset (-1,1)$ be an open interval. Assume that φ is bounded from below in I by some $c > 0$. Let γ be a trajectory of $-\text{grad } f$ and $a, b \in \gamma$. Suppose that the part of γ lying between a and b is contained in $f^{-1}(I)$. We parametrise γ by arc-length (i.e $\|\gamma'(s)\| = 1$), so by the Mean Value Theorem we have that $|f \circ \gamma(\beta) - f \circ \gamma(\alpha)| \geq c |\beta - \alpha|$, in other words

$$|\gamma(a, b)| \leq \frac{1}{c} |f(b) - f(b)|.$$

This observation explains the idea of the proof. By a partition $-1 = t_0 < t_1 < \ldots < t_k = 1$ we shall decompose $(-1,1)$ in such a way that φ is strictly monotone on (t_i, t_{i+1}). Moreover we shall distinguish between two disjoint types of intervals, namely

1. there exists $c_i > 0$ such that $\varphi(t) \geq c_i$ on (t_i, t_{i+1}) (we write $i \in I_1$ in this case), or
2. one of t_i, t_{i+1} is an asymptotic critical value of f, hence by Theorem 1, there exist $c_i > 0$ and $\Psi_i : (t_i, t_{i+1}) \to \mathbb{R}$ a strictly increasing, bounded C^1 function such that,

$$\|\text{grad } (\Psi_i \circ f)(x)\| \geq c_i$$

for all $x \in f^{-1}(t_i, t_{i+1})$ (we write $i \in I_2$ in this case).

Take now any trajectory γ of $-\text{grad } f$, and let $\gamma_i = \gamma \cap f^{-1}(t_i, t_{i+1})$. We denote by $|\gamma|$ (resp. $|\gamma_i|$) the length of γ (resp. γ_i). Clearly $|\gamma_i| \leq \frac{1}{c_i} |t_i - t_{i+1}|$ if $i \in I_1$. Extending by continuity, we may suppose that each Ψ_i is defined also at t_i and t_{i+1}. Hence for $i \in I_2$ we have $|\gamma_i| \leq \frac{1}{c_i} |\Psi_i(t_i) - \Psi_i(t_{i+1})|$, since the trajectories of $-\text{grad } (\Psi_i \circ f)$ and $-\text{grad } f$ are the same in $f^{-1}(t_i, t_{i+1})$. Finally, we can write

$$|\gamma| = \sum_{i=0}^{k-1} |\gamma_i| \leq \sum_{i \in I_1} \frac{1}{c_i} |t_i - t_{i+1}| + \sum_{i \in I_2} \frac{1}{c_i} |\Psi_i(t_i) - \Psi_i(t_{i+1})| = A,$$
which proves part a) of Theorem 2.

We are now going to construct the function \(\sigma \) of part b). For \(i \in I_2 \) we put

\[
\sigma_i(r) = \frac{1}{c_i} \sup \{ |\Psi_i(p) - \Psi_i(q)| : p, q \in (t_i, t_{i+1}), r = p - q \},
\]

and \(\sigma_i(r) = \frac{r}{c_i} \) for \(i \in I_1 \). Extend each \(\sigma_i \) to a continuous strictly increasing \(\mathcal{M} \)-function on \(\mathbb{R} \). It is easily seen that \(\sigma = \sup \sigma_i \) satisfies b) of Theorem 2.

We finish this section by a short discussion of some consequences of Theorem 2, which extend and generalize those known in the real analytic (compact) setting.

Observe that if \(\gamma : (\alpha, \beta) \to U \) is a trajectory then \(x_0 = \lim_{s \to \beta} \gamma(s) \) exists, and in general \(x_0 \) belongs to \(\overline{U} \). Notice that if \(x_0 \in U \), then \(x_0 \) is a critical point of \(f \). Let us take \(E \) a closed \(\mathcal{M} \)-subset in an open set \(U \); by 4.22 of [DM], \(E \) is the zero set of an \(\mathcal{M} \)-function \(f : U \to \mathbb{R} \) of class \(C^2 \). Let \(g = f^2 \). We want to show that the flow of \(-\text{grad} g \) defines a strong deformation retraction of a neighborhood of \(E \) onto \(E \). This is actually a new result even in the subanalytic case since the retraction is global and \(E \) is not necessarily compact. By Proposition 2, taking a neighborhood of \(E \), we may suppose that 0 is the only asymptotic critical value of \(g \) in \(U \).

Clearly the set

\[
V = \{ x \in U : \text{dist}(x, \partial U) < \sigma(g(x)) \}
\]

is an \(\mathcal{M} \)-set, it is an open neighborhood of \(E \). For each \(x \in V \) we denote by \(\gamma_x : (\alpha_x, \beta_x) \to U \) the trajectory passing through \(x \). It is clearly unique if \(g(x) \neq 0 \) and constant (hence unique) if \(g(x) = 0 \). Put \(R(x) = \lim_{s \to \beta_x} \gamma_x(s) \), and observe that \(R(x) \in E \). We have:

Proposition 3. — There exists an open neighborhood \(V_1 \) of \(E \) such that \(R : V_1 \to E \) is a strong deformation retraction.

Proof. — First we shall prove that \(R \) is continuous. Take \(x_0 \in V \) and \(\Omega_0 \) a neighborhood of \(R(x_0) \). Let \(x_1 \notin E \) be close to \(R(x_0) \) so that there is (by Theorem 2 b)) a neighborhood \(\Omega_1 \) of \(x_1 \) with the following property: any trajectory passing through \(\Omega_1 \) has its limit in \(\Omega_0 \). By continuity of the flow of \(-\text{grad} g \) there exists a neighborhood \(G \) of \(x_0 \) such that any trajectory passing by \(G \) must cross \(\Omega_1 \). So we have \(R(G) \subset \Omega_0 \), which proves the continuity of \(R \).
Let γ be the trajectory passing through x. Let γ_x be the part of γ between x and the limit $R(x)$. Assume that $\gamma_x : [0, \beta_x] \to U$ is parametrized by arc-length; moreover that $\gamma_x(0) = x$, and $\gamma_x(\beta_x) = R(x)$. Clearly β_x is the length of γ_x. Notice that the argument in the proof of continuity of R yields that the function $V \ni x \to \beta_x$ is continuous. Let V_1 be the set of all $x \in V$ such that γ_x lies in V. We define a homotopy $F : [0,1] \times V_1 \to V_1$ as follows: $F_t(x) = \gamma_x(t\beta_x)$.

In general the retraction R is not an \mathcal{M}-mapping. Take $g(x,y) = (x^2 - y^3)^2$; it was observed by Hu [Hu] that the retraction R is not hoelderian (at $(0,0)$) in this case, hence it cannot be subanalytic. Observe also that, in general, the set V_1 is not an \mathcal{M}-set. It would be interesting to prove that actually R belongs to some larger \mathcal{O}-minimal structure. Even a weaker problem is open (also in the subanalytic case):

Conjecture (F). — Let γ be a trajectory of $-\text{grad} \, f$, where f is an \mathcal{M}-function of class C^1, and let H be any \mathcal{M}-subset. Then $\gamma \cap H$ has a finite number of connected components.

This is connected with the Gradient Conjecture of R. Thom, proved recently in [KM]. R. Thom asked whether for an analytic function f every trajectory γ of $-\text{grad} \, f$ has a tangent at the limit point (i.e. whether $\lim_{s \to \beta_x} \frac{\gamma(s) - R(x)}{|\gamma(s) - R(x)|}$ exists). We can of course ask the same question for a trajectory of the gradient of any \mathcal{M}-function of class C^1.

It is easily seen that (F) implies that $\lim_{s \to \beta_x} \frac{\gamma'(s)}{|\gamma'(s)|}$ exists, thus that the tangent to γ at the limit point exists.
BIBLIOGRAPHY

Manuscrit reçu le 15 septembre 1997,
accepté le 13 janvier 1998.

Krzystof KURDYKA,
Université de Savoie
Laboratoire de Mathématiques
Campus Scientifique
73376 Le Bourget-du-Lac Cedex (France).
kurdyka@univ-savoie.fr

and

Uniwersytet Jagielloński
Instytut Matematyki
ul. Reymonta 4
30-059 Kraków (Poland).
kurdyka@im.uj.edu.pl