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THE DISTRIBUTION OF EXTREMAL POINTS
FOR KERGIN INTERPOLATION: REAL CASE

by T. BLOOM and J.-P. CALVI

1. Introduction.

The general purpose of this note is to study, in some cases, the
sequences of Kergin interpolation operators that are the best (see below)
for approximating holomorphic functions. Let K be a C-convex (for the
definition see [1], [2] or [3]) compact set in C*, n > 1. We say that an
infinite triangular array of points in K

(1.1) A={A% j=0,1,...,dd=1.2,..}

is extremal for Kergin interpolation on K if, for every function f holomor-
phic on a neighborhood of K (i.e. f € H(K)), the Kergin interpolation
polynomial K 4af of f with respect to the points Ad,..., A% converges to
f uniformly on K as d — oo. If such an array exists, we say that K admits
an extremal array. The question of knowing whether a given array A is ex-
tremal or not is related, as we shall see, to the study of the distribution of
the points, that is to the behavior of the sequence of probability measures

(1.2) =g = Z[Ad] (d=1,2,...)

where [z] stands for the Dirac measure of the point z.
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Recently, examples of extremal arrays have been found in the case of
circular convex sets (see [4] and below). Here, we shall study the case of
(totally) real sets, the definition of which follows.

One says that a real subspace V' of C" is totally real if VNV = {0}.
A compact set is said to be totally real if it is contained in a translate of a
totally real subspace, in particular its interior as a subset of C" is empty.
A compact set of the form

(1.3) E ={a+rcosfe; +rsinfes, 0<r <1, 6€[0,2n]}

is said to be a (totally real) ellipse if the space V := vectg(ej,ez) is
a totally real plane. The measure dog is then defined, by [ gfdoe =
1 or . . .

o f02 f(cosBe; + sinfez)df for all functions f continuous on E. dog

is supported on the boundary of E as a subset of V. In fact, if A is an
affine automorphism from R? to V that maps the unit disc of center 0
onto F, then the measure dog is only the image by A of the standard

51;(10 measure on the unit circle. A segment E = {a+tej,t € [—1,1]} (not
reduced to one point) is said to be a degenerate ellipse, the measure dog is
defined by [ fdog = % fo" f(a+ cosfe;)df. Thus dog is the image of the
arcsin distribution on [—1,1] by the map t — a + te;.

The main result of this paper is the characterization of those totally
real compact convex sets which admit an extremal array.

THEOREM 1. — Let n > 1. A totally real convex compact set K in
C™ (not reduced to one point) admits an extremal array if and only if it
is a (possibly degenerate) ellipse. Furthermore, in this case, an array A is
extremal for K if and only if the sequence u/ converges weakly to dok.

Using basic properties of Kergin interpolation, we shall easily reduce
the statement to the simpler

THEOREM 2. — Let K be a convex compact set in R™ C C™ of non
void interior (as a subset of R™).
(1) Ifn =1, every K (which must be an interval) admits extremal arrays.
(2) If n =2, K admits extremal arrays if and only if it is an ellipse.
(3) If n > 2, there is no extremal array in K.

In the first two cases, an array A is extremal if and only if p4 converges
weakly to dok as d — oo.
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We shall assume that the reader is familiar with the definition of
Kergin interpolation. We refer to [1], [2], or for a brief elementary survey,
to [4]. Let us just recall the fundamental invariance formula. Let A be an
affine mapping from C™ to C", let X = {z°,...,z¢} be a finite subset of a
compact C-convex set K C C™, and let A(X) = {A(z°),...A(z%)}. Then
for every f € H(K) we have

(14) Kx(f o A) =Kax)(f) o A

In particular if n is equal to 1 then K4(x) is the Lagrange-Hermite
interpolation polynomial with respect to the points A(z%), A(z!),..., A(z%)
in the plane.

It also follows that the computation of Kergin interpolation is inde-
pendent of the choice of coordinates for the vector space. We can therefore
define the Kergin interpolants of a function defined on an abstract finite-
dimensional complex vector space Y. Furthermore if Y is a subspace of C™
and if K is a C-convex compact set of C" included in Y then K is as well,
C-convex as a subset of Y. Now if X is a finite subset of such a C-convex
set K and if f is holomorphic on a neighborhood of K (as a subset of C")
then, it follows easily from formulas defining Kergin interpolants that

(1.5) Kx(fiy) =Kx(f)y,

where gy denotes the restriction of g to Y. We shall call this formula, the
restriction formula for Kergin interpolation.

It is known that every totally real C-convex compact set is actually
convex in the usual geometric sense. Therefore, in this paper, there will be
no loss of generality in considering only such standard convex sets. (There
is a survey on C-convexity in [3].)

In Section 2, using a convergence theorem that we proved in [4], we
give a new general criterion for deciding whether an array is extremal or
not. It is used in Section 3 to prove Theorem 2. Lemma, 2 of Section 3 shows
that Theorem 1 follows from Theorem 2. The rate of convergence of Kergin
interpolation for an extremal array is investigated in the final Section 4.

We will review some concepts from potential theory in the complex
plane. An excellent general reference is the book of Ransford [11].

Let p be a finite positive Borel measure on C and let

(1.6) pu(e) = [ toglz — tlautt)

be the negative of its logarithmic potential.
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Let K be a compact subset of C. We will assume K is polynomially
convex, which is equivalent to C\ K being connected. We let Gk (2) denote
the Green’s function of C \ K with a logarithmic pole at co. For K non-
polar we let pux denote the equilibrium measure of K. It is known that
supp(puk) C OK. We let cap (K) denote the logarithmic capacity of K.

The set K is said to be regular (for the exterior Dirichlet problem) if
Gk (2) has a continuous extension (by zero) to K (which we also denote
by Gk (z)). A regular set K is non-polar, so cap (K) > 0 and we have

(1.7 Gk(2) = pux(z) —log(cap(K)) for ze€ (C\K)UOK
and

(1.8) Pux (2) —loglz| -0 as |z]| — oo.

For compact sets K C C, K is C-convex, by definition, if and only if
K and C\ K are connected. Thus K is C-convex if and only if it is connected
and polynomially convex. Furthermore, it is known ([11, th. 4.2.1]) that if
K is polynomially convex, connected and contains at least two points, then
K is regular.

For K a compact subset of C we let Ha(K) denote the functions,
continuous on K and harmonic on Int (K). The proposition below defines
a balayage of measures (from K to 0K) similar to what is done in [9, p.
205-208]. However we do not assume Int (K) is dense in K.

PrOPOSITION 1. — Let K C C be compact, polynomially convex,
connected and contain at least two points. Let y be a finite positive Borel

measure on K. Then, there is a unique finite positive Borel measure,
denoted b(p), on OK such that, for all f € Ha(K)

(19) /K fdp = /a fdw).

Proof. — By [11, Cor. 6.3.6] given ¢ continuous on OK (denoted ¢ €
C(OK)) there is a unique function H(¢) € Ha(K) such that H(p)|ox = ¢.
The linear functional on C(0K) given by

(1.10) o — [ H@w
is positive and hence, by the Riesz representation theorem, given by
integration with respect to a measure, denoted b(u), on K. O

The next proposition gives equivalent characterizations of measures
obtained by the balayage procedure of Proposition 1.
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PROPOSITION 2. — Let p (resp. v) be a finite positive Borel measure
on K (resp. 0K). Let K be as in Proposition 1. Then the following are
equivalent: :

(i) v = bp).
(ii) pu(2) = pu(2) forall zeC\K.
(iii) [ z™dp = [ z™dv for m=1,2,3,...

Proof. — (i) = (ii) applying (1.9) since for fixed z € C\ K, the
function ¢t — log|z — t| is in Ha(K). Similarly (i) = (iii) since for any
positive integer m, Re (z™) and Im (2™) are in Ha(K).

Now (iii) = (i) since by [11, Cor. 6.3.4] every function f € Ha(K)
can be uniformly approximated on K by functions of the form Re (q) where
q is a polynomial in z.

Also (ii) = (i) by the reasoning in [11, p. 175]. O

2. A general convergence criterion.

Let K be a compact C-convex set in C*, n > 1. K is said to be
regular C-convex (this is, of course, a property distinct from regularity for
the exterior Dirichlet problem for compact sets in the plane) if it admits
a basis of neighborhoods that are also C-convex but having smooth (C?)
boundary. Every convex (geometric sense) compact set is regular [5]. Given
an infinite triangular array A of points in K (asin (1.1)), we let M 4 denote
the set of all the weak limits of the sequence 4 (see (1.2)). This is a closed
subset of M(K), the convex cone of the probability measures supported
on K and endowed with the weak-x topology. If [ is a non-zero linear form
on C™ (we shall write [ € (C™)*) and v a probability measure on K, [ xv is
the probability (measure) on [(K) C C defined by (I xv)(f) = v(f ol) for

f continuous on I(K).

‘We are now able to state a criterion characterizing the extremal arrays
for Kergin interpolation.

THEOREM 3. — Let K be a regular C-convex set in C™ which is not
included in a complex hyperplane and A, a triangular array of points in K.
Then A is an extremal array for Kergin interpolation (on K) if and only
if for every non zero linear form | and every weak limit 4 € M 4 one has
b(l* 1) = pu(x)-



210 T. BLOOM & J.-P. CALVI

Let us make a few comments on this statement.

First, for every non zero I, I(K) is compact and C-convex [3, th.
2.3.4]. It follows from the restriction formula (see also the proof of Lemma
3) that there is no loss of generality in assuming K not to be contained in
an hyperplane, so we may assume [(K) contains at least two points. Thus
I(K) is regular, non-polar and satisfies the hypothesis of Proposition 1.

It is not necessary to verify the hypothesis for every [, but just for [
in a subset S of (C™)* satisfying the following property:

(21) 1€ (C™*,1#0=>3()\q) €C x S such that [ = Aq.

This comes from the relations b(hxv) = hxb(v) and pp(g) = hx ug where
E is any non-polar plane compact set and h = hy : 2 € C - Az € C. In
particular, in the one dimensional case (n = 1), we may take S = {Id}.

In the case n = 1, Theorem 3 follows from the classical Kalmar-Walsh
theorem [7, p. 65] or [15] on convergence of Lagrange-Hermite interpolants.
We give a version of that result below:

THEOREM 4 (Kalmar-Walsh). — Let K C C be polynomially
convex, compact and regular. A triangular array A C K is extremal (for

Lagrange-Hermite interpolation) if and only if dlim 7 log |lwa(2)] =
— 00

+1
d
Dux (2) uniformly on compact subsets of C \ K. Here wq(z) = [] (z — A%).
i=0

COROLLARY 1. — Let K be as in Proposition 1. Then A is extremal
for K if and only if for any p € M4 we have b(u) = pk.

Proof. — Let p € M 4. By definition of M 4, there exists a sequence
{in;} which converges weakly to p. (We will use the notation iy, Sp) It
follows from (1.6) that lim py, (z) = pu(z) for 2 € C\ K. Thus, since A is

j—o0
extremal, by the Kalmar-Walsh theorem p,(2) = pu,(2) for all z € C\ K
and by Proposition 2(ii), b(y) = pk-.

Conversely, suppose b(p) = px for all p € M 4. We will show, by
contradiction, that dli’nolo Pua(2) = Puk(z) uniformly on compact subsets
of C\ K, so, by the Kalmar-Walsh theorem, we may conclude that A is
extremal.

Thus, suppose for some sequence n; and compact set L C C\ K
we have lim IPun; — Puxlle = 6 > 0. Then, by Helly’s Theorem, there
j—o0
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is a subsequence ny of n; such that the sequence of measures {un, }ken
converges weakly to a measure u € My. Using Proposition 2(ii) we
conclude that {p,,ﬂ,c }xen converges uniformly to p,, on L thus arriving
at a contradiction. O

It follows in particular that when Int(K) = @ then A is extremal if
and only if {u4} converges to px. More generally, if A C 0K then A is
extremal if and only if {4} converges to pg. (In these cases, one must
have M4 = {uk}.) In general however M4 can be much larger.

The proof of the sufficient part of Theorem 3 makes use of the
following general convergence theorem proved in [4, Th. 3.1 and Cor. 3.11].
We recall it now as well as its (rather technical) “machinery”.

THEOREM 5. — Let Q = {p < 0} be a C-convex open neighborhood
of K with C? boundary i.e p is a C? defining function.

We assume that the (sub)sequence

di
— 1 di —
(2’2) Au‘dk A dk + 1 J_ZO[A] ] (k - O’ 17 27 M ’)

converges weakly to some probability y (in M(K)).

If for every non zero linear form l, we have

(2.3) () D E,()

where

(2.4) F,(l) = {u € C such that pnu(v) < sup puu(w)}
wel(K)

then, for every function f holomorphic in a neighborhood of (2,

(25) Jim K40, (f) = fllx =0.

Here again, it suffices to check the property (2.3), for [ in a set S as
above.

Proof of Theorem 3. — Let us first make a preliminary remark. For
I € (C™)*,I(A) is a one dimensional array for which we may consider M;4).
Then setting | x My := {lx p, u € My}, we claim that [ x My = Myy).
That | x Mg C M4 is obvious. Let us prove the reverse inclusion. Let
v € My(a). There exists a subsequence pg, such that I xpg, %, v. But the
subsequence pq, has itself, by Helly’s theorem, a convergent subsequence
say pq,, to p. Hence v = k}i—r»nool*“d"’ =lxpand velxMy.
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Now if A is extremal for K then, for | € (C*)* and g € H(I(K)) we
have gol € H(K) whence K 44(g o) converges uniformly on K to gol.
However by the invariance property (1.4), we have K 44(gol) = K;y(44)(g)ol.
Therefore K;( 44y(g) converges to g uniformly on I(K). Thus I(A) is extremal
for Lagrange-Hermite interpolation in the plane and consequently, by
Corollary 1, b(M4)) = {mk)}- This is what was to be proved since
Mgy =1xMa.

Let us now establish the sufficiency. Using the notation of Theorem 4,
we first prove that

(2.6) Fu(l) = UI(K)

for I € (C™)*. Clearly we have l(K) C F,(l). Since b(lxu) = px we have (by

Proposition 2(ii)) Prxy = Puyx,- Since [(K) is regular, sup py, ., (w) =0
wel(K)

and py,,(2) > 0 for z € C\ K. Hence (2.6) follows. Now, if there exists
a function f € H(K) for which ||[K4af — f||x does not converge to zero
then, using Helly’s theorem, one can find a subsequence pg4, converging to,
say, p such that

lim ||[Kga. f— fllk =6 > 0.

k—o00

This together with (2.6) leads to a contradiction. Indeed, all the hypothesis
of Theorem 5 are satisfied in taking for 2 any smooth C-convex neighbor-
hood of K such that f € H(R2) and the conclusion of Theorem 5 yields a
contradiction. a

It is of interest to state the hypothesis on A in Theorem 3 in another
form. The hypothesis (on A) holds true if and only if for every p € Mg
and every [ € (C™)*, we have

(2.7) > (Z) op(z®) = pey(w®),  (k=1,2,3,...)

|la|=k

where if I(z) := le, then % = (%% ...1% and (Z) = nljay!...am!.

Indeed, by Pr0p031t10n 2(iii) b(l * ) = (k) if and only if both measures
agree on the (holomorphic) polynomials. Thus the existence of extremal
arrays for Kergin interpolation on K requires that the equilibrium measures
wix) behaves very regularly as a function of | and clearly, this cannot be
expected of a general C-convex compact set in C”.

We showed in [4] that extremal arrays exist on compact sets that are
circular and convex. Indeed, supposing that K is circular of centre 0 then
for every [, [(K) is a disc centre 0 whose equilibrium measure is the standard



DISTRIBUTION OF EXTREMAL POINTS 213

invariant measure on the boundary of the disc so that p K)(wk) =0 for
k=1,2,.... Therefore A is extremal if and only every u € M4 represents
0 on the polynomials (i.e., [, p(z)dp = p(0) for all polynomials p). This is
the case when p is invariant, that is for every 6§ € R and every continuous
function f on K we have [ f(e®2)du(z) = [ f(2)du(z). Several natural
examples are given in [4]. However there are many measures that represent
0 without being invariant.

Example. — Let us consider the euclidean unit ball in C? i.e
B; := {Z = (Z1,22)|21|2 + |22|2 < 1},
and let ¥ be an automorphism of D, the closed unit disc in the plane. Next

we define the function ¢ : D — Bs by ¢(u) = (?u, \/Tiu\ll(u)) Let v be

the measure on 0B; defined by
27
.9+ d0
— 6\ ¥
/fdu =/ (fop)(e )27r'

Now we can easily verify that v represents zero while v is not invariant
(its support is not invariant).

It is not difficult to find a convex compact set of non-void interior in
C™ which does not admit extremal arrays for Kergin interpolation. But, as
a by-product of our main theorem, we shall exhibit in Section 4 the first
examples of non circular convex compact set of non-void interior in C?
which admit extremal arrays. Whether or not there is a non-circular convex
compact set of non-void interior admitting extremal arrays for n > 2 has
still not been settled.

Let us finally note that Theorem 3 can be made more precise when
restricted to sequences (a sequence A is an array for which j < d <
d = A? = A‘;'). In this case, M, is always a closed connected subset
of M. (This follows as in [13, p. 35] since the sequence {u4} satisfies
pas1 — pa — 0.) Conversely if X is a closed connected subset of M(K)
such that (v € X,1 € (C*)*) = b(l xv) = wk), then X is the set of weak
limits of the sequence {u4} for an extremal sequence in K. Indeed, by a
theorem of Totik, (see [13] or [14, p. 35-36]), there exists a sequence A such
that X = M4,

3. Proof of Theorem 1.

The following basic property has already been used in the case n = 1
in the proof of Theorem 3.
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LEMMA 1. — Let K be a C-convex compact set in C™ and ¢ an
affine endomorphism from C™ to C™. If A is an extremal array for K, then
¢(A) is an extremal array for ¢(K).

Proof. — The lemma follows immediately from the invariance prop-
erty (1.4) together with the observation that f € H(¢(K)) = fo¢ € H(K).
Note that the C-convexity of K implies the C-convexity of ¢(K).

O

In particular, K admits an extremal array if and only if a + K admits
one. This means that one may assume that the origin belongs to K.

LEMMA 2. — Theorem 2 implies Theorem 1.

Proof. — Let K be a totally real convex compact set in C™ that
admits an extremal array. Assuming the conclusions of Theorem 2 we are
going to prove that (i) K must be an ellipse, (ii) if A is an extremal array
in K then gy = ok, and conversely (iii) if ug = ok then A is extremal.

We suppose without loss of generality that the origin belongs to K.
Let V be the totally real subspace of minimal (real) dimension, say m,
among those containing K.

(i) For some M € GL,(C), V. C M(R"). (A totally real subspace is
contained in a maximal totally real subspace W of C™ which is only a copy
of R™ in C" thatis V ¢ W = M(R"), M € GL,(C).) We take a linear map
N from C™ to C™ such that Njjs-1y is one to one and N(M~'V) = R™
and define ¢ = NoM~1. According to Lemma 1, ¢(K) admits an extremal
array, since ¢(K) is a compact convex set of non void interior in R™, it
follows from Theorem 2, that m = 1 or m = 2 and K is a (possibly
degenerate) ellipse.

(i) Let A be an extremal array in K and let ¥ = ¢y then 9 is a

real isomorphism from V to R™. By Theorem 2, MZ(A) LN Ty(K), but
,u'dp(A) =1 *pf thus pg 5 ¥~ xoyk) = ok
(iii) Conversely, if ug = ok then MZ(A) % oyk) so that ¥(A) is an

extremal array for ¢(K). Let VC = ¢~1(C™), ¢ extends to a C-linear
isomorphism from VC onto C™. If f is holomorphic on a neighborhood of
K as a subset of C™ then it is holomorphic on a neighborhood of K as a
subset of VC, consequently, for f € H(K), we have

If — Kaa(Hllx = | fjye — Kaa(five)llx

= five o™ — Ky(azy(fiye o™ Hllyxy = 0 as d — oo.
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The first equality follows from the restriction formula (1.5), the second
uses the invariance property and the limit holds true because ¥(A) is an
extremal array in ¥(K) and fjyc o¢~! € H(1(K)). This shows that A is
an extremal array for K. O

Proof of Theorem 2. — Let K be a compact convex set of non void
interior in R™ and let A be an extremal array in K. We shall work in several
steps, each of which provides information on A or K, ultimately leading
to the conclusion of the theorem. The case (1) is well known, we shall not
discuss it.

Step 1. K must be symmetric (possibly after translation). Let u be a
probability measure supported on K, satisfying (2.7). We define a € R™ by
ai = [izidp(z), i =1,...,n. Since K is convex, a € K. We may suppose
that a = 0 (otherwise we work with K — a). Therefore, applying (2.7) with
k =1, we have

0= Zliﬂ(zi) = ) (w), 1€ (C")".
j=1
Let us restrict our attention to those ! with real coefficients. Then I(K) is
an interval, say, [a(l), b({)]. But

Hagaey (w) = /[—1,+1] (a(l) ), Y~ “(l)x) PP ULLU)

(Recall that p[_q,1) is the arcsin distribution, so [ zdpu(_,,1) = 0.) Conse-
quently a(l) = —b(l) and I(K) is centered at 0 for every real l. In view of
the formula
K =(I7H(U(K)),
1#0
this implies that K is symmetric about 0 as well.

Step 2. K must be an ellipsoid. By step 1, we may assume that K
is symmetric about 0. By ellipsoid, we mean a set of the form {z €
R™,||A(z)|] < 1} with A € GL,(R). Let us again take a probability
measure p on K satisfying (2.7). For every | with real coefficients, we have
I(K) = [-b(1),b(l)] and

2 _1 A ) /" 2 1,
/l(K)w dpyxy(w) /—b(z) NCOETS = ) cos*(0)do 2b 0.

T
In view of (2.7) and identifying R”™ with its dual we deduce that the function
I — b%(1) is a quadratic form on R™. But, we have also

b(l) = max(l, z)



216 T. BLOOM & J.-P. CALVI

which means that K©, the polar set of K, is given by b*(I) < 1 or, b
being quadratic, for some matrix A, K° = {||Az||? < 1} and consequently
K = (K°° = {||!tA(z)||> < 1}. Since K is bounded and of non empty
interior, A must be invertible which proves that K is an ellipsoid.

Step 3. The case n = 2. It suffices to study the case of the closed unit
disc D for every ellipse is the image of D under some affine automorphism
of C2%. Next, we observe that, if there exists a measure p satisfying (2.7),
it is unique since the polynomials p(2;,22) are dense in the continuous
functions on D. Thus M4 = p and p4 converges to p. In view of Theorem
3, it remains to prove that for every I € (C?)*,

(3.1) b(l *0’) = ByD)-
1
1 that do = —d#.
(Recall that do oy )
It suffices to show that

(32) Pixo (W) = Ppypy(w) for |w| large,

since both sides of (3.2) are harmonic on the connected open set C \ I(D)
we must have equality in (3.2) for all w € C\ [(D) and so by Proposition
2(ii), (3.1) holds.

ll - ilz ll + il2

Let I(2) = l1jz1 + lg22 € C. Let 7 = and s = . Now

I(cos8,sinf) = l; cos§ + losin@ = re® + se~*®. Thus if r or s is zero, I(D)
is a disc center the origin and ! being linear, (3.1) holds.

Now assume rs # 0. Then [(D) is an ellipse. Let 2;(w) and 22(w) be
the two branches of 722 — zw+ s = 0 satisfying |2; (w)| — o0 as |w| — o0
and |z2(w)| — 0 as |w| — oo i.e., (for an appropriate branch of /)

w+ Vw? — 4rs w— Vw? — 4rs

We will first compute py,.(w)
(3.4)

27
Plxc = —1—/ log |1 cos @ + Iz sin 6 — w|dl
2m Jo

1 27

— log |re?® — we® + s|do
2w 0

1 27 . 1 2m 3
= %/0 log €% — z; (w)|dd + 5;/0 log €% — zo(w)|d8 + log ||

= log|w+ Vw? —4rs| —log2 for |w| large






