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BERNSTEIN CLASSES

by N. ROYTWARF and Y. YOMDIN

1. INTRODUCTION

Let f^ C C be a bounded domain, K C f^ - a compact, and let / be
analytic in ^ and continuous on Q.

We call the ratio

B(/,^)=m_ax|/|/max|/|
f2 K

the Bernstein constant of / on (K^ f2).

This definition is motivated by one of the classical Bernstein's in-
equalities: let p(x) be a polynomial of degree d. Then

max \p(x)\ ^^maxk)(a;)|,
xeEp [—1,1]

where Ep C C is the ellipse with the focuses at —1,1 and the semiaxes R.
In other words, B(P, [-1,1], ER) ̂  7^. ([3]).

A kind of an inversion of this result is true: it is well-known, that the
number of zeros of / on K C Q is bounded from above by 7 log B(/, JC, f^),
where 7 depends only on the couple K C n. (See 2.2 below.) This fact has
been intensively used in transcendental number theory, in particular in the
estimates of the number of zeros of exponential sums. (See [48], where also
some survey of a vast literature on the subject is given.)

Bounding the number of zeroes of certain analytic functions is also
one of the central questions in a vast field of investigations around the
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second part of the Hubert's 16-th problem (which asks for the maximal
possible number of limit cycles in a system x = P(x,y), y = Q(x,y) on
the plane, with P and Q polynomials of degree d. See [I], [II], [13], [21],
[22], [27], [28], [30], [32], [36], [37], [40], [56].

Various approaches have been used to produce some partial infor-
mation on this problem: Khovanskii's theory of fewnomials and Pfaffian
functions ([33], [25]), Gabrielov's existence result for the bound on the
number of components of semianalytic families ([23], [20]), etc. Recently
Bernstein inequalities have been applied to an infinitesimal version of the
above problem in [31], [32], [37] (see also [38]).

Besides bounding the number of zeroes, recently some other impor-
tant applications for the Bernstein-type inequality have been found, in par-
ticular, in PDE's ([16], [17], [18], [19]), in Dynamical Systems ([50], [51],
[52], [53]) and in Potential Theory ([5], [6], [46]).

The main purpose of the present paper is to show that the Bernstein
constant can be a convenient tool in the analysis of much wider classes
of functions, then those treated traditionally. We present several natural
such classes for which the Bernstein constant can be effectively estimated.
Roughly, the following classes are considered:

1. Algebraic functions.
2. Solutions of algebraic differential equations.
3. Functions, whose Taylor coefficients satisfy "Lipschitzian" recur-

rency relations.
4. Functions, whose Taylor coefficients are polynomials or rational

functions in the parameters of the problem.

Notice that functions of classes 1 and 2, as well as most of the
functions, naturally appearing in analysis, belong to both the classes 3
and 4.

In this paper we show in detail, how to bound Bernstein constant for
functions in classes 1, 2, 3, and describe shortly a situation for the class 4.
The complete proofs for the class 4 are given in [21], [7], [8]. An alternative
approach to the classes 1 and 2, which sometimes produces sharper results,
is given in [7].

The following main results are obtained:

1. A stronger version of the Fefferman-Narasimhan inequality for alge-
braic functions ([16], [17], [18], [19]) is obtained. In particular, this answers
a question, posed in [17].
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2. A similar inequality is obtained for much larger classes of functions
(classes 2 and 3 above). Notice however, that these results, being quite
general, are not very sharp. A much sharper inequality, which is a direct
generalization of Fefferman-Narasimhan's one to the solutions of first order
algebraic differential equations, is obtained in [7].

3. A stronger version of the result of [5] is obtained.

We would like this paper to also be a kind of a survey of some new
approaches to bounding the Bernstein constant, so we discuss without proof
some results of [7], [8], [21], [41], [45] and [53], [55].

Since the paper is rather long, let us present now its content in more
detail.

We restrict ourselves in this paper almost completely to the special
case of (K^) == (VR-^^R^) - the couple of disks of radii -Ri, R^^
respectively, centered at 0 € C.

Part 2 is devoted to general properties of the Bernstein Classes. In
2.1 two types of Bernstein classes, B1 and B2, are defined. B1 consists
of functions with the uniformly bounded Bernstein constant. B2 consists
of functions, whose Taylor coefficients, starting from d + 1, are uniformly
bounded through the first d Taylor coefficients. We prove that these two
types of classes essentially coincide.

In Section 2.2 we state a bound on the number of zeros of functions in
2?1, mentioned above, and then, prove a corresponding bound for functions
in B2 using an equivalence of B1 and £?2, established in 2.1.

Finally, in Section 2.3 we prove, using some classical results on p-
valent functions, that both the properties above are essentially equivalent
to the following property of /: for any c G C, the number of solutions of
/ = c in the disk is uniformly bounded.

Part 3 is devoted to algebraic functions. Recently Bernstein-type in-
equalities for algebraic functions found applications in differential equations
(see [16]-[19]), in potential theory ([5], [6], [46]) and in dynamical systems
([50] [53]). In particular, Fefferman and Narasimhan ([16], [17], [18], [19])
proved Bernstein-type inequalities for restrictions of real polynomials to
real algebraic manifolds. L. Bos, N. Levenberg, P. Milman and B.A. Taylor
in [5] gave a characterization of algebraic sets in terms of Bernstein and
Markov-type inequalities for restrictions of polynomials to these sets.
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The constants in the inequalities in [16], [17], [18], [5] depend on the
"measure of nondegeneracy" of the algebraic manifold at the origin (and,
of course, on the degrees of the polynomials involved). We prove in Section
3.3 a stronger version of these results: the Bernstein inequality is true
for algebraic functions in the maximal disk of their regularity, with the
constants, depending on the degree only. (Below we call such an inequality
a "structural" one.)

The proof is based on the equivalence of the Bernstein bound and
the bound on the number of solutions of / == c, combined with the Bezout
theorem.

In Section 3.4, the result of 3.3 is extended to algebraic functions in
several variables, providing in particular stronger versions of the results
from [5], [16], [17], [18].

However, in most of the applications we have in mind, the situation is
quite opposite to that of algebraic functions: we want to bound the number
of solutions of / = c by bounding the Bernstein constant B(/), and not
vice-versa.

Considering algebraic functions as a model example, we discuss in
3.5 some alternative approaches, which allow one to bound the Bernstein
constant without knowing the bound on the number of zeros.

In part 4 solutions of analytic differential equations are considered.
Usually in this situation one can produce a differential inequality, which
helps to compare the values of the function on two sets, one smaller and
one bigger. This approach is classical (see [34], [29]), and recently it was
further developed in [31], [32], [37]. In contrast to the method applied in
[31], where only the number of zeros is bounded for equations of higher
orders, we use the equivalence of the classes B1 and B2 and thus bound
Bernstein constant directly for solutions of equations of any order. We also
extend the results of [31], [32], [37], obtained for linear equations to the
non-linear ones.

In part 5 a somewhat "dual" situation is considered. We discuss func-
tions, whose Taylor coefficients satisfy "Lipschitzian" recurrency relations.
Using the equivalence of the classes B1 and B2 also here we obtain explicit
bounds on Bernstein constants.

In part 6 we discuss shortly the approach, developed in [21] [22],
00

[7], [8]. We deal here with families f\(x) = £ (^(A).^ of analytic
_ k^^u

functions, whose Taylor coefficients Ofc(A) are polynomials in A. Following
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the pioneering work of Bautin [2], we relate the structure of the ideals,
generated by afc(A) in the ring of polynomials in A, with the analytic
properties of jf\, in particular, with the property of f\ to belong to the
Bernstein classes B2 and B1.

It is important to notice that most of the functions we want to inves-
tigate, can be treated by any one of the above approaches. In particular,
this is true for algebraic functions, and each of the results of parts 4, 5
and 6 produces a Bernstein inequality for algebraic functions. However,
the constants in each of these inequalities depend not only on the degree,
but also on the "size" of the data.

We consider a question of obtaining Bernstein-type inequalities with
the constants, depending on the degree only, for solutions of algebraic
differential equations as a very important one. At present (except for the
case of algebraic functions) we have only very partial results in this direction
(see [8], [41], [43]).

The authors would like to thank J.-P. Fran^oise, A. Gabrielov,
M. Gromov, Yu. IPyashenko, I. Laine, P. Milman, R. Narasimhan, S.
Yakovenko and many others for inspiring discussions.

In particular, the idea of the first proof of the existence of a Bernstein-
type inequality for algebraic functions, with the constant depending only
on the degree, was suggested to us by M. Gromov (see [45] and Section 3.5
below). A possibility of "inverting" the bound on the number of zeroes and
combining it with the Bezout theorem for algebraic functions (which is used
in Section 3.3 below) was proposed to us by P. Milman and S. Yakovenko.

In conclusion, we would like to thank the referee for correcting a
mistake in the initial version of the paper, which allowed for a serious
improvement of the results and presentation.

2. BERNSTEIN CLASSES - B1 AND B2

Let T>R denote, as above, the closed disk of radius R > 0, centered at
0 € C. In this paper we mostly restrict ourselves to the Bernstein classes
with respect to a couple of such disks.

2.1. Definition of B1, B2 and their equivalence.

DEFINITION 2.1.1. — Let J? > 0, 0 < a < 1 and K > 0 be given and
let f be holomorphic in a neighbourhood of DR. We say that f belongs to
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the Bernstein class B\^^ if max|/|/max|/| ^ K for, in other words, if
' ' ^R v^p

B{f,aDR^R)^K).

DEFINITION 2.1.2. — Let a natural N, R > 0 and c > 0 be given,
00

and let f(z) = Yj a^ be an analytic function in a neighbourhood of
0 e C. We say that f belongs to the Bernstein class B^ ^ ^ if for any
j > N , \aj\R^c max a^R1.

z=0,---,N

The following theorem shows that the classes B1 and B2, essentially
coincide:

THEOREM 2.1.3. — Let f € B2^ ̂ . Then f is analytic in an open disk

Vp, and for any R' < Randa < 1 andK = — (l + a(>~a ^ + -c(3-\
a^ \ I—a 1 — p )

where f3 == R1/R^ f belongs to B^, ̂  ^.

Conversely, if / belongs to Bp^^ ^, then it belongs to B^ ^^ with
N = [(log K - log(l - a) + I)/ log(l/a)], c = 3J<7(1 - a)2. In particular,
for a = 1 N = [log K + 2] and c = 12K.

Proof. — For / e B^j^^ the convergence of f(x) = Y^aiX'1 in-
' ' 1=0

side T>p is immediate. Let m = max|/|. Then by the Cauchy formula,
^c^R'

\ai\ ^ m/(aR1)'1' for any z. In particular, for i = 0 ,"- ,7V, [a^R1 ^
m/a^R'/PY ^ m / a N ( R / / R ) N . Hence for any j^ N + 1,

\a,\R3 ^cm/a^^^R'lR^ .

Now we can bound |/| on T>pi as follows:

N oo

igax|/|^H^+ ^ \a,\R^
R/ i=0 J'=N+1

N y -. M 00

^E (-ory) Ri + (^/^(P'/R^) E ^R'/Ry
i=o v / j=N+i

1 1-a^1 cm f3
-^ JY) . ——— __________ 4- ___ '

Q^ 1-a a^ 1 - / 3
_ m 0(1-^) c/3
~ ^(1+ 1-a + T"^^ ^ = J R / J R •
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Remark. — One can show that K above can be chosen also as
1 / ca/3 c/3 \

~~N [ ' 1———Q ~^ 1——o )' wmcil m some cases gives a better estimate.
Oi \ ± — Oif3 1. — fJ /

To prove an opposite inclusion, assume that / € B^ ^ ^. We want to
prove, that / € B^ ^ ̂  with the same J?, and with N and c as given in the
statement of the theorem.

00

Let / = ^aiX\ Let us fix some natural N. Denote by a the
1=0

max {\ai\R^}.FoTPN(x)= f>^ , we have: max|P^(.z-)| ^ af^(aR/RY
z=0,--',N ^o -D^R i^Q

FT oo

^ -,——. Denote by a the mox\R(x)\, where R{x) = S cnx1. Then
i — Oi 'DaR i=N-{-l

max I / I ^ a+-——, and since / e B\ ̂  ^, we get max |/| < K(a-^- ).
VaR 1 — OL ' ' T)R \ 1 — Oi)

By the Cauchy inequality, we obtain now

(*) [aj\Rj^K(a+ —°—}^ for any j.
\ 1-a/

This inequality would give us the required bound on \dj\R3, would
we know a. So let us continue as follows:

00 ^ v 00

a^max ^ a^ ^ x ( a + ——— ) ^ (aR/R)1

voiR j=N+l \ l- a /^^+l

(**) / a \ a^1

= K [a + ,—— • -—— , or
\ 1 — a j I—a

/ Ka^^ aa^
a 1 - -——— <

V 1-a j - (l-a)2-

Ka1^'^1 1Let us fix N in such a way, that ———— < -; it is enough to take
N = [(log K - log(l - a) + l)/log(l/a)], where logarithm is taken with
the basis 2. In particular, for a = 1/2 we have N = [log K + 2]. This is
the choice, given in the statement of the theorem.

For this specific TV, (**) gives

2aa7v+l 2a
a€ -———r^ ^(1-a)2 " (1-a)2 '

Now we return to (*) and obtain \aAR3 ^ Ka -———— < ————
(1 — a)2 (1 — a)2

for any j. This completes the proof of Theorem 2.1.3.
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The equivalence of the classes B1 and B2, established by Theorem
2.1.3, allows one to combine different techniques in investigating functions
in Bernstein classes. In particular, if a function satisfies a certain first order
homogeneous differential equation, one can usually compare its values on a
smaller and a bigger disks, using a corresponding differential inequality. In
this case the classes B1 are appropriate. On the other hand, if the Taylor
coefficients of a certain function satisfy "Lipschitzian" recurrency relations,
this function can be shown to belong to some of the I^-classes.

The following simple proposition compares the Taylor polynomial
(of an appropriate degree) and the remainder term for functions in the
Bernstein classes. Here, clearly, the B2 classes are appropriate.

N
PROPOSITION 2.1.4. — Let f € B^ ̂ , and let P(x} = ^azX'1 be

' ' 1=0
00

the N-th order Taylor polynomial of f, and R(x) = ^ ajx3 - the
j=N+l

corresponding remainder term. Let \\P\\R = max 1^1^. Then for any
i=0,---,N
cQ^1

R' < R and /? = R ' / R ^ max|^)| < \\P\\R • ———.
v^ 1 - /3

Proof. — By the definition of the class B2, for any j ̂  7V+1, \dj \R3 ^
c||P||i?. Hence for any x € T>R' ,

00 rl/^+l

TO^IIPh E <-?W=11^' ———•1 - ( 3J=N+1

In this paper we usually do not consider more complicated domains,
than concentric disks. However, in the next proposition we replace the
inner disk by the real segment. This proposition is used in Sections 3.3
- 3.4 below, to obtain real versions of Bernstein inequalities in one and
several variables.

Let R > r > 0 be given. Consider Ir C "Dp, Ir = [-r,r]. Let /
0

be a function, analytic in T>p and continuous on VR. Assume that for
any a < 1, / € B\^^.y with K{a) = K^l/a)1^. (This assumption
is motivated by the form of the constant K in Theorem 2.1.3. See also
Remark 2 below.)

PROPOSITION 2.1.5. — Let /, R, r, K\ be as above. Then the
Bernstein constant B^f^I^Vp) does not exceed K^R/r^^, with K =
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^[p - -),P = Wr + ^/(R/r)2 - I) 1 / 2 . In particular, for r = 1 R,

B^I^W^K2^.

Proof. — It will be convenient to rescale the domain in such a way
that r' = 1, W = R / r , and to assume that max |/| = 1.

ii

We apply a transformation x = -0(w) = - (w + — ) and consider
2 V w/

g{w) = /(^(w)). ^ transfsorms any circle Sp of radius p in the w-plane

into the ellipse Ep with the focuses -1, 1 and the semiaxes - ( p + -) and
2i \ p /

=h- ( p — - ) . In particular, the unit circle 5i is transformed to the interval2 \ p /
h'

Define p^ by the equation

1) 1̂ * + -^) = Rf^ or ^* = Rl + ̂ /2 - 1-z \ P*/

The ellipse Ep^ is the maximal one, contained in VR'. Now let
1 ley

p = /v . Consider the following three concentric circles in the w-plane:
5i, Sp and 5p2. By assumptions for g{w) = /('0(w)), max |^(w)| = I.

'̂ 'i
Denote max \g{w)\ by a. Since the ellipse i^(Sp) contains the disk of radius

Sp

K = 2^ ~ p) 5 l/l/p" ^ a- Now for ao = ^ I R t ' f e ^^^(l/ao)^ ^

assumptions. Hence max|/| ^ ^(l/ao)^ • a (*).
^H'

Since the ellipse '0(p2) = Ep^ is contained in VR', we conclude that
max \g(w)\ ̂  K^R'l^a.

sp2

Now we apply Hadamard's inequality, which asserts, that the function
log max \g(w)\ is a convex function of log t. Since the maxima of \g(w)\

St
on S'i and Sp are 1 and a, and max \g{w)\ ^ K-t{Rf/K)Na, we get

Sp2

2 log a ^ log a + log J-Ci + 7Vlog(I?7^) or a ^ K ^ R ' / ^ . By (*) above
we conclude that max |/| (which is the Bernstein constant under question)

^R'

does not exceed K ^ { R ' / ' ̂ \ with R' = R/r and K = - ( p - ^-\ with

p=(R/r+^Wr)2~l^.

For R/r = _ we obtain B(/,J^/2,P^) ^ X^2^.
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Remark 1. — The bound above is not sharp. Using more accurate
computations, involving estimates of the Lorent coefficients of /(^(w))
through the majorizing series f(u + ^), one can improve it significantly.
In particular, K^ can be replaced by K\.

Remark 2. — Hadamard inequality, quoted above, produces the fol-
lowing general property of Bernstein constants: if we write £?(/, VaR^ ̂ n)
as aN (for an appropriate TV), then for any f3 > a,

BCf.P^.P^/^.

2.2. Zeros of functions in Bernstein classes.

The most important property of the functions in the Bernstein classes
is that they demonstrate "effectively - polynomial-like" behaviour. In other
words, for any property of polynomials one can expect that the functions
in 51, B2 will have this property, with a "correction term", uniformly
bounded in terms of the constants of the Bernstein class.

Many examples of such properties can be given. Proposition 2.1.4
above gives, probably, the simplest one: a "relative error" in an approxi-
mation of a function / € B]^ ^ ^ by its TV-th degree Taylor polynomial is
effectively bounded through TV, R and c. In this section we discuss one of
the most important results of this type - the bounds on the number of zeros
for functions in Bernstein classes.

These results are mostly well-known and appear in different forms in
various parts of the theory of analytic functions. In particular, as it has
been mentioned in the introduction, for any K C Q, K^ ^-compact,
the number of zeros in K of any /, analytic in f^ and continuous on f^, is
bounded by 7 log B(/, K, f^), with 7 depending only on K C ^2, (we remind
that the Bernstein constant B(/, K, fl.) is defined as max |/|/ max |/|). This

f2 K
inequality is closely related to the classical Jensen inequality. The proof of
one of its versions can be found in [31].

For the case f2 = Pj^, K = T>^n (to which we mostly restrict
ourselves in this paper), the most precise bound we are aware of, belongs
to Van der Poorten [48]:

LEMMA 2.2.1 ([48], Lemma 1, S = R). — Let f e B^^. Then the
number of zeros off on T>aR does not exceed log K/\og[{l + a2)/2a}.
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Now we want to prove a similar result for functions in B2. There
are several possible ways to do this. First, one can compare the N-th
order Taylor polynomial and the function itself, using Proposition 2.1.4.
Alternatively, one can use very similar results, obtained by Hayman [29].
However, both these approaches require introduction of some techniques,
which are not related to the rest of the paper. Instead we obtain the required
bound, combining the equivalence of B2 and B1, given by Theorem 2.1.3,
and Lemma 2.2.1. This way is, probably the simplest, technically, but the
bounds it produces are far from being sharp.

PROPOSITION 2.2.2. — Let f E ^j%c- Then for ^y RI < R the
number of zeros off in Pj^ does not exceed (*)

( (^\ 1 , ( 0(1-0^) C7 \\N • min log - + — log 1 + —————)- + ———a \ \o;/ N \ 1-a 1-7///M^my
where the minimum is taken for a varying between R\/R and 1 and
7 = R^/aR < 1.

Proof. — For any a, R ^ / R < a < 1, let R' = -Ri. Then by Theorema1 / o;n _ (^N\ \
2.1.3, / belongs to B^ ̂ , with K = -^ I 1 + \_^ + y—— ).

where 7 = R ' / R = R^/aR.

By Lemma 2.2.1, the number of zeroes of/on T>p^ = VaR' is bounded
by log K/\og[(l + a2)/2a\, which gives the expression (*).

Now substituting to (*) some special values of R^ and a, we get the
following bounds:

LEMMA 2.2.3. — Let f C B2^ ̂ . Put R^ = - R, R^= R/2 max(c, 2)
and Rs = J?/23Nmax(c,2). Then the number of zeroes off in Vp^ VR^
and VR^ does not exceed 5N + log5M(2 + c), 5N +10 and N , respectively.

Proof. — For R^ = -R put a = -. Then 7 = - and we get (remember
4 z z

that the logarithms are with the basis 2):

# { / = 0 on P^K^V(1+ ^ log(l+l+c))/log H

= ^-^^+log5/4(2+c)^57V+log5/4(2+c).



836 N. ROYTWARF & Y. YOMDIN

For R-i = R/2 max(c, 2) we still put a = 1/2. Hence 7 = R^/aR =
o————;—^- = ——-,—-r. We get for the number of zeroes of f on Dp,2a max(c,2) max(c,2) •• "2

the bound
N(l+ jf log(2+2))/log 5/4 < 5^+10.

Finally, let Rs = fi/23jvmax(c,2). We put a = 1/2^ and hence
7 = I/ max(c, 2). For the number of zeroes of / on P^g we get the bound

N(3N+ — log(l+l+2)) /(3AT-l)

==N(1+^V(1-^)^N(1+^+^)
2 2

^ ^ + — — + _ < A ^ 4 - 1 (assuming N > 2).
0-/V o

But the number of zeroes is an integer, and hence it does not exceed N.
Lemma 2.2.3 is proved.

2.3. Local valency and Bernstein classes.

The following classical result can be found in [4], (see also [29]):
CO

THEOREM A. — Suppose that f(x) = ̂  a^^^ is p-valent in PR, i.e.
k=o

that f{z) is regular in VR and assumes no value more than p times there.
Then for j > p

(**) \aj\R3 ^(A/p)2^ max [a,\R\
i=l,---,p

with A - an absolute constant.

Clearly the inequality (**) is very similar to the definition of B2.
(One can define a finer scale of classes B2 using this inequality.) However,
chosing any R' < R, we get:

COROLLARY 2.3.1. — Let f be p-valent in PR. Then for any R' < R
the derivative f belongs to B2 ^ ,, with c = (A/p)2? max (R'/RY-Pj2^

' ' ' j>p+i
^ (A/p)2^ • [{2p+l)/e}2^1{R/Rf)P[l/£n(R/Rf)}2P+l.

Proof. — By (**),

^^-^(A/p)2^2^1 max |m,|^-1.
z=l,...,p
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Therefore for R' < R we get

837

\ja,\(R'y-\R/R'y-1 ̂  (A/pfPfP^WRr-1 • max I^K^)1-1, or
1=1,•••,p

I^K^^-^^/^-^A/p)2^2^1. max |m,|W-1.
1=1,•••,p

Now an easy computation of the max (R' /Ry~Pj2P~{~l completes the proof.
j>p+i

Clearly, if the derivative // belongs to B^_^^ then / + a e B^ ^ ^
for any constant a. Conversely, if / + a € B^ ^ ^ for any a, then
\aj\R3 ^ c juax \ai\R\ and hence the derivative // belongs to B^_^

on any smaller disk. (This statement can be easily generalized: f^ G B2

if and only if / + P.s-1 e B2 for any polynomial Ps-i of degree 5-1. Easy
examples show that / € B2 does not imply any conclusion about //.) Now
combining these remarks with Lemma 2.2.3 above we obtain the following
result:

THEOREM 2.3.2. — Iff isp-valent on PR, then f belongs to B2^ ^ ^
on any smaller disk Vp^ with c as given in corollary 2.3.1. Iff e B2^^ \,
then f is p-valent on V^, with Rs as denned in Lemma 2.2.3.

In the rest of this paper the usual approach will be to prove that
a certain function belongs to the Bernstein classes, in order to bound the
number of its zeroes. However, for an important class of algebraic functions
the number of zeroes is bounded by Bezout theorem, and the equivalence
above can be used in an opposite direction. This will be done in the next
section.

3. BERNSTEIN TYPE INEQUALITIES
FOR ALGEBRAIC FUNCTIONS

A problem of computing Bernstein constant of algebraic functions has
recently appeared in several quite different situations.

In [16], [19] this problem is investigated in relation with estimates of
a symbol of some pseudodifferential operators. In [5] this problem is con-
nected with some results in Potential Theory and with a characterization of
algebraic subsets. In [50], [51] and [52] various forms of Bernstein inequal-
ity are used to prove results on a "C^-reparametrization" of semialgebraic


