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CRIBLE ET 3-RANG DES CORPS QUADRATIQUES

par Karim BELABAS

1. Introduction.

On appelle discriminant fondamental un entier de la forme oo =1 (4)
ou 443, avec B # 1 (4), ou a et B sont sans facteurs carrés. Soit A un
entier; on note h3(A) la quantité 3"(A)| ol h3(A) est le 3-rang du corps
quadratique Q(v/A ). On montre facilement que h3(A) dénombre les racines
cubiques de I'unité du groupe des classes de Q(vA).

Davenport et Heilbronn [9] ont calculé la valeur moyenne de ces
nombres quand A parcourt les discriminants fondamentaux compris entre 0
et X, ou entre —X et 0. Les structures trés différentes des unités des
corps quadratiques réels et imaginaires induisent en effet des différences de
traitement appréciables; en particulier on n’obtient pas le méme résultat
selon que ’on considére les A > 0 ou les A < 0.

THEOREME 1.1 (Davenport-Heilbronn). — Si les A sont restreints aux
discriminants fondamentaux on a, au voisinage de +00, les égalités

> ma)/ 31 =5 4o,

0<A<X 0<A<X
> h;(A)/ 3 1=2+0(1).
-X<A<O0 —-X<A<0

Le but de cet article est de cribler la suite des discriminants
fondamentaux affectés du poids positif h3(A) — 1 afin d’obtenir des
renseignements sur la 3-partie du groupe des classes de Q(vA), ou A
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Crible.
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a peu de facteurs premiers. Pour ce faire, on commence par démontrer
un résultat d’équirépartition du 3-rang dans les progressions arithmétiques
de raison ¢, qui a un intérét propre. En effet, le résultat de Davenport-
Heilbronn correspondant au cas ¢ = 1, on obtient en particulier un reste
en o(1/log? X loglog?~* X), apparemment inédit, pour les formules du
théoréme 1.1. Il n’y a aucune difficulté de principe & rendre effective la
constante implicite du o (nous ne 1’avons pas fait), ainsi d’ailleurs que pour
tous les théorémes démontrés dans la suite.

THEOREME 1.2. — Si les A sont restreints aux discriminants
fondamentaux, alors pour tout € > 0, si ¢ < X'/15~¢ est sans facteurs
carrés, on a :

> [ma)-1]= % “’—EI"—) - X + O(R:(X,9)),

0<A<X
qa
N 3w
> m@)-1= 322 x i o(r(x,0)
—X<A<0 q
qla
avec
p -
w@) =] parrl w(l) =1,
plg
X
R.(X,q)=0 + X15/16+€ ~1/16]
(X,9) [qlongloglogz"EX ? ]

Remarque 1.3. — On peut sans difficulté traiter le cas o1 ¢ a un facteur
carré fixé. La somme étant nulle dés que q a un facteur carré différent de 4, il
suffit de généraliser légérement la fonction w, en la décrétant multiplicative
et en posant

{w(p) =p/(p+1), w(p*)=0sia>2etp premier supérieur a 2,

On a alors le méme théoréme.

Puisque la fonction w(p) vaut 1 en moyenne, nous sommes dans le
cadre bien connu du crible linéaire et la majoration de R.(X,¢q) assure un
controle du terme d’erreur jusqu’a @ = X/15~¢, Parmi la grande variété de
résultats maintenant accessibles, nous avons choisi deux points de vue. Le
premier dit que le 3-rang de Q(,/p) pour p premier n’est pas anormalement
élevé. On montrera :
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THEOREME 1.4. — Quand X tend vers I'infini, on a les inégalités

X
> h3(p) <11(1+0(1) 57>
<X 2log X
p=1(4)

> h3(—p) < 31(1+0(1))
pié)({‘l)

2logX'

Il est clair que nous aimerions remplacer les constantes 11 et 31
respectivement par 3§ et 2, pour montrer que Q(/£p) a un 3-rang moyen
comparable & celui de Q(v/A). Un tel résultat est totalement hors de portée
des méthodes classiques de crible (phénomeéne de parité).

Le théoréme 1.4 entraine une majoration du rang moyen des courbes
elliptiques y? = 3 & p; plus précisément :

Z (\/§)rg(y’=z3ip)=0( X ),

0<p<X logX

avec une constante explicite (voir [10] ol est traité le cas de courbes
y? =x3+ k, avec k € Z*).

Le second point de vue de nos applications est de montrer qu’il y a
beaucoup de A ayant peu de facteurs premiers, donc tels que le 2-rang du
groupe des classes soit controlé, et tels que sa 3-partie soit triviale, ou au
contraire non triviale. Nous montrerons le :

THEOREME 1.5.

o Il existe une infinité de A positifs ayant au plus 8 facteurs premiers
tels que h3(A) = 1.

o Il existe une infinité de A négatifs ayant au plus 26 facteurs premiers
tels que h3(A) = 1.

o Il existe une infinité de A (qu’on peut supposer au choix positifs ou
négatifs) ayant au plus 17 facteurs premiers tels que 3 | h3(A).

Les deux premieres assertions sont obtenues par une majoration
du crible, la troisiéme par une minoration. Signalons que la clé de la
démonstration consiste & compter des points & coordonnées entieres dans
un volume algébrique Cx explicite, vérifiant de surcroit une congruence
adélique. On démontre un résultat trés général (corollaire 4.2) permettant
de dénombrer les points entiers d’un semi-algébrique compact C qui vérifient
une congruence modulo m, avec un reste uniforme en m.
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Dans notre cas particulier, en modifiant cette congruence et ce volume,
nous définirons deux ensembles A et B encadrant ’ensemble cherché. Nous
appliquerons alors la majoration du crible aux points de B, et la minoration
a ceux de A. Les ensembles A et B ont un nombre équivalent de points,
mais leur relative simplicité par rapport & ’ensemble initial permet un bien
meilleur contréle du terme d’erreur.

Par exemple, Cx comporte une «pointe» que l'on controle assez
mal, mais de faible volume; d’ol I'idée (due & Davenport, voir [6] et [7])
de considérer un volume tronqué Cx , et d’effectuer tous les calculs sur
celui-ci, quitte a tenir compte ensuite des points «oubliés». Dans le cadre
d’une minoration, on peut supprimer ce dernier terme d’erreur. De méme,
lorsqu’on évaluera le nombre de corps cubiques de discriminant A, qui ne
sont totalement ramifiés en aucune place finie ( = %[h:’;(A) —1]), on le
majorera en se contentant d’un nombre fini de places.

Remarquons aussi que nous montrons plus précisément la minoration

X
> (A - 1] 2 e
|Al<X log X
plA=p2X/87~¢

Mais il semble difficile d’en déduire un résultat de la forme

Z 1 Z Cel XXa
|Al<X o8

plA=p>X5/87=¢
3|h3(A)

c’est-a-dire d’obtenir une proportion positive de tels discriminants. Méme
si, en pratique, on ne connait pas de corps quadratique de 3-rang supérieur
4 6 (exemple di & Quer [18]).

Les méthodes du crible pondéré s’appliquent & la suite des A affectés
des coefficients h3(A) — 1. On calcule la valeur minimale de r telle que
Ay > 8T (voir [11], p. 253-254), avec

log 4

A= 1l 7
r=rt (1+3—T)log3,
et I’on trouve r = 9. Nous énongons sans autre démonstration :

THEOREME 1.6. — II existe une infinité de A (pris, au choix, positifs
ou négatifs) ayant au plus 9 facteurs premiers, et tels que 3 | h(A).
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Remarque 1.7. — Les mémes techniques permettent de traiter 'autre
résultat célebre de Davenport et Heilbronn sur les corps cubiques, donnant
cette fois-ci la densité de leurs discriminants. On obtient le méme terme
de reste en O(X/log® X loglog®~¢ X). Les cribler ne pose aucune difficulté
particuliere (il faut légérement modifier le §5 et changer les densités locales,
qui gardent les mémes propriétés) et on obtiendrait le méme contréle
de q. Cependant, ’essentiel des résultats alors disponibles seraient triviaux
puisqu’il est algébriquement trés facile de calculer le discriminant des
Q(/%p) (qui fournissent d’ailleurs des familles infinies ol il a trés peu de
facteurs premiers!). Ce qui est loin d’étre le cas pour le groupe des classes.

Je remercie le professeur J.-J. Risler pour la patience avec laquelle
il a accueilli mes questions de néophyte en géométrie réelle, ainsi que le
professeur E. Fouvry, sous la direction duquel ce travail a été réalisé, et
qui m’a suggéré ce théme de recherche ainsi que beaucoup des résultats
présentés ici. Je remercie également le rapporteur pour ses remarques et les
simplifications significatives qu’elles ont entrainées.

2. Notations et définitions.

On considére ’ensemble des formes cubiques binaires, primitives,
irréductibles, & coefficients dans Z. Si F = az3 + bx?y + czy?® + dy?
(éventuellement notée (a,b,c,d)) est une telle forme, on note A(F) son
discriminant, & savoir :

A(F) = b%c® 4 18abed — 27a%d? — 4b>d — 4c®a = A(a, b, ¢, d).

Deux formes f et g sont dites équivalentes s’il existe M € Glz(Z) tel
que fo M = g. Primitivité et irréductibilité étant conservées sous cette
action de Glz(Z), on peut définir Pensemble des classes d’équivalences
de telles formes, noté ®. Les discriminants de deux formes équivalentes
étant égaux, on définit le discriminant d’une classe F' de formes cubiques,
toujours noté A(F'), comme le discriminant de 1'une quelconque des formes
la composant. On utilisera la notation

F=G (modp)

pour indiquer que tous les coefficients de (F' — G) sont divisibles par p, ou
encore p | (F' — G).
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Si p est premier impair, on note V, lensemble des classes de
® telles que p? t A(F); V, désigne ’ensemble des classes F vérifiant
A(F) =1 (mod 4), ou A(F) =8 ou 12 (mod 16). On pose alors

Vi=(% et V=%,
plg
i.e. V est 'ensemble des classes irréductibles de discriminant fondamental.
Le discriminant A(F') étant invariant sous laction de Glz(Z), ces ensembles
sont constitués de classes de formes cubiques. Par abus de langage on dira
que A € V,, si les classes de discriminant A appartiennent a V.

Les lettres grasses désigneront toujours des vecteurs (ou des fonctions
vectorielles) de K™, et « - y est le produit scalaire usuel. K sera un anneau
dépendant du contexte (R ou Z/kZ).

Si E est un ensemble fini, nous noterons indifféremment |E| ou # E
son cardinal. La lettre p, avec ou sans indice, représentera toujours un
nombre premier. Le caractére € désignera un réel positif arbitrairement
petit, son emploi sous-entendra toujours « pour tout € > 0 fixé», et on se
permettra de noter € toute fonction de e vérifiant ces mémes propriétés (par
exemple, 2 = €. ..). Nous utiliserons aussi les notations usuelles suivantes :

1 fonction constante égale & 1,
u(n) fonction de Mébius,
p(n) fonction phi d’Euler,

7(n) nombre de diviseurs de n,

w(n) nombre de diviseurs premiers de n,
¢(s) fonction zéta de Riemann,

[z] partie entiére de z,

e(z) exp(2irz),
(a,b) pged de a et b,
P (n) plus petit diviseur premier de n,

Py produit des premiers inférieurs a Y,
f*xg convolée arithmétique de f et g, i.e.
n
frg(n) = Zf(d)g(g)
dn
y constante d’Euler, ¢.e.

-5+ 1)
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3. Méthode de Davenport-Heilbronn.

Soit K un corps cubique de discriminant A dans lequel aucun premier
n’est totalement ramifié. Autrement dit, A est un discriminant fondamental,
ce qui implique que K n’est pas cyclique (voir [12]).

LeEMME 3.1. — Le nombre de triplets de tels corps vaut :
1 *
Ly - 1)

Preuve. — Voir [12], p. 581. Il suffit de compter les sous-groupes
d’indice 3 du groupe des classes de Q(vA). O

On note K3 I’ensemble des triplets de corps cubiques non galoisiens
et des corps cubiques cycliques. Davenport et Heilbronn (voir [8], démons-
tration du th. 1 et [9], §§ 6 et 7) ont établi une correspondance entre classes
de formes cubiques modulo l'action de Gly(Z) et éléments de Ks, cette
correspondance préservant le discriminant. En particulier :

LeMME 3.2. — Les triplets de corps cubiques non totalement ramifiés
aux places finies sont en bijection avec les classes d’éléments de V de mémes
discriminants.

Pour cribler, nous avons besoin d’évaluer notre somme pondérée en
restreignant A aux progressions arithmétiques du type A = 0 (mod gq).
Grace aux deux lemmes ci-dessus, il nous suffit de compter des classes
de formes cubiques dont le discriminant vérifie certaines relations de
congruence (& savoir A =0 (mod g), et A € V}, pour tout p premier).

On se donne donc S,, un sous-ensemble de (Z/mZ)*, stable modulo
Paction de Gl2(Z) si on le considére comme ensemble de formes cubiques
définies modulo m. Par abus de langage, nous dirons F' € S, si F' modulo m
appartient & Sy,. En adaptant légérement 1’argument original de Davenport,
on a le résultat :

TuEoreME 3.3. — Le nombre de classes de formes cubiques
irréductibles vérifiant 0 < A(F) < X, F € S, est égal, & un O(X3/4+¢)
prés, a la moitié du nombre de points entiers appartenant & S,, contenus
dans le volume C3; de R* défini par :

( A(a,b,c,d) < 3X,
|bc — 9ad| < b? — 3ac < ¢ — 3bd,
a>0.
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Preuve. — Voir [6], lemmes 2 et 3. Davenport considére des classes
de formes cubiques strictes, i.e. modulo Sly(Z), comme c’est 1'usage pour
les formes quadratiques. D’ou P'apparition du facteur . Le O(X%/4*e)
provient des formes réductibles dont le premier coefficient (a) est non nul,
et des cas d’égalités dans les inégalités larges définissant C}'E. m]

LeMME 3.4. — Pour tout point (a, b, ¢, d) € C}'g, on a les majorations :

la] < X/4, b < 2XY/4, |ad| < X'/2,
lbe] < 4x1/2, lac?| < 8X,
|b*d| < 8X, c®|bc — 9ad| < 4X.
Preuve. — C’est exactement [6], lemme 1. |
THEOREME 3.5. — Le nombre de classes de formes cubiques

irréductibles vérifiant —X < A(F) < 0 avec F € Sp,, est égal, & un
oX 3/ 4+¢) pres, & la moitié du nombre de points entiers appartenant a Sy,
contenus dans le volume Cx de R* défini par :

0< -A(a,b,c,d) < X,
d®—a®+ac—db>0,
(a+b)a+b+c)—ad>0,
(a—b)a—b+c)+ad>0, a>0.
Preuve. — Voir [7] et [17]. o
Aux constantes pres, on a les mémes majorations que dans le

lemme 3.4 (voir (7], lemme 1) :

LEmMME 3.6. — Pour tout point (a, b, c,d) € Cx, on a les majorations :
la) < 2XY4, b < 3X'/4,  |ad] < 2X'/2,
lbc| < 8X1/2, |ac®| < 12X,  |b%d] < 12X,
c*|bc — ad| < 16X.
Remarque 3.7. — Ces deux volumes proviennent de la donnée d’un
représentant « canonique » pour chaque classe de formes. On commence par
associer & toute forme cubique F' un covariant quadratique, c’est-a-dire

une forme quadratique binaire Q(F'), définie positive, telle que, pour tout
M € Gly(Z), on ait

Q(F o M) = \(F, M) - Q(F) o M,

ou A\(F, M) € C. On montre alors qu’il n’y a essentiellement qu’une seule
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forme cubique par classe dont le covariant quadratique soit réduit (au sens
de la réduction des formes quadratiques définies).

Pour les classes de discriminant positif, on choisit, en suivant Hermite,
le Hessien H(F') pour covariant, et on impose que le premier coefficient
(celui de z3) de F soit positif. En effet, 'application F +— H(F) commute
a laction de Glz(Z), donc deux formes équivalentes n’ont méme Hessien
que si elles different d’un automorphisme de H, i.e. un g € Glz(Z) tel que
g-H=H.Or A =A(H) = —-3A(F) et les formes quadratiques définies
ont essentiellement deux automorphismes (en fait exactement autant qu’il
y a d’unités dans le corps quadratique imaginaire Q(v/A), c’est-a-dire 2
pour A < —4), parmi lesquels se trouve (z,y) — (—z,—y) qui change le
signe de a. On obtient donc bien un unique représentant par classe, pour
presque toute classe.

Par contre, dans le cas réel, les automorphismes du Hessien forment
un groupe monogene infini, donc la réduction d’Hermite est inadaptée (pour
tout ce qui a trait aux classes de formes quadratiques, automorphismes,
réduction, nous renvoyons le lecteur au précis de Buell [2]). La réduction
des formes de discriminant négatif (due & Mathews et Berwick, voir [7]
et [17]) aboutit alors & un domaine fondamental différent.

Pour nous, le traitement sera essentiellement identique. On continuera
donc la démonstration avec la notation C'x qui désignera indifféremment C’;’g
ou Cx. Jusqu’a la fin du paragraphe 7, ’exposant + (resp. —), désignera une
quantité en rapport avec les discriminants positifs (resp. négatifs) ; quand
ce signe ne joue pas, ou quand les résultats s’expriment identiquement
modulo inversion des signes, on le remplacera par + ou on le supprimera
s’'il n’y a pas d’ambiguité.

On peut approcher le nombre de points entiers d’un compact
«raisonnable » par son volume, le terme d’erreur ne faisant essentiellement
intervenir que le volume de ses diverses projections sur des sous-espaces de
dimension inférieure (voir [5]) :

TutorEME 3.8 (Davenport). — Soit C' un compact de volume vol(C)
de R™, et soit N(C) le nombre de points entiers situés dans C. On suppose

que:
o Toute droite paralléle & I'un des axes de coordonnées intersecte C

en au plus h intervalles.

o La méme propriété reste vraie si I’on considere la projection de C
sur I'un des espaces affines de dimension k d’équationz;, = --- =x;,_, = 0.
Et ce pour tout k compris entre 1 et n — 1.
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On note Vi (C) le maximum des volumes des projections de C sur les
espaces affines de dimension k définis ci-dessus (Vo(C) = 1 par convention).
Alors on a I'inégalité :

n—1
|N(C) = vol(C)] < >~ h**Wi(C) (")
k
k=0
(Le résultat de Davenport est plus précis : le terme Vi(C)(}) est
remplacé par la somme des volumes des projections en dimension k.)

En particulier, ce théoréme s’applique & tout ensemble semi-algébrique
(défini par un nombre fini d’inégalités polynomiales) compact. C’est une
conséquence immédiate du lemme suivant (voir par exemple [1], th. 2.3.4 et
la prop. 4.4.5) :

LeMME 3.9. — Soit A C R™ un ensemble semi-algébrique défini par

fi=ee= =0,
g1>0,..., g¢>0.

o On note d le maximum des degrés des f; et des g;. Alors le nombre de
composantes connexes de A est fini et la borne ne dépend que de n, £ et d.

o Si p est une projection, p(A) est semi-algébrique et on peut borner
uniformément le nombre et le degré des polynémes intervenant dans
sa définition en fonction de ceux qui définissent A (principe de Tarski-
Seidenberg).

Ces deux bornes sont effectives.

Il se trouve que Cx n’est pas compact, quoique de volume fini. De
plus, ce volume est du méme ordre de grandeur que celui de sa projection
sur 'hyperplan a = 0 (de l’ordre de X). On doit donc tronquer Cx pour
pouvoir appliquer le théoréme 3.8 efficacement.

LemMmE 3.10. — Soit p > 0 un nombre réel. Le nombre de
points (a,b,c,d) a coordonnées entiéres appartenant & Cx, et vérifiant
a < X473 est un O(X'~°).

Preuve.

e Cx = C¥ : c’est exactement [6], lemme 4. Ce résultat est vrai sous
les seules hypotheéses du lemme 3.4.

e Cx = Cx : le calcul est identique en appliquant cette fois-ci le
lemme 3.6. ]



CRIBLE ET 3-RANG DES CORPS QUADRATIQUES 919

Nous allons donc noter Cx,, (ou Cx , et Cx , quand la distinction
aura une importance) l'intersection de Cx et de la région définie par
I'inégalité :

1) a> X143,

On appellera pointe la région a < X'/4=3¢ (la pointe & proprement
parler est constituée des points ol a et b sont simultanément petits).

THEOREME 3.11 (Davenport). — Soit N*(X, p), resp. N~ (X, p), le
nombre de points entiers dans le volume C;g’ o resp. Cx. o défini ci-dessus.

On note :

2 w2

+ - T =
K 36 et K 12

On a alors I’égalité :
N*(X,p) = K*X + O(X'7F 4 X3/4+%),

Preuve. — On reprend les calculs de Davenport. On peut borner
le volume des projections de Cx,, par un O(X%/4+3¢) (le corollaire 4.3
montrera essentiellement O(X3/4+3%¢log X), mais on peut étre plus
soigneux). On montre, en calquant la démonstration du lemme 3.10, que
le volume de Cx , est égal & celui de Cx & un O(X'~*) prés. Le volume
de Cx vaut exactement KX (voir [6], erratum pour A > 0 et [7], p. 198
pour A < 0). Le théoréme 3.8 permet alors de conclure. 0O

Le choix naturel que fait Davenport (p = %), égalisant les deux termes
d’erreur, donne un reste en O(X'%/16). Nous ferons un choix analogue en
fin de démonstration.

On a en fait beaucoup mieux. Sato et Shintani [19] ont développé
une théorie des fonctions zéta associées & certaines représentations (espaces
vectoriels préhomogenes), et les premiers exemples étudiés par Shintani [20]
sont des séries de Dirichlet dont les coefficients sont les nombres de classes de
formes cubiques légérement modifiés. Il montre ’existence de prolongements
analytiques méromorphes, calcule les valeurs des résidus aux péles (1 et -g—),
et prouve une équation fonctionnelle originale ou elles interviennent toutes
simultanément. Apres une étude analogue des séries associées aux classes
de formes quadratiques (les formes cubiques qu’il considére peuvent étre
réductibles), le théoréme d’Tkehara suffit pour conclure, mais avec un terme
d’erreur moins précis que celui de Davenport. Un théoréme taubérien plus
fin, essentiellement dii & Landau, modifié par Sato et Shintani ([19], §3)
pour tenir compte des équations fonctionnelles vérifiées par leurs fonctions
zéta, permet d’obtenir le développement explicite suivant (voir [2], th. 4) :
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THEOREME 3.12 (Shintani). — Soit X > 0. On note F*(X)
(resp. F~(X)) le nombre de classes de formes cubiques irréductibles,
de discriminants compris entre 0 et X (resp. entre —X et 0). On a I'égalité :

FX(X) = K*X + k*X5/% + O(X?/3%¢),
oli kT et k~ sont explicites et non nuls.

Malheureusement, il semble qu’aucune démonstration élémentaire
de ce résultat ne soit connue, qui ne fasse intervenir que des invariants
géométriques du domaine fondamental explicite dont on dispose dans
chaque cas. Comme nous avons absolument besoin de l’interprétation
géométrique (notamment au §4), nous ne sommes pas en mesure d’exploiter
ce résultat. Il va de soi qu’une démonstration nous permettant de remplacer
notre O(X%/16) potentiel par le O(X5/%) optimal améliorerait notablement
les estimations du théoréme 1.2 et donc les constantes numériques présentées
dans la suite.

Nous devons maintenant compter les points dont les discriminants
sont fondamentaux. Davenport et Heilbronn expriment cette condition
sous la forme d’une congruence modulo m, dont ils font tendre ensuite le
module vers l'infini au terme d’un crible assez délicat. Comme ils n’ont pas
d’uniformité sur m, ils n’obtiennent qu’une limite et pas de terme d’erreur.

Remarque 3.13. — En adélisant la méthode de Shintani, Datskovsky
et Wright [4] ont donné une généralisation des théorémes de Davenport-
Heilbronn, dénombrant les extensions cubiques de n’importe quel corps
global de caractéristique différente de 2 ou 3, mais sans pouvoir obtenir
autre chose qu’un équivalent, a cause d’un probléme d’uniformité analogue
a celui rencontré par Davenport et Heilbronn (quoique dans un cadre
beaucoup moins géométrique). Sans bijection explicite avec les points
entiers d’un volume généralisant Cx ,, il parait difficile de généraliser les
méthodes du présent article & ce contexte, et plus particulierement celles
du paragraphe suivant.

4. Congruences.

Considérons un compact C de R™, vérifiant les hypotheses du
théoréme 3.8, et un sous-ensemble S, de (Z/mZ)™ ; nous voulons dénombrer
les points entiers de C dont la réduction modulo m appartient & S,,. Notons

|Sm

s(S’m,m) = ;ZT
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la densité de Sy, ; on écrira s(m) quand ’ensemble S, considéré ressortira
clairement du contexte. Pour tout diviseur k£ de m, on définit ’ensemble
Sk C (Z/kZ)™, de cardinal S(k) par réduction modulo k des éléments
de Sy,. On démontre facilement que s(m) est multiplicative.

LemME 4.1. — Reprenons les notations du théoréme 3.8. Nous
désignons par N(C,Sy,) le nombre des points entiers de C appartenant
& Sp,. Alors, on a I'inégalité :

IN(C, Sm) — s(m) vol(C)| < s(m) i(h m)" %V (C) (Z)

k=0
Preuve. — Pour = € S,,, appliquons le théoréme 3.8 & la région
m~1(C — z), obtenue par translation puis homothétie de rapport 1/m &
partir de C :

n—1
IN(C) —=m ™ vol(C)| < Y " *m~*Vi(C) (")
k=0 k
11 suffit de sommer sur & € S,,, pour obtenir le résultat. O

Le réseau (mZ"™) partage C en cubes de cdté m. On définit
Pépaississement C,, de C comme la réunion des cubes rencontrant C
(la figure 1 donne une idée de la situation en dimension 2).

Figure 1 : découpage de C
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COROLLAIRE 4.2. — Avec les notations précédentes, on a I'inégalité :
|NM(C, Sm) — s(m) vol(C)| < ms(m)(2h)"Vp—1(Cim).
Preuve. — Pour tout assemblage A de cubes de c6té m, on a
m~*Vi(4) < m~EHDV 4 (A).

En effet, les projections considérées associent & tout cube un cube de
dimension inférieure, donc le nombre de cubes décroit avec la dimension.
On majore les volumes de projections de C par ceux de C,, et le terme
d’erreur devient

n—1
— _x(n
ms(m)Vyu—1(Cm) Z Rk (k)
k=0
La conclusion est alors immédiate. O
Dans le cas des formes cubiques et du volume Cx,, C R* de Davenport,

nous obtenons :

CoOROLLAIRE 4.3. — Le volume des projections de I’épaississement
de Cx,, est dominé par

X3/4430 10g X 4+ m2X /4430 4 3,
ol la constante implicite est effective.

Preuve. — La notation (a, b, c,d) désigne toujours un point de Cx .
D’apres les lemmes 3.4 et 3.6, pour tout (a,b,c,d) € Cx, on a

o< X4, b < X4, |c| < XY3a7Y3 « XM/4+e,
o] < X2[b|7Y, |d| < X207 <« X1/4+30,

et si b = 0, alors ac?|d| < X. Si l'on considére un point de Cx ,, on a
de plus a > X'/4-%, Pour z € {a,b,c,d}, on note V, les projections sur
z = 0 de 1’épaississement C,,. Comme ce sont des assemblages de cubes,
d’intérieurs disjoints, aux sommets entiers, leurs volumes sont majorés par
le nombre de leurs points entiers respectifs. On en tire :

XV/4+Pom
Vo< 1<(X 4 4m)y+ > (X(ac®)™ +m)
b,c,d XA c=1
+ ) (XM 4m) - (XA 4 m)

b=1
(le premier terme correspond & b = ¢ = 0, le deuxiéme & b = 0)
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< X3/4+3p log X +m X1/243p 4 2 x1/443p | 103
<K X343 log X + m2X /443 4 mB,

XY44m X4+ 4m
By 1< Y (XM im) Y 1<V,
c=1

a,c,d a=1
XY 44m XY44m

<Y i Y (XMt tm) ) 1<V,
a,b,d a=1 b=1

Vi< ) 1< (XY +mP (XA 4 m) < W
a,b,c
D’ou la conclusion. O

Globalement, nous obtenons donc :

PROPOSITION 4.4. — Le nombre de points entiers de Cx, appartenant
a S, vaut :

@ s(M)N(X, p) + O(s(m) E(X, p,m)),
ot N(X, p) a été évalué au théoréme 3.11 et

(3) E(X,p,m) = m(X3/4+30 log X + m2X /4% 4 m3).

Remarque 4.5. — Si m = o(X'/4), on obtient E < mX3/4+3¢+¢_ Ceci
revient & s’assurer que (2) a bien un sens, c’est-a-dire qu’on a 1’égalité

s(m)mX3/* = o[s(m)N(X, p)].

D’autre part, si ’on raisonne en termes de cubes, il parait naturel d’imposer
que ceux-ci soient petits devant les dimensions de la variété (qui est
essentiellement I’homothétique de rapport X1/4 d’une variété fixe). En fait,
une technique de séries de Fourier va nous permettre au paragraphe 5 de
diminuer artificiellement le module m de la congruence, donc le reste de
notre expression, dans le cas particulier qui nous intéresse (formes dont le
discriminant est fondamental et divisible par g).

Dans le lemme suivant, nous transcrivons dans nos notations les
résultats de densités locales obtenues par Davenport et Heilbronn [9],
partie 3 :
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LEMME 4.6. — Pour tout p premier on a les densités :

s({Fmodp; ptF,p| A(F)}, p) = (P+ 1)(p* - 1)/p%,
s({F mod p*; pt F, F € V,}, p*) = (p* — 1)*/p",
s({F mod p™; pt F, F ¢V}, p*) = 2(p* — 1)/p",

s({F mod p*; F ¢ Vp}, p*) = (2p° - 1)/p",

ol & = 2 pour p # 2, et 4 sinon.

Preuve. — Davenport et Heilbronn calculaient des densités en se
restreignant aux formes non divisibles par p, alors que nous avons défini
nos densités en considérant toutes les formes modulo p®; pour passer
de leurs densités aux nétres, il suffit de les multiplier par (1 — p~*). La
premiére égalité provient alors de [9], lemme 1 : on additionne simplement
les contributions de toutes les formes ou p se ramifie dans le corps de
décomposition de F, c’est-a-dire les deux derniéres égalités du lemme. La
seconde correspond exactement au [9], lemme 4 et les deux derniéres sont
des corollaires immédiats. O

5. Sommes exponentielles.

Revenons un instant sur le cheminement qui, du lemme 4.1 et son
corollaire 4.2, & la proposition 4.4, nous a permis de démontrer (2) :
supposons que, pour un entier v < m, nous sachions évaluer le cardinal des
points appartenant a S, dans un cube de coté v, et non plus m. Supposons
de plus que ce cardinal soit proche de v™|S,,|, c’est-a-dire qu’on garde
essentiellement la méme densité. Le méme raisonnement nous permettrait
alors d’écrire I’équation avec un terme d’erreur E(X,p,v) < E(X, p,m).
Nous allons voir que tout ceci est possible, avec

= mlte Hp——l/4.
p|m
Soient donc, u et v deux entiers et X, , la fonction caractéristique des
entiers de I'intervalle [u, u + v[. Développons-la en série de Fourier :

ut+v—1m-—1

Xu'u(a i Z Z h(a—x)/m]

z=u h=0

Soient uw = (u1,uz, U3, uq4) €t T = (xl,wz,wg,:l:4) on note

Xun(T) = HXuz,v (x:)
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la fonction caractéristique des points entiers d’un cube de coté v dont les
sommets sont & coordonnées entiéres (données par u). Nous voulons évaluer
le nombre de points appartenant & S,,, dans un tel cube, soit :

F(u,v) = Z Xuv(A 422 (————)O'(h m),

A€ESy,

o(h,m) = Z e(AT;Lh).

A€Sy,

En h = (0,0,0,0), on obtient s(m)v* qui serait le résultat exact si la
distribution des points de S, était uniforme. Remarquons que si h est non

nul, alors
’;e(—fn—h)\ﬁ E

qui est majoré par m/(2h) si h < 3m, et par m/[2(m — h)] sinon. Cette

méme somme vaut v si h = 0. Donc

zh
‘ZZe( — —)‘ <KL v+ mlogm <« mlogm.
h = m
Supposons que l'on sache majorer |o(h,m)| par o(m) pour tout h non nul
modulo m. Nous obtenons
4) F(u,v) = s(m)v* + O(c(m) log* m).

Simplifions d’abord notre probleme : nous aurons uniquement besoin
des m de la forme

[Ir* (p<2sip#2, a2 <9),
et S,, défini par
«ptAet A(A) =0 (mod p®r) pour tout p | m»
ou par

«A(A) =0 (mod p?)».

Nous supposerons dorénavant que nous sommes dans cette situation
précise. Le lemme 4.6 assure alors

p *<s(p)<2p7* (p>2),
soit

1 < ms(m) < 2™ <« me.
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LeEMME 5.1. — La fonction o(h,m) est multiplicative en m.

Preuve. — Soit m = k¢, avec (k,£) = 1. On choisit u et v dans Z tels
que uk + v€ = 1. Alors tout A € (Z/k€Z)* s’écrit de fagon unique sous la
forme :

A =ukA;+ vlAg
avec Ay € (Z/Z)* et Ay, € (Z/kZ)*. Alors

o(h,kt) = > e[h- (ukAp+ veA)/k¢]

AESke
= > e(vh-Ax/k) > e(uh- Ay/f)
ALESk AL€S,

=o(h,k)o(h,?)

car u (resp. v) est inversible modulo £ (resp. k) et donc A € Sy (resp. Sk)
si et seulement si uA € Sy (resp. vA € Sk). i

Remarque 5.2. — Le lemme est faux si ’on ne suppose pas Sy, stable
par homothétie de rapport premier & m. Ici, avec les restrictions que nous
venons d’adopter, c’est évidemment le cas.

11 nous reste & évaluer o(h,p™) pour tous les diviseurs premiers p
de m. On a facilement

lo(h,p*)| < (0,p%) < 2p°*

donc o(p®) = 2p3* convient, mais n’est guere satisfaisant. En effet, au
vu de (4), la méthode n’a d’intérét que si o(m)log*m < s(m)m*=¢, soit
justement o(m) <« m3~¢.

ProposiTiON 5.3. — Sipt h, p > 3, a € {1, 2}, alors

|o(h,p%)| < 4p®*~.

Preuve.

e On commence par traiter le cas a = 1 : le discriminant A est
un polynéme homogene de degré 4. Considérons ses racines non triviales
dans ]F;‘,, c’est-a-dire dont au moins une coordonnée n’est pas nulle (& cause
de la condition p { F). Par homogénéité, les racines sont alignées sur un
ensemble de droites passant par 0, contenant toutes p — 1 solutions non
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triviales. Notons A; (resp. Az) un systéme de représentants des droites
de ]F;‘, contenant ces solutions, et telles que

A-h#0 (modp), (resp.A-h=0 (mod p)),

pour toute solution A non triviale. Alors

ohp) =) ) e(iép;h) +Y (- 1)
Az

A; XeF;

Dans la somme sur A;, il apparait des progressions géométriques de
raison e(A - h/p) # 1, soit

a(h,P)=*;%—1#{A€]F:; ptA, A(A)=0, A-h #0}
+#{A€F;; ptA A(4)=0, A-h=0}.

D’apres le lemme 4.6, le premier terme est majoré en valeur absolue par
P-1)"'e+1)E°-1)=(p+1)>*

Evaluons maintenant le deuxiéme terme : une des coordonnées de h
étant non nulle, ’équation A - h = 0 permet d’exprimer la coordonnée
correspondante de A en fonction des trois autres. En substituant cette
valeur dans 1’équation A(A) = 0, on obtient une équation polynomiale
modulo p, homogene, en trois variables, de degré au plus 4. Elle est non
nulle : en effet, supposons l’existence d’un facteur linéaire, & coefficients
entiers, aa + Bb + yc + 6d dans A et considérons le quotient. Si a # 0,
son degré en a est exactement 1 et un calcul explicite montre qu’on ne
peut pas obtenir le facteur 27a%d2. On montre de méme que § est nul.
Tous les facteurs de A seraient alors des multiples de b ou ¢, ce qui n’est
manifestement pas le cas.

Une telle équation sur le corps F, a au plus 4p? solutions. En effet,
soit un polynéme P homogeéne de degré d, en k variables, irréductible; on
fixe (k — 1) variables : nous obtenons un polynéme non nul en une variable,
de degré au plus d qui a donc au plus d racines sur Fp,. On en déduit que P
a au plus d - p*~! racines. Si maintenant P n’est pas irréductible sur F, on
le décompose en produit de P; irréductibles de degré d; ayant chacun au
plus d;p*~?! racines et P en possede alors au plus 5 d;pF~! = dp*~1.

Nous majorons donc |o(h, p)| par 4p?.
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o Cas a =2 : On peut écrire tout élément de (Z/p?Z)* sous la forme
Ao + pA,, ol les coordonnées de A et A; sont dans [0,p — 1]. La formule
de Taylor donne

A(Ao +pAi) = A(A) +pA; -grad 4 A (mod p?).

Si A(Ap) =0 (mod p), on note Ha, le sous-espace vectoriel de Fj défini
par ’équation linéaire :
A(A
A.gradAoA—_—_Lg.)_.
p
C’est un hyperplan, sauf si Ao est singulier, auquel cas Ha, = 0 ou Fj.
Nous écrivons

Ay - A -
) = 5 o(BR) 5 (AE)
A(Ao)=0 (p) A1€Hy,
(pfAo)

La deuxiéme somme est nulle sauf si grady A # 0 (mod p) et
grady, A = Ah avec A € F;. Comme le gradient est nul quand p di-
vise Ay, la condition (p { Ag) ne change rien dans I’évaluation de o(h,p?)
et nous pouvons supposer, d’une part, que Ag est non singulier, et d’autre
part, que h et grad 4 A sont colinéaires. Alors, la relation d’Euler

Ap - grad 4, A = 4A(Ay)

impose Ag-h =0 (mod p). D’aprés le cas a = 1, il y a au plus 4p? solutions
pour Ay et nous pouvons majorer |o(h,p?)| par 4p°.

D’oti le résultat annoncé. O
Remarque 5.4. — On peut montrer (voir [16], th. 5.7.0) que I’on a
|o(h,p)| < Cp*/*

pour presque tout h (sauf sur un fermé de Zariski), avec C une constante
absolue. Ou encore (voir [15]) que

p~* > |o(h,p)| <P
hEF:

Ces résultats sont nettement plus profonds que les techniques rudimentaires
employées ci-dessus, mais ne permettent pas de majorer F(u,v) de fagon
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raisonnable, méme quand a = 1. Nous devons donc nous contenter de
notre p3®~1 et perdre un facteur p'/2 par rapport au résultat optimal.

En fait, (4) n’est pas satisfaisante puisque h peut étre nul modulo
presque tous les diviseurs de m sans toutefois étre nul modulo m. Donc
on n’aura pas de majoration uniforme convenable. Il faut détailler un peu
plus : on note

d||h sih =0 (mod d) et h/d non nul modulo tout diviseur de m/d,

i.e. si d est le pged des coordonnées de h. Nous reprenons le calcul en
utilisant les inégalités v < m et w(m) < logm/loglogm :

F(u,v) — s(m)v*

- % Z Z Ze(_m'h/m)na(hma”) H o(h,p*»)

dlm h @ pld ptd
d#m dllh plm

< % Z[(""" ml(;gm>4_v4] H (0, p%")
d|m p|6d
X max H |o(h,p°‘P)|

pt6d,p|m
< _n% Z (U3mloim 4 md lo%;m) H aper-1 Hp
d|m p|lm pld
< 4q@tm) log*m H p3or—t
plm
< m3te H p L.
plm

Pour ¢ suffisamment petit, on pose
v = mite H p~ Y4 < m.
plm

Nous pouvons supposer que ce v est entier et reprendre le raisonnement
du début du paragraphe 4 en appliquant une homothétie de rapport v=! &
Cx,p — «. Le nombre de points entiers de C'x , appartenant a Sy, vaut :

s(m)vt + O(m3*+¢ 11, p71)
i

=s(m)N(X,p) + O(

(N(X,p) + O(E(X, p,v)))

E(X, p,v) X
ml—¢ mlte )
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en utilisant N(X,p) < X et s(m) < m*~!. En remplacant E par sa
valeur (3), nous obtenons :

X
s(m) - N(X,p) + O =1z + Bi(X, p,m)),
avec

Ey(X,p,m) = XE(X3/4+3P H p_1/4 + X1/443p 2 Hp_3/4
p|m plm

+m? Hp‘l).

plm

Si m = o(X®) pour tout € > 0, on reprend le terme d’erreur initial de la
proposition 4.4, soit

s(m)E(X,p,m) < X'~¢/m!*e,
si € est assez petit. Notons
EZ(X7 P m) =X'"*m~1"¢ )
nous avons finalement montré :

ProposiTION 5.5. — On suppose que S,, vérifie les conditions
énoncées en début du paragraphe 5. On note N*(X,p,m) le nombre
de points entiers de C,ﬂé, , appartenant a Sy, et E1, E; comme ci-dessus. On
a ’égalité :

NE(X,p,m) = s(m)N*(X, p) + O(EL(X, p,m) + E2(X, p,m)).

6. Dénombrements préliminaires.

LeEMME 6.1. — Soient q,r deux entiers positifs sans facteurs carrés
et Q un multiple de q premier &4 r. On note f*(Q, q,r) le nombre de points
entiers F' de C)jé‘ , dont le discriminant vérifie :

o q divise A,
e A€ VQ,

o A ¢V, pour tout p premier divisant r.
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Alorson a

@an =N [ 5 125 1 250

sia P oir Je P

+o[“§) 3 (E1+E2)(X,p,M)].

= o i (g,p1---px)
pi|Q
Preuve. — C’est un simple procédé de comptage & ’aide du lemme 4.6

et de la proposition 5.5. Avec les notations de cette derniére, nous avons
m = (Qr)?. On obtient donc

2 2
NXp]] 7 1)4(p+1) I1 22 7 >+ (Br + B)(X, p,0r%)
rlq p|r
points entiers vérifiant ¢ | A, p{ F pour tout p | ¢, et A ¢ V,, pour tout p | r.
On veut retrancher les classes vérifiant de surcroit la condition «il existe
p | Q avec A & V,». Par inclusion-exclusion, il y en a :

Z( V1Y #{F:q|A; FgV,,u...UV,, UV}

P1<--<Pk plr
pi|Q

Donc, en faisant la distinction entre p; | g, qui implique p; 1 F, et
pi|Q, (pi,Q) = 1, on trouve que f(Q, g,7) vaut :

rlg plr
p 20 -1) 7 2 -1
x |1— (1)
Pi
U 2(p1 - - px)?
+O[;§(E1+E2 ( ' (g, pi - Pk) )]
La partie entre crochets du terme principal vaut
Y YIS I 22
kP pzlq (m,q)=1 p
2 2p% — 1
- M(-25) T
P|(qu)( Pt 1) ?lQ ( Pt )
(p,g)=1

p-l p*(p—-1)
=11 H(p+1)p2—1)2

rlQ plg
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et I’on calcule

0

@P*-)e+1) p'l-1) 1
I1 I1

P p+)E2-12 Llpy1

plg rlg

COROLLAIRE 6.2. — On note Py le produit des nombres premiers
inférieurs Y, avec Y = log X/ logs X. Alors, on a I’égalité :

_ N(X,p) 1 2p? — 1 2 _
f(qPy,q,r) = 20) HHIH o (1+Z;2— +0(Y 3))

p>Y
(p,9)=1

+ 0(X3/4+3P+E(q,’.)—1/4 + X1/4+3”+€(1'q)13/4
+ X5(qr)® + X'%(gr®) ™).

Remarque 6.3. — Nous n’utiliserons ce résultat que dans les deux cas
suivants :

o qr € X'/7-¢ auquel cas
(6) X1/4+3p+€ (”'Q) 13/4 + X° (q,,.)5 < X3/4+3p+€ (q,,.)—l/4'
o p=cet X1/7¢ &« gr, ce qui implique
(7) X1/4+3p+e ("'Q) 13/4 + X3/4+3p+s (qr)——l/4 < X¢ (q,r)5‘
En particulier, le terme médian X 1/4+3¢+¢(q)13/4 sera toujours négligeable.

Preuve. — Rappelons que nous avons posé Ea(X, p,m) = X17¢/m1+te
et

Ei(X,p,m) = X¢ (X3/4+3p H P VAL X1 /A+3pp,2 H p—3/4+m3H p_l).
plm plm p|lm
On calcule alors :

qr?(py - - px)?
22 EI(X’p’ (¢,p1°Dx) )

< X°¢ (X3/4+3p(q,,.)—1/4 H (1+p_1/4)

p| Py
+ X 1/4+30(gr)4-3/4 H (1+p*=3/4) + (gr)5~! H 1 +p6—1))
p| Py p| Py

< XE(X3/4+3p(qr)_1/4+X1/4+3”(qr)13/4+ (,,.q)s),
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qr¥(py - - - px)?
Xk:m%;’yEz (X’ & (qapl . 'pk) )

= X1-¢(gr2)~1-¢ H (1+ ((‘1};1’))1+e)

plgPy
< Xl—e(q,rZ)—l—e,

en utilisant 2¢(9) = o(X*¢) et, pour tout k fixé, H p* = o(X*).
p|Py

Le terme d’erreur est donc dominé par
Xs(X3/4+3p(q,,.)——1/4 +X1/4+3P(q,,.)13/4 + (qr)S) +X1—6(qr2)-—1

Le terme principal s’obtient immédiatement en écrivant :

@ -1)? _ qp@*-1°
H pt - H pt H (p2—1

plqPy P p>Y
(p,g)=1
2 _ 1)2
puis en remarquant que H (p 1) Czt % et finalement
p4 2
p>Y P p>Y
(p9)=1 (p,9)=1
=1+(Z2/p2+0(z 1/p4)). |
p>Y p>Y
(p9)=1

Il ne nous manque plus qu'un dernier lemme et nous pourrons
conclure :

LEMME 6.4. — Soit ¢ < X1/3-¢ sans facteurs carrés. Le nombre
de classes de formes cubiques binaires, irréductibles, de discriminant A
compris entre —X et X, divisible par qp? et appartenant & Vq, est dominé
par

X X15/16+E
( ) :

ql —ep2 + q1/16p30/16

Preuve. — Commencons par remarquer qu’il suffit de démontrer le
théoréme pour les classes primitives. On reprend [9], prop. 1 o Davenport
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et Heilbronn démontrent que, pour ¢ = 1, cette quantité est un O(X/p?). Ils
commencent par compter les classes de formes F' de Hessiens H réductibles
(lemme 8). Un tel Hessien aurait pour discriminant —3A qui serait donc un
carré (dans Z), soit A = —3a?, avec a € N et g | A. Alors —3a? € V; pour
tout £ | ¢, ce qui impose ¢ = 3 ou ¢ = 1. On utilise alors la majoration de
Davenport-Heilbronn pour obtenir un O(X/qp?).

Nous considérons ensuite les Hessiens irréductibles, de la forme M H;,
ol M € Z et H, est primitive de discriminant f2A, avec A fondamental.
Davenport et Heilbronn montrent qu’il y a au plus O(7(M)) classes de
formes cubiques de Hessien M H; donné (voir [9], lemme 9). Puis au plus
O(1(M)3“h%(A)) classes de Hessiens M H; (voir [9], lemme 10). On peut
supposer p > 2; alors nos hypothéses impliquent p | M f et g | A. Donc, le
nombre de classes de formes cherché est dominé par :

YoMef Y Ry(A).

.
f1<VIX lal< 3M2f2

pIMf qla
On note

S(X,q)= Y [h3(8)-1].
l%'ﬁsx

On majore S par le nombre de classes de formes F' vérifiant p t F
pour tout p | g, g divise A(F) et |A(F)| < X. C’est-a-dire, en utilisant les
lemmes 3.10 et 4.6, le théoreéme 3.11, et enfin la proposition 5.5 :

1)(p* -1
O(Xl_p"'XHMI;(g—_l +X3/4+E+(E2+E1)(X,p,q))-
plq

On obtient

S(X,q) < X'+ X/q¢" "¢+ X' /q
4 X3/ 4H3egm1/4 | x1/4+3p+eg5/4 4 xeg2

Si ¢ « X1/3-¢ les deux derniers termes sont petits devant l’anté-
pénultiéme. On choisit X? = (X¢q)'/!6, ce qui rend le terme en X3/4t¢
négligeable devant X'~” et 1’on calcule :

S(0X,0) € X/al~* + X9/,

La fin du calcul est facile. O
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Remarque 6.5. — A cause de ce dernier lemme nous devions mener
simultanément les calculs concernant discriminants positifs et négatifs. En
effet, les signes des discriminants d’une forme cubique et de son Hessien
sont opposés, donc, si ’on désire se limiter & un signe fixé, la majoration
fait intervenir les formes de discriminant opposé. La démonstration de
Davenport-Heilbronn assure que ce terme est un O(X/p?); on a fait un peu
mieux, sans toutefois atteindre ’ordre de grandeur espéré : X/p?q.

7. Théorémes d’équirépartition.

On désigne par A*(X) (resp. A~(X)) ensemble des discriminants
fondamentaux positifs (resp. négatifs), inférieurs & X en valeur absolue.
Notons S,i(’q I’ensemble des points entiers de Cj% appartenant a V, donc
primitifs, et tels que ¢ divise A. Les théorémes 3.3 et 3.5 assurent :

|Sx,q| =2 Z (R3(A) — 1) + O(X3/4+e).
AeA(X)
q|A
On fixe € > 0 et on note

. Ai I’ensemble des points F de C3 %« appartenant a V, et tels qui
sont tels que q divise A(F).

e BE X,q,c 'ensemble des points F" de C’j% tels que q | A(F), appartenant
a V, pour tout les p inférieurs & X* ou divisant q.

On a trivialement Ax ¢ C S(X,q) C Bx,q.-

THEOREME 7.1. — Soient ¢ > 0, Qg = X'/15~¢ et q un entier
inférieur a Q) g sans facteurs carrés. On a I’égalité

BE,.| = 2
Xael = 02(3)

ou le terme d’erreur vérifie :

XH +1+R (X,q,¢),

Qs
> |RE(X,q,¢)| = o(X/log X).
g=1

Remarque 7.2. — Notons

X

L(X,q,e) =
(X, 9¢) qlonglogg_eX
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qui vérifie

Z L(X,q,e) = O(ia;if)'

a<X
Nous montrons en fait la majoration individuelle beaucoup plus forte :
IRﬁ(X,q, e)| & X15/16+e=1/16 4 [(X 4 ¢),
mais elle ne nous sera d’aucune utilité pour nos applications de crible. [0

Preuve. — On pose comme précédemment Y = log X/logs X, Py le
produit des p inférieurs 4 Y, et on note

V(Y)={F €Cx,; q| A(F), A(F) € Vypy }.

On veut compter le nombre de classes de formes appartenant & V,, pour
tout p | ¢Pxe et de discriminant divisible par g. C’est-a-dire :

VI - [viY)n{3p; Y <p< X%, A€V, }|
+|{F € Cx = Cx,p,-..}|-

Ou encore, en introduisant la fonction f définie au lemme 6.1 et en utilisant
le lemme 3.10 :

(8) f(qPY1 q, 1)
9) = Y faPr,an+0( Y faPr,amip2))
Y<p<X*® Y<pi<p2<X¢
(p,g)=1
(10) + O(X1=Pte),

e On choisit X? = X1/16¢1/16  Evaluons le premier symbole de
Landau (ligne (9)) & l'aide du corollaire 6.2, sachant que, pour ¢ < Qp,
nous sommes dans le cadre de validité de (6) :

> f(aPyr,q,p1p2)

Y<pi<p2<Xe
X 2p2 —1 2p3 -1 e - _
< = Z 14 . 24 +Zx1 eq 1(p1p2) 2
q Y<pi<p2 P P2 Y<pi<pz
+ Z X3/4+3p+€(qp1p2)—1/4
p1<p2<X¢

< X
qY2log?Y
Ce terme domine celui de la ligne (10).

 X15/16+¢4-1/16,
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o Le terme principal (lignes (8) et (9)) vaut :

G M X v ) (- 5 220

Y<p<X*®
(p,q) 1 (p9)=1
+O(ZX1—eq 1,2 +Z X3/4+3p+e(qp) 1/4)

>Y p<Xe

N

Le dernier O est manifestement inférieur a
d’évaluer. De plus,

(1+X Z+or9)(i- X 2”2;1)=1+0(?—21—;§?).

p>Y Y<p<X®
(p,9)=1 (p,9)=1

celui que nous venons

o Finalement, nous appliquons le théoréme 3.11 et obtenons

[ X + X15/16+Eq—1/16]‘

l X,q.e | = C2(2) H p + 1 qlog2 Xlogg—E X

L’assertion sur la moyenne des Rp se vérifie facilement. O

THEOREME 7.3. — Soient € > 0, Q4 = X'0/87-¢ et q un entier
inférieur a Q) 4 sans facteurs carrés. On a ’égalité

K*
lAg:(,q, ' C2(2) XH +1 +RA(X q,€),

ol le terme d’erreur vérifie

Qa
Z |Rf(X, g,€)| = o(X/log X).

gq=1

Remarque 7.4. — Nous montrons en fait les majorations individuelles
beaucoup plus fortes :

X6/T+eg=1 4 [(X,q,¢) si g < X5/203

Ri(X,q,6)| <
| R I XO/11+€432/55 4 [,(X,q,e) sinon.

Mais elles ne nous seront d’aucune utilité pour nos applications.
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Preuve. — Notons
V(Y)={FeCx.; q| A, AeVyp,}.

On veut compter le nombre de classes de formes de Cx . appartenant & V'
dont le discriminant est divisible par g, c’est-a-dire :

(12) V)| -|V¥)n{3p; Y <p< Z, A¢V,}|
—-|V(Y)Nn{3p; Z<p, AV},

ol Z est un parametre que ’on fixera dans la suite.

o On peut facilement majorer cette quantité en ne considérant que
la premiére ligne (12) et en posant Z = X¢. On reprend les calculs du
théoreme 7.1 pour obtenir, sous la condition ¢ = o(X1/77¢),

K=* 1
1

|Ax,q,5| < C2(2) XH Py + O(X3/4+eq—1/4 + L(X, q, 6))
plg

e Minorons |Ax q.| par :

(13) f(qPY’q) 1)_2 f(qPY;qyp)
Y<p<Z
(p,@)=1
(14) -0( X flaPr,a.p).
p2Z

A condition que ¢ < X1/37¢ le lemme 6.4 montre que (14) est dominée par

X1+e X15/16+s

X 15/16+¢ ,—1/16, ~30/16
Z (ql—epZ + X 15/16+¢qm1/16p=30/ )<< oZ + g\ /16214716
p2Z

L’expression (13) vaut

Ki'XH ! +O(L(X,q,¢)) +O(XE ZX3/4(qp)‘1/4+(qp)5)
oM o = ’

le deuxieme O étant dominé par X3/4+eq~1/4Z3/4 4 Xe¢5Z8.
o Siq < X529 on choisit Z = X/7¢™1; alors

g LXO/T = 576 = X3/4q1/AZ3/4 5 X15/164-1/16 7-14/16 _ (Xq)13/16.
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Pour ¢ <« Q 4, nous avons Z > X¢; donc

X1+e
qZ

= O(L(X’ q, 5)),
et ’on obtient la minoration

K* 1
|Ax.q.e| > I120)] H 1‘,1—1 +0(X6/7+5(I‘1 +L(X,q,€)),

qui donne un contréle du terme d’erreur jusqu’'a

q = min(X5%/203 x1/7-¢) = x5/203,

o Sig> X5%/293 on choisit Z = X3/22¢—81/110_ Alors

X3/4g=1/473/4 « 576 — X15/164-1/16 7-14/16 _ x9/11, 32/55

et nous contrélons maintenant le reste jusqu’a Q4. O

Remarque 7.5. — Le théoréme 1.2 annoncé en introduction est une
conséquence immédiate des théorémes 7.1 et 7.3 et des remarques qui
les suivent. Le terme d’erreur de la majoration dépend essentiellement de
la fagon dont on maitrise la pointe, et parait difficile & améliorer sans
interprétation géométrique de la méthode de Shintani. Par contre, lors de
la minoration, la géométrie n’intervient que dans le lemme 6.4, et plus
précisément dans le deuxiéme terme d’erreur de ’estimation :

. X X15/16+t-:
Z [h3(8) - 1] < g + qe

|Al<X,q|A

La majoration triviale par O(X) donne un contrdle jusqu’a Q = X1/12-¢,
Il est possible qu’un argument algébrique, du type de celui qui permet
d’isoler p, supprime ce deuxiéme terme. On contrélerait alors Ry4
jusqua Q = X1/7-¢,

Remarque 7.6. — 1l suffit de poser ¢ = 1 pour retrouver le résultat
de Davenport et Heilbronn cité en introduction. On utilise simplement le
lemme suivant :
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LEMME 7.7. — On a ’égalité

Y 1= S x +0(x2).
s
A€AE(X)

Preuve. — Si (a, g¢) = 1, on calcule facilement le nombre d’entiers sans
facteurs carrés congrus & a modulo ¢, par exemple en utilisant

pi(n) =) u(d).
d2|n
On trouve, pour ¢ fixé, 1'égalité :

X

> k)= L X(1+0(X7?).
- ¢(2) 1

wiehy oI (1- )

rlg

Le lemme est une application directe. O

8. Cribler le 3-rang des corps quadratiques réels.

a. Mise en place du crible .

Dorénavant, on oublie la signification premiére de la notation w(q),
i.e. le nombre de facteurs premiers de g, et on pose pour tout g sans facteurs
carrés, comme dans le théoréeme 1.2 cité en introduction,

=171 -P_.
pleg
On note

X=# {(a, bc,d) €CEN V} (terme principal abstrait).
Rappelons que le résultat de Davenport-Heilbronn équivaut a

1
Tout les résultats de crible utilisés dans la suite sont extraits des
articles d’Iwaniec [14] et [13]. On s’est efforcé de conserver autant que
possible les mémes notations que [13]. Notons que tous les résultats énoncés
seraient accessibles par le crible de Selberg.



CRIBLE ET 3-RANG DES CORPS QUADRATIQUES 941

Les théoremes 7.1 et 7.3 s’écrivent, grace & la remarque 7.6 :

w
|AX,<I,€| = H %)zx + RA(X7 q,s),
rlg

w
IBqu,EI = H ﬁx + RB(X’ q, 6)a
ple P
ou R4(X,q,e) et Rp(X,q,€), par abus de notation, vérifient aussi les
inégalités des théorémes.
LEMME 8.1. — Quand Y tend vers +00, on a I’égalité :
2

IT (- 22) = F gy (1+0(i7))

p<Y

Preuve. — La formule de Mertens donne :

I1 (- 1) - 13; (1+ O(log™'Y))

p<Y p
et donc
[1(-22)-11 5 L
p<Y p<Y <Y p

=¢@2)(1+0(Y ) (1+0(1+1og-1Y)) O

CoRrOLLAIRE 8.2. — La condition du crible linéaire est vérifiée, puisque
pour tous Y, Z vérifiant 2 <Y < Z, on a I'inéquation :

[T (-42)" <qer [ro(y)]

Y<p<Z
THEOREME 8.3. — On fixee > 0, Qp = X/157¢ Q, = X10/87—¢
et on pose

logQp ~ __ logQa
logY A logY

SB =
On se donne un ensemble P de nombres premiers, puis on note

Pr=[[r et SX,PY)=)> [n5(a)-1].
PEP 0<A<X
p<Y ' (A,Py)=1
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On a alors les inégalités :

sx,P¥) <X [T (1- 22)F(sn) - (1 +0.1) si¥ <,

p|Py
S(x,P,v)>X [[ (1— -u-)—@)f(s,q) (1+0.(1) si¥<+/Qa,
p|Py

ou F et f sont les fonctions du crible linéaire (voir [13] pour leur définition
exacte).

Preuve. — La quantité S(X,P,Y) est égale & O(X3/4+¢) pres au
nombre de points de C§ de discriminant premier & Py, soit

S(X,P,Y)= 3 B(A)(u*1)(A,P)+0(X3/4+e)
0<A<X
en notant

B(A) = #{F € Bx,1c; A(F) = A}.

Il existe deux suites {uF} d’entiers valant —1, 0, ou 1, nulles pour
q > Q, et vérifiant 'encadrement (voir [14])

p_*lgp,*lgpﬂ’*l,.

On pose :

MHQPY)= Y ute.
q
q|Py
9<Q

Nous avons alors d’apreés le théoreme 7.1, pour le choix Q = @p :

S(X,P,Y) < Z B(A)(ut *1)(A, Py) + O(X3/4+¢)

0<A<X
< > ufS(X,q) +O(x3/4e)
q|Py
9<Q
<x 3 w20 4 3 [Ra(X,0,9) + O(X¥/4+)
q|Py q|Py
9<Q q<Q

= XM*(Qp,P,Y) + o(X/ log X).
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SiY < @, on a, d’aprés le lemme 3 de [13] :
w
(@, P,¥) < [] (1= L&) (F(sp) + 001/ 108 Q5)}.
plPy p
Comme le produit domine log™! X, on obtient finalement :

S(X,P,Y) <X [ (1 - #)F(SB)(I +o(1)).

p|Py

La minoration s’effectue de fagon similaire. On crible les éléments de
Ax 1, suivant leur discriminant, puis on applique le théoréme 7.3. O

CoROLLAIRE 8.4. — Avec les notations du théoréme 8.3, si P est la
suite de tous les premiers, alors le lemme 8.1 entraine :

SCLPY) > $Hs)X oy (1401) Y < VQa,
SX,PY) < §Fen)X oy (1+0(1)  siY < Qs

Remarque 8.5. — Pour 0 < s < 2, on a f(s) =0, F(s) =2¢e"/s et
pour s > 2, on a f(s) > 0. De plus, ces deux fonctions sont monotones et
convergent trés rapidement vers 1. Ce sont les seules propriétés que nous
utiliserons.

b. Applications.

ProrosiTiON 8.6. — On pose

AX) = D ki) + Y h3(p) + D h3(8p),

5<p<X 2<p<X/4 3<p<X/8
p=1(4) p=3 (4)

A(X) = ) k3.
5<p<X
p=1 (4)

Alors, on a les inégalités

3X

(14+0(1)) et Ag(X)<1lx

X
g X (1+o(1)).
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Preuve. — Notons P2 = {p; p # 2} et remarquons que A(X) possede,
a o(X/log X) prés,

(1+ +)X 3 X termes
2" 8 logX 4logX )

11 en résulte que

AX) = ) () -1) + ) (RMp) —1) + D (h3(8p)—1)
=aa iy AspsX/8

+ + o(X/ log X).

4log X

Si, dans ces trois sommes, on se restreint aux indices vérifiant p > @Qp,
on peut les majorer par S(X,P,@p). Comme, d’autre part, le théoréme 7.1
donne

> (h3(p) + h3(4p) + h3(8p)) < @,
P<QB

nous obtenons :

A(X) < S(X,P%,Qp) + O(@s) + 13‘: — +0(X/log X)
<xF) T (1- “(p)) + 41 (1+ o(1))
2<p<QB P
e 3X

1 3 72
il Y = — 1
<X x2e"x 3 5 g 05 +410gX(1+o( )

2 3X

T +1) sz (L +0(1)).
(3(—-—5) 4IogX( ()

Pour évaluer Ay, il suffit de cribler sur tous les premiers inférieurs 4 Y, y

compris 2. Le calcul est similaire (il n’y a plus que %X log X termes) et

P’on trouve la méme constante numérique car

X 3X 2
( w(2)) 2log X / 4log X -3 =

Remarque 8.7. — La minoration du crible nous permet d’obtenir une
borne inférieure, mais on n’a aucun espoir de trouver un équivalent avec des
méthodes de ce type. Rappelons aussi que la valeur moyenne de la 3-partie
du groupe des classes d’'un corps quadratique réel vaut %. A priori, on
s’attendrait & un résultat du méme ordre pour les discriminants premiers.
On ne connait pas de théoreme d’équirépartition de ce type, et notre 11 est
bien loin des 2 3 espérés.



CRIBLE ET 3-RANG DES CORPS QUADRATIQUES 945

LeMME 8.8. — Soient a et q deux entiers premiers entre euxetY = X"
pour un 1 > 0. On note

®(X,Y,a,9) =#{n<X;n=amodg, P (n)>Y}.

Alors on a ’équivalence

Wu) X
d(X,Y,a,q) ~y —— )
Y00 =0 00} Togy
oltu = logX _1 et W(u) = Flu) + f(u) (fonction de Buchstab) .
logY n 2e7

Preuve. — Voir [22], p. 454-465 pour l’équivalent classique de
®(X,Y,0,1), et reprendre les étapes de la démonstration en introduisant
la congruence, le théoréme des nombres premiers étant remplacé par sa
généralisation aux progressions arithmétiques. O

ProprosiTion 8.9. — Il existe une infinité de discriminants fondamen-
taux positifs n, ayant au plus 8 facteurs premiers, tels que la 3-partie du
groupe des classes de Q(v/n ) soit triviale (i.e. h§(n) = 1).

Preuve. — Soit P I’ensemble des nombres premiers et Y = X1/%, On
note

D = {n < X ; n est un discriminant fondamental, P~ (n) > Y}.

Supposons qu’a un nombre borné d’exceptions prés, 3 divise h3(A) pour
tous les discriminants fondamentaux dont les diviseurs premiers sont plus
grands que Y. Nous aurions, pour X assez grand :

S(X,P,Y) > 2|D|.

Le nombre d’entiers divisibles par le carré d’un premier supérieur a Y est
majoré par :

Y o<y
<2
p>Yp Y

Fixons un petit € > 0; nous avons noté :

_logX _logQp (1
U_logY ¢ $p= logY _u(fg E)'
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Nous obtenons donc, en combinant notre remarque et le lemme 8.8 :

X

= ~1 .

Or, pour Y > @Qp, on a S(X,P,Y) < S(X,P,Qp) par définition de la
fonction de crible, et le corollaire 8.4 donne :

S(X,P,Y)< S(X,P,Q@B) < %F(l)e”" (1+0(1)).

log @B
Globalement, on aurait donc l'inégalité :

1 X 1
2 X §W(U)m < 6

F(1)e™ (1+o0(1)).

X
log QB

Ce qui reviendrait & :

% (F(u) + f(u))u < (567 +€) (1 +0(1)).

Il nous faut choisir © minimal tel que ’on obtienne une contradiction. On
peut prendre u légérement supérieur a 57 ~ 8.9.

Il existe donc une infinité de discriminants fondamentaux n < X tels
que h3(n) = 1, et dont le plus petit diviseur premier soit supérieur & X/,
Un tel n a évidemment au plus [u] = 8 facteurs premiers. O

ProposiTION 8.10. — II existe une infinité de discriminants fonda-
mentaux ayant au plus 17 facteurs premiers, et tels que 3 | h3(A).

Preuve. — On crible toujours sur tous les nombres premiers plus
petits que Y. Fixons € > 0 tel que

(7-9G-9)] <1

et choisissons Y = Q}“/z—s. Alors s4 =logQa/logY > 2, donc f(s4) > 0.
Soit
-

1
S(X,P,Y) > Ef(SA)X—l-O—g—Y,— > am’

avec a > 0.

Mais les diviseurs premiers des discriminants comptés par S(X,P,Y) sont
tous supérieurs 4 Y : il y en a donc au plus log X/logY < 18, soit au
plus 17. D’ou le résultat en faisant tendre X vers +oo. 0O
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9. Cribler le 3-rang des quadratiques imaginaires.

Pour cribler, il nous suffit de considérer le nouveau terme principal
abstrait

X = 3 (h(a) 1) = %x.

-X<A<0

On veut étudier

S(X,P,Y) = E (h;(A)—l).
-X<A<0
(A,Py):l

Avec ces nouvelles notations, le théoréme 8.3 reste valide, et le corollaire 8.4
est modifié comme suit :

CoROLLAIRE 9.1. — Si P est la suite de tous les premiers, alors :

S(X,P,Y) > %f(SA)X%(1+o(1)) Si Y < /@

1 e )
S(X,P,Y) < EF(SB)XEE? (1+0(1) si Y<Qs,

puisque nous avons essentiellement multiplié par 3 le terme principal.
Posons :

AX) =) h3(-p) + D h3(—4p) + D h3(-8p),

3<p<X 5<p<X/4 3<p<X/8
p=3 (4) p=1(4)

Ao(X) = Y _h3(-p).
3<p<X
p=3 (4)

Le crible donne immédiatement les majorations :

X
A(X) < 31 x m(]-"‘o(l))a

X
g X (1+0(1)).

On n’a rien & changer dans les estimations du nombre de groupes des
classes de 3-partie non triviale (proposition 8.10). Par contre, la fin de la
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preuve de la proposition 8.9 doit étre modifiée comme suit. L’inéquation
obtenue devient :

L(F(u) + f(w)u < 15€” + e +o(1)

et on doit prendre u légerement supérieur a 15" ~ 26.7 pour obtenir une
contradiction.

D’ou les résultats annoncés en introduction :

o Il existe une infinité de A négatifs ayant au plus 26 facteurs premiers
tels que h3(A) = 1.

o Il existe une infinité de A négatifs ayant au plus 17 facteurs premiers
tels que 3 | h3(A).

Remarque 9.2. — 1l est bien connu (conjecturalement...) que les
groupes de classes de corps quadratiques réels sont plus « petits» que leurs
contreparties imaginaires (voir par exemple les justifications heuristiques
de [3] ou les tables de [2]). Au deld des valeurs numériques, tout & fait
déraisonnables puisqu’on conjecture ’existence d’une infinité de premiers
vérifiant les mémes conditions que nos « gros » pseudo-premiers, on retrouve
ce phénomene dans nos résultats : il est plus difficile d’obtenir une 3-partie
triviale dans le cas imaginaire et on a une moins bonne majoration du
3-rang moyen.
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