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SUR LES MODULES DES POINTS DE 7-TORSION
D’UNE FAMILLE DE COURBES ELLIPTIQUES

par Alain KRAUS

Introduction.

Cet article concerne la question suivante posée par B. Mazur dans [7],
p- 133 :

Soit Q une cléture algébrique de Q. Existe-t-il un entier n > 7,
deux courbes elliptiques E et E’ définies sur Q, non isogénes sur Q, tels
que les groupes des points de n-torsion de E et E' soient isomorphes
comme Gal(Q/Q)-modules et symplectiquement, i.e. de facon compatible
aux accouplements de Weil ?

Comme le suggere B. Mazur, cette question peut étre reformulée en
termes d’existence de points rationnels sur Q, de tordues galoisiennes de la
courbe modulaire Y (n), qui est de genre > 3 pour n > 7, et qui n’a donc
qu’un nombre fini de points rationnels (cf. loc. cit.).

Avec J. Oesterlé, on explicite dans [6] des exemples de couples de
courbes elliptiques sur Q répondant positivement & cette question sin = 7.
Une étude de surfaces modulaires liées & la courbe Y'(n), a récemment
été faite par E. Kani et W. Schanz ([4]), permettant de prouver I’existence
d’une infinité de tels couples pour n = 7. Par ailleurs, B. Mazur a déterminé
des exemples pour n = 11 et n = 13 ([8]). Il semble que G. Frey en a aussi
trouvé pour n = 11,13 et 17. Dans un travail récent avec E. Halberstadt,
nous en avons explicité pour n = 10 et 22.

Mots-clés : Courbes elliptiques — Points de torsion — Représentations de Galois.
Classification math. : 11G.
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Des exemples de couples de courbes elliptiques sur Q, non Q-isogeénes,
dont les modules des points de n-torsion soient isomorphes, ont aussi été
trouvés pour n = 8 (cf. [2], preprint, p. 22, dans lequel il y a aussi des
exemples pour n = 7). N. Elkies a récemment démontré 1’existence d’une
infinité de tels couples pour n = 7. Par ailleurs, il se trouve dans [3] un
exemple pour n = 14.

Dans ce travail, on se préoccupe toujours du cas o n = 7. Etant
donné une courbe elliptique E définie sur Q, on notera E7 le sous-groupe
des points de 7-torsion de E(Q); E; est un espace vectoriel de dimension 2
sur Z/7Z. L’action du groupe Gal(Q/Q) sur E7, définit une représentation
continue

or : Gal(Q/Q) — Aut(Er).

Le déterminant de g est le caractére cyclotomique x, donnant I’action de
Gal(Q/Q) sur le sous-groupe des racines 7-iémes de 'unité de Q (cf. [11],
1.11).

On s’intéresse ici aux courbes elliptiques E définies sur Q, dont
la représentation ¢p possede un quotient isomorphe & Z/TZ. Un tel
homomorphisme est représentable matriciellement sous la forme (’5 1) (cf.
loc. cit.). Les courbes elliptiques F ayant cette propriété sont décrites par
une famille infinie & un parameétre de courbes elliptiques E(t); E(t) possede
un modele de Weierstrass & coefficients dans Z[t] (cf. §1). En décrivant
le corps des points de 7-torsion de E(t) (§2), on explicite une infinité
de triplets de courbes elliptiques sur Q, qui répondent positivement a la
question posée par B. Mazur. Plus précisément, le résultat que 1’'on a en
vue est le suivant :

Soit n un entier relatif de valeur absolue >3. Posons a,, = 1/(1+n+n?).
Alors, les courbes elliptiques sur Q, E(ay), E(n%a,) et E((n + 1)%a,)
sont mutuellement non isogénes sur Q. Les représentations de Gal(Q/Q)
définies par les groupes des points de 7-torsion de E(a,) E(n%a,) et

E((n + 1)2a,,) sont symplectiquement isomorphes.

J’ai bénéficié au cours de ce travail de conversations avec J. Oesterlé
et P. Satgé que je remercie ici.

1. La courbe elliptique E(t).

Considérons un corps K de caractéristique 0. Soient ¢ un élément de
K de W(t) la cubique affine d’équation :

W(t) : ¥ + a1(t)zy + as(t)y = 2% + az(t)z? + as(t)z + ag(t),
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avec :
ar(t) =1+t -2, az(t) = as(t) =t — 13,
aq(t) = 5t(1 — t)(t* —t + 1)(t* + 22 — 5t + 1),
as(t) = t(1 —t)(t° + 9t® — 37¢" + 70t® — 132¢% + 211¢* — 182¢3
+76t% — 18t + 1).

Les invariants standard c4(t) et A(t) associés & W (¢) sont (cf. [13], 1) :

ca(t) = (2 — t +1)(¢® + 229t° + 270t* — 1695¢> + 1430¢> — 235t + 1),
A(t) = t(t— 1)t — 8t2 + 5t + 1)".

Si A(t) n’est pas nul, W(t) représente une courbe elliptique E(t)
définie sur K.

Soit K une cloture algébrique de K. On note 7 le sous-groupe des
racines 7-iémes de 1'unité de K.

LEMME 1. — Soit t un élément de K tel que A(t) ne soit pas nul.
11 existe un homomorphisme injectif u; — E(t)7 qui est compatible aux
actions de Gal(K/K).

Démonstration. — Considérons la cubique affine d’équation :
P+ A+t—t)XY + (2 - t3)Y = X3+ (12 - 3) X2

Son discriminant est ¢t7(t —1)7(¢t3 — 8t2 + 5t + 1) (cf. [13], 1); elle représente
ainsi une courbe elliptique E; sur K. Le point (0,0) est d’ordre 7 (cf. par
exemple [12], p. 354).

En utilisant I’algorithme de J. Vélu décrit dans [14], on constate que
E(t) est liée & E; par une isogénie de degré 7. Par ailleurs, le déterminant de
la représentation donnant I’action de Gal(K/K) sur le groupe des points de
7-torsion de E:, est le caractére cyclotomique x (cf. [11], 1.11). On déduit
de 12 qu’il existe un sous-groupe d’ordre 7 de E(t)(K) sur lequel Gal(K /K)
opere via x. D’ou le lemme.

Remarque. — Inversement, si E une courbe elliptique définie sur K
possédant une injection galoisienne de p7 dans E7, il existe ¢ dans K (non
unique) tel que A(t) ne soit pas nul, et que E soit isomorphe sur K & E(t);
nous n’aurons pas besoin de cette remarque.
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2. Le corps des points de 7-torsion de E(t).

On considére toujours dans ce paragraphe un corps K de carac-
téristique 0. Soit K une cloture algébrique de K. Etant donné un élément a
de K, on désigne par a'/7 une racine 7-i¢me de a dans K. Soit ¢ un élément
de K tel que A(t) soit non nul. L’objet du §2 est de décrire 'extension
K(E(t)7) de K obtenue par adjonction des coordonnées des points de E(t).
On a le résultat suivant :

THEOREME 1. — Soit t un élément de K. Supposons que t(t — 1)
(t3 — 8t2 + 5t + 1) ne soit pas nul. Alors, on a I’égalité

K(E(t)7) = K(pr, (t(t = 1)*)V/7).

Démonstration. — Considérons le corps L = Q(T') des fractions ra-
tionnelles & coefficients dans Q en l’indéterminée T. La cubique W(T)
représente la courbe elliptique E(T) sur L (cf. §1). D’aprés le lemme
1, E(T); posséde un sous-Gal(L/L)-module isomorphe & u7. Par ail-
leurs, L(u7) est contenu dans L(E(T)7), et l'action par conjugaison de
Gal(L(p7)/L) sur Gal(L(E(T)7)/L(pr)) est donnée par le caractére don-
nant l’action de Gal(L/L) sur p7. En utilisant la théorie de Kummer (cf.

[1], p- 90), on déduit alors que L(E(T)7) peut s’écrire sous la forme
L(E(T)7) = L(pr,d(D)V7),

ou d(T') est un élément de Z[T] sans puissance 7-iéme. Par ailleurs, la courbe
elliptique F(T') a mauvaise réduction de type multiplicatif en les places T,
T —1et T3 — 8T? + 5T + 1, et bonne réduction en dehors de ces places
(cf. §1). D’apres le critére de Néron-Ogg-Shafarevich (cf. par exemple [12],
p. 184, th. 7.1), il existe donc des entiers a, b et ¢, bien définis modulo 7,
et un nombre rationnel a, tels que 'on ait

d(T) = oT*(T — 1)°(T® — 8T% 4+ 5T + 1)°.

Posons g(T') = T3 — 872 + 5T + 1. L’exposant de g(T) dans A(T) est 7.
D’apres la théorie de Tate, ’extension L(E(T)7)/L est donc non ramifiée
en la place g(T) (cf. loc. cit., p. 355, §14), et I'on peut supposer que 'on a
¢ = 0. En utilisant un argument de réduction, on déduit de la 1’égalité

K(E(t)7) = K (ur, (at®(t — 1)%)/7).

Un argument de spécialisation, permet alors de vérifier que 'on peut
prendre a =1, a = 1 et b = 2. D’ou le théoreéme 1.
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3. Le résultat principal.

Soit n un entier relatif dont la valeur absolue est > 3. On pose
1
T 1+ntn?
Les discriminants des cubiques W (a,,), W(n2a,) et W((n+ 1)2a,) ne sont

pas nuls (cf. §1). Ces cubiques représentent donc respectivement les courbes
elliptiques E(a,), E(n2a,) et E((n + 1)2a,) définies sur Q.

Qn

Nous allons maintenant démontrer le résultat annoncé dans I'introduc-
tion :

THEOREME 2. — Les courbes elliptiques E(a,), E(n%a,) et
E((n + 1)%a,,) sont mutuellement non isogénes sur Q. Les représentations
de Gal(Q/Q) définies par les groupes des points de 7-torsion de E(ay),
E(n?a,) et E((n+ 1)2a,) sont symplectiquement isomorphes.

3.1. Lemme préliminaire.

Considérons deux courbes elliptiques E et E’ définies sur Q. Soient A
et A’ les discriminants minimaux de E et E’ respectivement. Etant donné
un nombre premier p, on note v,(A) (resp. v,(A’)) 'exposant de p dans A
(resp. dans A’). Notons ¢ et ¢’ les représentations de Gal(Q/Q) dans E7
et E7. Prouvons alors le lemme suivant :

LEMME 2. — Supposons les conditions suivantes réalisées :
(i) les représentations ¢ et ¢’ sont isomorphes;
(i) le groupe E; posséde un sous-module isomorphe & pz;

(iif) il existe un nombre premier p distinct de 7 tel que 7 ne divise pas

vp(4A).

Alors, 7 ne divise pas vp(A’), et si les réductions modulo 7 de
vp(A) et vp(A') different multiplicativement par un carré dans Z/7Z, les
représentations ¢ et ¢' sont symplectiquement isomorphes.

Démonstration. — 1l résulte des conditions (ii) et (iii) que E a en p
réduction de type multiplicatif (cf. par exemple [5], p. 361, lemme 2). Par
ailleurs, la condition (i) et le fait que 7 ne divise pas v,(A), impliquent
que E’ a aussi en p réduction de type multiplicatif. La proposition 2 de [6]
entraine alors le résultat.



904 ALAIN KRAUS

3.2. La courbe elliptique E(a/b).

Soit ¢ un élément de Q distinct de 0 et 1; A(t) n’est pas nul. On se
propose ici d’expliciter un modele entier de la courbe elliptique E(t).

Posons pour cela t = a/b, oll a et b sont deux entiers premiers
entre eux. Rappelons que = et y désignent les fonctions coordonnées de
Weierstrass de E(t) dans le modele W(t). En effectuant le changement de

variables
X =bz
Y = b5y,
on constate que la courbe elliptique E(a/b) admet un modele de Weierstrass
W (a,b) de la forme :
W(a,b): Y2+ A1 XY + A3Y = X3 + A X% + Ay X + As,
avec :
Ay = b +ab—d?, Az = a®b(b - a), Az = a?b3(b — a),
Ay = 5ab(b — a)(a® — ab + b?)(a® + 2a°b — 5ab® + b°),
Ag = ab(b — a)(a® + 9a®b — 37a"b* + 70a°b® — 1324°b* + 211a%H°
— 182ab® + 76a%b" — 18ab® + b°).
Le discriminant A(a, b) associé & ce modele est (cf. [13], 1) :

A(a, b) = ab(a — b)(a® — 8a?b + 5ab® + b°)".
On utilisera 1’énoncé suivant (cf. [9], p. 30, prop. 11.3.1) :

LEMME 3. — L’6quation W(a,b) est minimale en tout nombre
premier distinct de 7.

En effet, 'invariant standard c4(a, b) associé & W(a,b) est :
ca(a,b) = (a® — ab + b?)(a® + 229a°b + 270a*b* — 1695a%b>

+1430a%b* — 235ab° + ).

Les entiers a et b étant par hypothése premiers entre eux, on vérifie alors
que 7 est le seul diviseur premier commun possible & ¢4(a,b) et A(a,b).

3.3. Démonstration du théoréme 2.

Signalons d’abord I’idée qui nous a permis de trouver ’énoncé du
théoréme 2. Elle repose sur la remarque suivante, qui est une application
directe du théoreéme 1 : soient u et v sont des nombres rationnels distincts
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de 0 et 1. Sil'on a u(u—1)? = v(v—1)2, les Gal(Q/Q)-modules des points
de 7-torsion des courbes elliptiques E(u) et E(v) sur Q, sont isomorphes.

Etant donné u dans Q distinct de 0 et 1, on a ainsi été amené a
déterminer les racines rationnelles du polynéme T'(T — 1)? — u(u — 1)2. On
a le lemme suivant :

LEMME 4. — Soit u un nombre rationnel autre que 0 et 1. Supposons
que u(4 — 3u) soit le carré dans Q d’un élément a. Alors, v = (2—u+a)/2
et w = (2—u—a)/2 sont distincts de 0 et 1, et les courbes elliptiques E(u),
E(v) et E(w) sur Q, ont leurs Gal(Q/Q)-modules des points de 7-torsion
isomorphes.

Démonstration. — Le fait que v et w soient distincts de 0 et 1
se vérifie directement. Par ailleurs, les racines du polynéme T'(T — 1)2—
u(u — 1)% sont u, v et w. Les corps des points de 7-torsion de E(u), E(v)
et E(w) sont donc égaux, ce qui entraine I’assertion.

Démontrons maintenant le théoréeme 2. Rappelons que n désigne un
entier relatif dont la valeur absolue est > 3.

a) Les représentations de Gal(Q/Q) définies par les groupes des points
de 7-torsion de E(a,), E(n2%a,) et E((n+ 1)2a,) sont isomorphes; en effet,
cela résulte du lemme 4 appliqué avec u = a,, (avec les notations de ce
lemme, avec a = (2n+1)/(1 + n+n2), on a v = (n + 1)2a, et w = n?a,).

b) Démontrons que les courbes elliptiques E(a,), E(nay) et
E((n+1)2a,) sont mutuellement non isogénes sur Q. Il suffit pour cela de
prouver que leurs conducteurs sont distincts (pour la définition du conduc-
teur d’une courbe elliptique, voir par exemple [12], p. 361).

Considérons les discriminants des modeles entiers W (1,1 + n + n?),
W(n%, 1+ n+n?) et W((n+1)2,1+ n+ n?) représentant respectivement
E(ay), E(n?a,) et E((n+1)2%a,) (cf. 3.2); on a les égalités (cf. loc. cit.) :

A(1,1+n+n%) = —n(n+ 1)1 +n+n?)a(n),
ott a(n) =nb+3n® + 11n* + 17n3 + 13n? + 5n — 1,
A% 1+n+n%) =n(n+1)(1+n+n?)B(n),
ott B(n) =n8 —5n% —13n* —17n® —11n2 —3n — 1, et
A((n+1)%414+n+n?) = —n(n+1)2(1 4+ n +n?)é(n)",
ot §(n) = n® + 11n® + 27n* + 35n3 + 27n? + 11n + 1.
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Prouvons que les trois ensembles formés des diviseurs premiers dis-
tincts de 7, respectivement de a(n), B(n) et §(n), sont deux & deux distincts.
Les deux entiers a(n)B(n)é(n) et n(n + 1)(1 + n + n?) étant premiers en-
tre eux, 'assertion de l'alinéa b) résultera alors du lemme 3. Démontrons
pour cela que les entiers a(n), B(n) et 6(n) vérifient les deux propriétés
suivantes :

(i) ils ne sont pas divisibles par 2;
(ii) ils ne sont pas des puissances 7-iémes.

L’assertion (i) se vérifie directement. Prouvons que l'on a
(1) P ta(n), 71p(n), et 716(n).

Sin #Z 1mod7 et n Z —2mod7, 7 ne divise pas a(n). Supposons
n = 1lmod7 ou n = —2mod7. On a alors a(n) = 72mod 73, et en
particulier 73 ne divise pas a(n).

Sin # 1mod7 et n # 3mod7, 7 ne divise pas 3(n). Si on a

n = 1mod7 ou n = 3mod7, alors B(n) = —7>mod 73, et dans ce cas
71 B(n).

Sin # 3mod7 et n # —2mod7, 7 ne divise pas §(n). Si 'on a
n =3mod7 oun = —2mod?7, alors §(n) = —7?2mod 73. D’ol I'assertion
(1).

Or puisque |n| est > 3, on a les inégalités |a(n)| > 72, |B(n)| > 7% et
|6(n)| > 72. Cela démontre 1’assertion (ii).

Par ailleurs, le résultant de deux quelconques des polynomes a, G et
6 est —2576. Par suite, un diviseur premier commun & a(n) et B(n) est
nécessairement 2 ou 7. Les entiers a(n) et §(n), ainsi que B3(n) et §(n),
possédent la méme propriété. Les assertions (i) et (ii) entrainent alors le
résultat annoncé.

¢) Démontrons maintenant que les représentations de Gal(Q/Q)
définies par les points de 7-torsion de E(a,), E(n%a,) et E((n + 1)%a,)
sont symplectiquement isomorphes.

c.1) Supposons d’abord que 7 ne divise pas 1 + n + n?. Le fait que
n soit distinct de —1 et 0, implique que 1 + n + n? n’est pas la puissance
7-iéme d’un entier (cf. [10], 1). Notre assertion dans ce cas, résulte alors du
lemme 2.

c.2) Supposons que 7 divise 1 + n + n2. Alors, 7 ne divise pas n. Si
n n’est pas la puissance 7-ieme d’un entier, le lemme 2 entraine encore
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le résultat; sinon, n + 1 n’est pas la puissance 7-iéme d’un entier, et le
méme argument en ce qui concerne l’entier n + 1 prouve dans ce cas notre
assertion. Cela démontre le théoréme 2.

(1]
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