Celso J. Costa
Plinio A. Q. Simões

Complete minimal surfaces of arbitrary genus in a slab of \mathbb{R}^3

<http://www.numdam.org/item?id=AIF_1996__46_2_535_0>
COMPLETE MINIMAL SURFACES
OF ARBITRARY GENUS IN A SLAB OF \mathbb{R}^3

by C.J. COSTA(*) and P.A.Q. SIMÕES

1. Introduction.

In [2] L.P. Jorge and F. Xavier have proved the existence of complete minimal surfaces between two parallel planes in \mathbb{R}^3 with the conformal structure of a disk. Afterwards H. Rosenberg and E. Toubiana [5], and F. Lopez [3], were able to extend the results of Jorge and Xavier by showing respectively the existence of the same type of surfaces with the conformal structure of an annulus and a projective plane minus a disk. Nevertheless the technique used to prove these results (Runge's approximation theorem) is not apparently sufficient to show the existence of such surfaces with higher genus.

Using lacunary power series F.F. Brito [1] has constructed explicit examples of minimal surfaces with the same properties of [2]. An important feature of Brito's technique is that it can be used to construct examples of higher genus. Indeed in this paper we construct for every $k = 1, 2, \ldots$ and $1 \leq N \leq 4$, examples of complete minimal surfaces of genus k and N ends in a slab of \mathbb{R}^3. More precisely we will prove:

THEOREM 1.1. — For every $k = 1, 2, \ldots$ and $1 \leq N \leq 4$, there is a complete minimal immersion $X_{k,N} : M_{k,N} \to \mathbb{R}^3$, with infinite total curvature such that:

(*) Work partially supported by CNPq–Brazil and by FAPESP, contract 9213482-8.
Key words: Minimal surfaces – Weierstrass'representation – Lacunary series.
a) $M_{k,1}$ and $M_{k,2}$ are respectively a compact Riemann surface of genus k minus one disk and two disks,

b) $M_{k,j+2}, j = 1, 2,$ are respectively $M_{k,j}$ punctured at two points,

c) $X_{k,N}(M_{k,N})$ lies between two parallel planes of \mathbb{R}^3 and $X_{k,3}, X_{k,4}$ have two embedded planar ends.

We would like to thank to M. Elisa Oliveira for valuable conversations during the preparation of this work.

2. Preliminaries.

A powerful method to obtain examples of minimal surfaces in \mathbb{R}^3 is the so-called Weierstrass-Enneper representation. We will conjugate this method with a lemma of F.F. Brito [1] to prove Theorem 1.1. We summarize this procedure in Theorem 2.1 and Lemma 2.1 below.

Theorem 2.1. — Let M be a non-compact Riemann surface. Suppose that g and η are respectively a meromorphic function and a holomorphic differential on M such that

(C.1) $p \in M$ is a pole of order m of g if and only if p is a zero of order $2m$ of η,

(C.2) for every closed curve γ in M,

$$\text{Re} \int_\gamma g \eta = 0, \quad \int_\gamma g^2 \eta = \int_\gamma \eta$$

and

(C.3) for every divergent curve λ in M,

$$\int_\lambda (1 + |g|^2) |\eta| = +\infty.$$

Then, $X : M \to \mathbb{R}^3$,

$$X(z) = \text{Re} \int_{z_0}^z ((1 - g^2)\eta, i(1 + g^2)\eta, 2g\eta)$$

is a complete minimal immersion.

Given a power series in \mathbb{C} with radius of convergence 1,

$$h(z) = \sum_{j=1}^{\infty} a_j z^{n_j},$$
we say that it has Hadamard gaps if there is $\alpha > 1$ such that
\[
\frac{n_{j+1}}{n_j} \geq \alpha > 1,
\]
for all $j = 1, 2, \ldots$.

Lemma 2.1 (F. Brito [1]). — Suppose that $h(z) = \sum_{j=1}^{\infty} a_j z^{n_j}$ has Hadamard gaps and satisfies

\begin{enumerate}[(a)]
 \item $\sum_{j=1}^{\infty} |a_j| < \infty$,
 \item $\lim_{j \to \infty} |a_j| \min \left\{ \frac{n_j}{n_{j-1}}, \frac{n_{j+1}}{n_j} \right\} = \infty$ and
 \item $\sum_{j=1}^{\infty} |a_j|^2 n_j = \infty$.
\end{enumerate}

Then for every divergent curve γ in $D = \{ z \in C; |z| < 1 \}$
\[
\int_{\gamma} |h'(z)|^2 |dz| = \infty.
\]

3. Proof of Theorem 1.1.

The proof of Theorem 1.1 is founded on Proposition 3.1 and Lemma 3.1 which we will prove below. Nevertheless, first of all we will define the conformal structure of the Riemann surfaces $M_{k,q}$ of genus k and q ends, $k = 1, 2, \ldots, 1 \leq q \leq 4$ and homological basis for these surfaces.

For each integer $s \geq 3$ let \bar{M}_s be the compact Riemann surfaces $\bar{M}_s = \{ (z, w) \in (C \cup \{ \infty \}); w^2 = z^s - 1 \}$.

Observe that for every s, $z : \bar{M}_s \to C \cup \{ \infty \}$ is a meromorphic function of degree two and \bar{M}_s is a compact Riemann surface of genus k if $s = 2k + 1$ or $s = 2k + 2$, $k = 1, 2, \ldots$. For a fixed real number $\delta \geq 3$ let $V_s(\delta) = \{ (z, w) \in \bar{M}_s; |z| \geq \delta \}$ and $p_1 = (0, i), p_2 = (0, -i) \in \bar{M}_s$. Then $V_s(\delta)$ is a closed disk if $s = 2k + 1$ or a disconnected union of two closed disks if $s = 2k + 2$. Now we define

\begin{enumerate}[(1)]
 \item $M_{k,j} = \bar{M}_s \setminus V_s(\delta)$, $j = 1$ if $s = 2k + 1$ and $j = 2$ if $s = 2k + 2$
 \item $M_{k,j+2} = M_{k,j} \setminus \{ p_1, p_2 \}$, $j = 1, 2$.
\end{enumerate}
Now, we will construct a basis for the homology of $M_{k,q}$. We recall (see (1) and (2)) that with $k \geq 1$ fixed either $s = 2k + 1$, if $q = 1, 3$ or $s = 2k + 2$ if $q = 2, 4$. If $\epsilon = e^{i\theta}$, where $\theta = \frac{2\pi}{s}$, let L_j be the arc $\{\epsilon^j e^{i\theta}, 0 \leq t \leq \theta\}$, $j = 0, 1, \ldots, s - 1$. Let $\tilde{\gamma}_1(t), 0 \leq t \leq 2\pi$, be a C^1 Jordan curve in $B_s = \left\{re^{iu}; \frac{1}{2} < r < 2, -\frac{\theta}{2} < u < \frac{3\theta}{2}\right\}$ that contains L_0 in its interior and such that $\tilde{\gamma}_1(0) = \frac{3}{2}e^{i\frac{\pi}{2}}$. We observe that 1 and ϵ lie in the interior of $\tilde{\gamma}_1(t)$ and ϵ^j is contained in the exterior of $\tilde{\gamma}_1(t)$ for $2 \leq j \leq s - 1$. So, in a neighbourhood of $\tilde{\gamma}_1(t)$ there exists a well-defined branch of $(z^s - 1)^{\frac{1}{s}}$. Let $\gamma_1(t) = (\tilde{\gamma}_1(t), w(t))$ a closed lift of $\tilde{\gamma}_1(t)$ to $M_{k,q} \subset \tilde{M}_s$. Let Δ_n be the conformal diffeomorphism of \tilde{M}_s, defined by $\Delta_n(z, w) = (e^n z, w)$, $n = 0, 1, \ldots, s - 1$. Observe that the restriction of Δ_n to $M_{k,q}$ is still a conformal diffeomorphism of $M_{k,q}$. Then
\begin{equation}
\tilde{\Lambda}_q = \left\{\gamma_n = \Delta_n \circ \gamma_1; n = 0, 1, \ldots, s - 1\right\}
\end{equation}
are closed curves of $M_{k,q}$ and $\tilde{\Lambda}_q$ contains a basis for the homology of \tilde{M}_s. Now we complete $\tilde{\Lambda}_q$ to have a basis for the homology of $M_{k,q}$. If $q = 1, 3$, where $s = 2k + 1$, let $\alpha(t) = (\tilde{\alpha}(2t), w(t))$ to be a lift of $\tilde{\alpha}(2t)$ to $M_{k,q}$ where $\tilde{\alpha}(t) = \frac{1 + \delta}{2} e^{it}, 0 \leq t \leq 2\pi$ and denote by $\beta_j(t) = \left(\tilde{\beta}(t), w(t)\right)$, $j = 1, 2$ distinct lifts of $\tilde{\beta}(t) = \frac{1}{2} e^{it}, 0 \leq t \leq 2\pi$, to $M_{k,3}$. Then
\begin{equation}
\Lambda_1 = \tilde{\Lambda}_1 \cup \{\alpha\} \quad \text{and} \quad \Lambda_3 = \tilde{\Lambda}_1 \cup \{\alpha, \beta_1, \beta_2\}
\end{equation}
contain respectively a basis for the homology of $M_{k,1}$ and $M_{k,3}$.

If $q = 2, 4$, let $\mu_j(t) = (\tilde{\alpha}(t), w(t))$ be, $j = 1, 2$, distinct lifts of $\tilde{\alpha}(t)$ to $M_{k,2}$ and let $\beta_j+2(t) = \left(\tilde{\beta}(t), w(t)\right)$ be, $j = 1, 2$, two distinct lifts of $\tilde{\beta}(t)$ to $M_{k,4}$. Then
\begin{equation}
\Lambda_2 = \tilde{\Lambda}_2 \cup \{\mu_1, \mu_2\} \quad \text{and} \quad \Lambda_4 = \tilde{\Lambda}_2 \cup \{\mu_1, \mu_2, \beta_3, \beta_4\}
\end{equation}
contain respectively a basis for the homology of $M_{k,2}$ and $M_{k,4}$.

In order to construct minimal immersions $X_{k,q} : M_{k,q} \rightarrow \mathbb{R}^3$, as required in Theorem 1.1 we will define Weierstrass data $(g_{k,q}, \eta_{k,q})$ on $M_{k,q}$ satisfying the hypothesis of Theorem 2.1. To make it possible we will require that the group of symmetries of $M_{k,q}$ generated by the conformal diffeomorphisms Δ_n, will be carried via $(g_{k,q}, \eta_{k,q})$ on a group of symmetries of $X_{k,q}(M_{k,q}) \subset \mathbb{R}^3$. With this purpose with $k \geq 1$ fixed let us define in $D = \{z \in C; |z| < 1\}$ the Hadamard’s gaps series
\begin{equation}
h_q(z) = \frac{c_q}{s} z^s + \sum_{j=1}^{\infty} a_{jq} z^{sn_j}, \quad q = 1, \ldots, 4
\end{equation}
where

\[n_j = 2^j! + 1, \quad a_{jq} = 2^{-j}e^{it_{jq}}, \quad j = 1, 2, \ldots, 1 \leq q \leq 4 \]

and \(c_q, t_{jq} \) are real numbers, to be chosen later.

Finally we define the Weierstrass data \((g_q, \eta_q) = (g_{k,q}, \eta_{k,q})\) by the expressions

\[g_p = \frac{\lambda_p}{w} h_p' \left(\frac{z}{\delta} \right), \quad g_{p+2} = \lambda_{p+2} w^{-1} \left(\frac{z}{\delta} \right)^2 h_{p+2}' \left(\frac{z}{\delta} \right), \]

\[\eta_p = wdz \quad \text{and} \quad \eta_{p+2} = \left(\frac{\delta}{z} \right)^2 wdz, \quad p = 1, 2 \]

where \(\lambda_q \) are complex numbers to be prescribed later.

Observe that if \((z, w) \in M_{k,q}\) then \(\left| \frac{z}{\delta} \right| < 1 \). So for each \(q = 1, 2, 3, 4 \) \(g_q \) is a well-defined meromorphic function on \(M_{k,q} \) and \(\eta_q \) is a holomorphic differential on \(M_{k,q} \). Since, \(g_q \eta_q \) is an exact differential we obtain

\[\int_{\gamma} g_q \eta_q = 0 \]

for every closed curve \(\gamma \subset M_{k,q} \).

On the other hand

\[[h_q'(z)]^2 = \sum_{j=1}^{\infty} d_{jq} z^{m_{jq}}, \quad 1 \leq q \leq 4 \]

where

\[d_{jq} \in \mathbb{C} \quad \text{and} \quad m_{jq} \equiv -2(\text{mod} \ s). \]

Then, as \(\Delta^*_n w = w \) and \(\Delta^*_n dz = \varepsilon^n dz \), we find from (8), (9), (11) and (12) that \(\Delta^*_n (g_q^2 \eta_q) = \varepsilon^{-n} g_q^2 \eta_q, \Delta^*_n \eta_q = \varepsilon^n \eta_q \) if \(q = 1, 2 \) and \(\Delta^*_n (g_q^2 \eta_q) = \varepsilon^n g_q^2 \eta_q, \Delta^*_n \eta_q = \varepsilon^{-n} \eta_q \), if \(q = 3, 4 \). So

\[\int_{\gamma_n} g_q^2 \eta_q = \int_{\gamma_1} \Delta^*_n (g_q^2 \eta_q) = \varepsilon^{-n} \int_{\gamma_1} g_q^2 \eta_q, \quad q = 1, 2 \]

and

\[\int_{\gamma_n} \eta_q = \int_{\gamma_1} \Delta^*_n (\eta_q) = \varepsilon^n \int_{\gamma_1} \eta_q, \quad q = 1, 2. \]

So we conclude that

\[\int_{\gamma_n} g_q^2 \eta_q = \int_{\gamma_n} \eta_q \quad \text{if} \quad \int_{\gamma_1} g_q^2 \eta_q = \int_{\gamma_1} \eta_q, \quad n = 1, 2, \ldots s. \]
Suppose now that \((g_q, \eta_q)\) define minimal surfaces \(X_{j,c,q} : M_{j,c,q} \to \mathbb{R}^3\). Then the results below together with Theorem 2.1 allow us to conclude that
\[
2(x_1 + ix_2)(p) = \int_{p_0}^p \eta - \int_{p_0}^p g^2\eta = \delta_{q,n}(x_1 + ix_2)(\Delta_n(p)) + A_n
\]
and
\[
x_3(p) = \text{Re} \int_{p_0}^p \eta = x_3(\Delta_n(p))
\]
where \(A_n = -\delta_{q,n}(x_1 + ix_2)(\Delta_n(p_0))\) is a constant, \(\delta_{q,n} = \varepsilon^n\) if \(q = 1, 2\), \(\delta_{q,n} = \varepsilon^{-n}\) if \(q = 3, 4\) and \(X_{j,c,q} = (x_1 + ix_2, x_3)\).

Then if \(L_n\) are the rigid motion of \(\mathbb{R}^3\) given by
\[
L_n(x_1 + ix_2, x_3) = (\delta_{q,n}(x_1 + ix_2) + A_n, x_3)
\]
where we identify \(\mathbb{R}^3 \equiv C \times \mathbb{R}\) we conclude that \(L_n\) generates the desired group of symmetries of \(\mathbb{R}^3\) for the surfaces \(X_{j,c,q}(M_{j,c,q})\).

Notice that from (8) and (9), \(g_q\eta_q\) is an exact differential on \(M_{j,c,q}\) and
\[
(14) \quad x_3(p) = \text{Re} \int g_q\eta_q = \text{Re} \left[\delta\lambda_q h_q \left(\frac{z}{\delta} \right) \right].
\]
As \(h_q\) is bounded on \(M_{j,c,q}\) we conclude that third coordinate of the immersion is bounded.

The symmetries just exploited and a proposition and a lemma mentioned at the beginning of this section are exactly what we need to prove Theorem 1.1.

So, let us state and prove the proposition and the lemma.

Proposition 3.1. — For each integer \(s \geq 3\) let \(\bar{M}_s\) be the compact Riemann surface \(\bar{M}_s = \{(z,w) \in (C \cup \infty)^2 ; w^2 = z^s - 1\}\), \(\theta = \frac{2\pi}{s}\) and let \(\bar{\gamma}(t), 0 \leq t \leq 2\pi\), be a \(C^1\) Jordan curve in \(B_s = \left\{ \rho e^{iu}, \frac{1}{2} < \rho < 2, -\theta/2 < u < \frac{3}{2}\theta \right\}\) that contains \(L_0 = \{ e^{iu} ; 0 \leq u \leq \theta \}\) in its interior. If \(\gamma(t) = (\bar{\gamma}(t), w(t))\) is a lift of \(\bar{\gamma}(t)\) to \(\bar{M}_s\) and \(r = 2s - 2\) or \(r = 2s\), we have that
\[
\int_{\gamma} z^r \frac{dz}{w} \neq 0.
\]

Proof. — We observe that \(z^r \frac{dz}{w}\) and \(z^{r+1-s}wdz\) are holomorphic differentials in a neighbourhood of \(\gamma(t)\). Also as over \(\bar{\gamma}(t)\) there exists a
well-defined branch of $\sqrt{z^g - 1}$ then γ is a closed curve. Furthermore, as

$$d \left(z^{r+1-s} w \right) = (r + 1 - s) z^{r-s} w dz + \frac{s}{2} z^r \frac{dz}{w}$$

it is enough to prove that

$$I = \int_{\gamma} z^{r-s} w dz \neq 0. \quad (15)$$

Now we choose an open disk $U \subset C$, such that $\tilde{\gamma}(t)$ lies in U, $\{e^{it}; 0 \leq t \leq \theta\} \subset U$ and $e^{i \theta} \notin U$, $p = 2, 3, \ldots, s - 1$. In U let ω be the branch of $(z^s - 1)^{1/2}$ such that $\gamma(t) = (\tilde{\gamma}(t), \omega(\tilde{\gamma}(t)))$. So, if we collapse $\tilde{\gamma}(t)$ to the arc $\{e^{it} \in C; 0 \leq t \leq \theta\}$ we find from (15)

$$I = 2i \int_{0}^{\theta} e^{i(r-s)t} e^{it} (e^{ist} - 1)^{\frac{1}{2}} dt. \quad (16)$$

Then, $I \neq 0$, if and only if,

$$\int_{0}^{\theta} e^{i(r+1-s)t} \left(\sin \frac{st}{2} \right)^{\frac{1}{2}} dt \neq 0. \quad (17)$$

Now setting $v = \frac{st}{2} - \frac{\pi}{2}$ we conclude that the last expression is equivalent to

$$J_0 = \int_{0}^{\frac{\pi}{2}} \cos \beta v (\cos v)^{\frac{1}{2}} dv \neq 0 \quad (18)$$

where

$$\beta = \frac{2r + 2}{s} - \frac{3}{2}. \quad (19)$$

On the other hand if $m \geq 0$ is an integer and

$$J_m = \int_{0}^{\frac{\pi}{2}} \cos[(\beta - m)v](\cos v)^{m+\frac{1}{2}} dv,$$

then, by using integration by parts we obtain:

$$J_m = \int_{0}^{\frac{\pi}{2}} \cos[(\beta - m - 1)v](\cos v)^{m+\frac{1}{2}} dv$$

$$- \int_{0}^{\frac{\pi}{2}} \sin[(\beta - m - 1)v] \sin v(\cos v)^{m+\frac{1}{2}} dv$$

$$= \left[1 - \frac{2}{2m + 3} (\beta - m - 1) \right] J_{m+1}. \quad (20)$$

This result implies that for every integer $m \geq 0$,

$$J_0 = \prod_{j=1}^{m+1} \left[1 - \frac{2}{2j + 1} (\beta - j) \right]. \quad (21)$$
We observe that the hypothesis of Proposition 3.1 and (17) imply that

\[1 - \frac{2}{2j + 1} (\beta - j) \neq 0, \quad \forall j = 0, 1, \ldots \]

Also, the same hypothesis show that \(|\beta - 2| < 1\) if \(r = 2s - 2\) and \(|\beta - 3| < 1\) if \(r = 2s\). So, in each case we can find an integer \(m \geq 2\) such that \(|\beta - m| < 1\). These results together with (18), (19) and (20) show that (16) is true. This finishes the proof of Proposition 3.1.

Lemma 3.1. There exist real numbers \(c_q, t_{jq}\), complex numbers \(\lambda_q \neq 0\), where \(j = 1, 2, \ldots\), and a real number \(L \geq 3\) such that for every closed curve \(\gamma = \gamma_q\) in \(M_{k,q}\) and for every \(\delta \geq L\)

\[\int_{\gamma_q} g_q^2 \eta_q = \int_{\gamma} \eta_q, \quad q = 1, 2, 3, 4 \]

where \(g_q\) and \(\eta_q\) are defined in (8) and (9) and \(M_{k,q}\) are given by (1) and (2).

Proof. First of all we will prove that there exist \(c_q, t_{jq} \in \mathbb{R}, \lambda_q \in C\) and \(L \geq 3\) such that

\[\left(21\right) \int_{\gamma_q} g_q^2 \eta_q = \int_{\gamma_n} \eta_q, \quad n = 0, 1, \ldots, s - 1 \]

for every \(\delta \geq L\), where \(\gamma_n\) are the closed paths that appear in (4) if \(q = 1, 3\) or in (5) if \(q = 2, 4\). For this, it suffices to verify the second equality in (13). First we specify \(\gamma_1\) to be the lift of \(\tilde{\gamma}_1\) with \(\gamma_1(0) = (\tilde{\gamma}_1(0), w(0))\), where \(-iw(0)\) is a positive real number. We define respectively on \(C \setminus \bigcup_{j=0}^{k-1} L_{2j+1} \cup [1, \infty)\) and on \(C \setminus \bigcup_{j=0}^{k} L_{2j}\) branches \(\omega_p, p = 1, 2\) of \((z^{2k+p} - 1)^{1/2}\) which satisfy \(w \circ \gamma_1 = \omega_p \circ \tilde{\gamma}_1\). Then

\[\int_{\gamma_1} \eta_p = \int_{\tilde{\gamma}_1} \omega_p dz \quad \text{and} \quad \int_{\gamma_1} \eta_{p+2} = \delta^2 \int_{\tilde{\gamma}_1} \omega_p \frac{dz}{z^2}, \quad p = 1, 2. \]

In order to evaluate the integrals on the right side, we collapse \(\tilde{\gamma}_1\) to the arc \(L_0 = \{e^{it} \in C; 0 \leq t \leq \theta\}\). Then

\[\int_{\gamma_1} \eta_p = \int_0^\theta (e^{ist} - 1)^{1/2} ie^{it} dt - \int_0^\theta (e^{ist} - (1 + \frac{i}{2}) e^{it}) dt \]

\[= (2i)^{3/2} \int_0^\theta e^{(1 + i/2)it} \sqrt{\sin \left(\frac{st}{2}\right)} dt \neq 0, \quad p = 1, 2 \]
and

\[(23) \int_{\gamma_1} \eta_{p+2} = \delta^2 (2i)^{\frac{3}{2}} \int_0^\theta e^{(-1+\frac{3}{4})it} \sqrt{\sin \left(\frac{st}{2} \right)} dt \neq 0, \quad p = 1, 2. \]

On the other hand, we obtain from (6) and (7)

\[(23) \int_{\gamma_1} [h'_{q}(z)]^2 = c_q^2 z^{2s-2} + 2c_q \sum_{j=1}^\infty n_j a_{jq} z^{(n_j+1)s-2} + f_q(z), \quad 1 \leq q \leq 4 \]

where \(f_q(z) \) is a Hadamard's gap series in the disk \(D \subset C \). As \(t_{jq} \), \(j = 1, 2, \ldots \) are real numbers to be fixed later (see (7)) we can write

\[f_q(z) = \sum_{r=1}^\infty b_{rq} z^r \]

where \(b_{rq} \) are complex numbers depending on the variables \(t_{jq} \). So, we obtain from (8) and (9)

\[(24) c_q^{-1} \lambda_q^{-2} \delta^{r_{jq}} \int_{\gamma_1} g_q^2 \eta_q = c_q I_{0q} + 2 \sum_{j=1}^\infty e^{i\gamma_{jq} t} I_{jq} + c_q^{-1} J_q \]

where

\[I_{0q} = \int_{\gamma_1} z^{r_{jq}} \frac{dz}{w}, \quad \delta^{(m_{jq} - r_{jq})} I_{jq} = 2^{-j} n_j \int_{\gamma_1} z^{m_{jq}} \frac{dz}{w}, \]

\[r_1 = r_2 = 2s - 2, \quad r_3 = r_4 = 2s, \quad m_{j1} = m_{j2} = (n_j + 1)s - 2, \quad m_{j3} = m_{j4} = (n_j + 1)s \]

and

\[\delta^{r_{jq}} J_q = \int_{\gamma_1} f_q \left(\frac{z}{\delta} \right) \frac{dz}{w}, \quad 1 \leq q \leq 4. \]

From Proposition 3.1 we conclude that \(I_{0q} \neq 0, 1 \leq q \leq 4 \). Then, we can choose sequences of real numbers \(t_{jq}, j = 1, 2, \ldots \) such that

\[(25) \text{Arg} (e^{it_{jq} I_{jq}}) = \text{Arg} I_{0q}, \quad \text{if} \quad I_{jq} \neq 0 \quad \text{and} \quad t_{jq} = 0 \quad \text{if} \quad I_{jq} = 0 \]

for every \(c_q > 0 \) and \(\delta \geq 3 \).

Suppose that \(t_{jq} \), are fixed such that (25) is satisfied. Since \(|J_q(\delta)| = |J_q(\delta)| \) is a bounded real function of the real variable \(\delta \) we can find \(L \geq 3 \) and \(c_q \) large sufficiently such that in (24)

\[(26) \frac{1}{\lambda_q^2} \int_{\gamma_1} g_q^2 \eta_q \neq 0, \quad q = 1, 2, 3, 4, \quad \text{for every} \quad \delta \geq L. \]

Finally, from (22), (23) and (26) we conclude that for every \(\delta \geq L \) there exists \(\lambda_q = \lambda_q(\delta) \in C \) such that the second equality of (13) is satisfied. This concludes the proof of (21).
In order to finish the proof of Lemma 3.1 we need to show that

\[\int_\alpha g_p^2 \eta_p = \int_{\beta_j} g^2 \eta_3 = \int_{\beta_j+2} \eta_4, \quad p = 1, 3, \quad j = 1, 2 \]

and

\[\int_{\mu_j} g_p^2 \eta_p = \int_{\mu_j} \eta_p, \quad p = 2, 4, \quad j = 1, 2 \]

where \(\alpha, \beta_j \) and \(\mu_j \) are given in (4) and (5). First we observe that \(w \) appears in (8) and (9) with an odd exponent and \(\alpha \) covers twice the closed curve \(\tilde{\alpha}(t), 0 \leq t \leq 2\pi, \) each time with a distinct determination of \((z^{2k+1} - 1)^{1/2}\). This implies that the first integrals in (27) are null.

On the other hand, let \(\omega \) be the branch of \((z^{2k+2} - 1)^{1/2}\) on \{\(z \in C; 1 < |z| < \delta \) such that \(\omega(1 + \delta) = v > 0 \). Suppose that \(\mu_1 \left(\frac{1 + \delta}{2} \right) = (\tilde{\alpha} \left(\frac{1 + \delta}{2} \right), -v), \mu_2 \left(\frac{1 + \delta}{2} \right) = (\tilde{\alpha} \left(\frac{1 + \delta}{2} \right), v) \). Then

\[
\int_{\mu_j} \eta_q = -(-1)^j \int_{\tilde{\alpha}} \omega dz = -(-1)^j 2\pi i \text{ Res } \omega dz, \quad q = 2, 4.
\]

To calculate \(\text{Res } \omega dz \) we write \(z = u^{-1} \) and

\[\omega(u) = \sum_{n=0}^{\infty} a_n u^{(2n-1)(k+1)}, \quad dz = -u^{-2} du, \quad a_n \in \mathbb{R}. \]

Since \((2n - 1)(k + 1) - 2 \neq -1 \) for every \(n \) we obtain

\[\text{Res } \omega(u)u^{-2} du = 0. \]

This show that \(\int_{\mu_j} \eta_q = 0 \). Also, from (8), (11) and (12) we have that

\[\int_{\mu_j} g_q^2 \eta_q = (-1)^j \lambda^2 \sum_{j=1}^{\infty} e_{jq} \int_{\tilde{\alpha}} z^{r_{jq}} \frac{dz}{\omega}, \quad q = 2, 4 \]

where \(e_{jq} \in \mathbb{R}, r_{j2} \equiv -2(\text{mod}(2k + 2)) \) and \(r_{j4} \equiv 0(\text{mod}(2k + 2)). \) But

\[\int_{\tilde{\alpha}} z^{r_{jq}} \frac{dz}{\omega} = -2\pi i \text{ Res } z^{r_{jq}} \frac{dz}{\omega}. \]

Also, \((2n - 1)(k + 1) - r_{jq} - 2 \neq -1, \quad q = 2, 4 \) and for every \(n = 1, 2, \ldots, j = 1, 2, \ldots, \) These results together with (29) imply that

\[\text{Res } z^{r_{jq}} \frac{dz}{\omega} = 0, \quad j = 1, 2 \ldots \]

So, the integrals in (30) are null and the first equality in (28) are satisfied. Also, an easy computation shows that

\[\text{Res } z^m \frac{dz}{w} = \text{Res } z^m \frac{wdz}{z^2} = 0, \quad m = 1, 2, \ldots \]
This completes the proof of (27) and (28) and finishes the proof of Lemma 3.1.

Proof of Theorem 1.1. — Let \(M_{k,q} \), \(q = 1, 2, 3, 4 \), be the Riemann surfaces given in (2) and (1). We will prove that \((g_q, \eta_q) \) as defined in Lemma 3.1 satisfies the hypothesis of Theorem 2.1. First, observe that \(w \) and \(dz \) are respectively a holomorphic function and a holomorphic differential on \(M_{k,q} \) with simple zeros at the points \(q_n = \left(e^{n \frac{2\pi i}{s}}, 0 \right) \). We remember that \(s = 2k + 1 \) if \(q = 1, 3 \) and \(s = 2k + 2 \) if \(q = 2, 4 \). Also as \(h_q(z) \) is a holomorphic function on \(D = \{ z \in C, |z| < 1 \} \) we can choose \(\delta > L \) such that \(h'_q \left(\frac{1}{\delta} e^{it} \right) \neq 0, 0 \leq t \leq 2\pi, 1 \leq q \leq 4 \), where \(L \) is given in Lemma 3.1. With this choice of \(\delta, g_q \) and \(\eta_q \) have respectively simple poles and double zeros at the points \(q_n \). So, \((g_q, \eta_q) \) satisfies (C.1) of Theorem 2.1.

On the other hand, \(g_q, \eta_q \) is an exact differential on \(M_{k,q} \). These results together with Lemma 3.1, implies that \((g_q, \eta_q) \) satisfy (C.2) of Theorem 2.1.

Finally, let \(l(t) = \left(\tilde{t}(t), w(t) \right), 0 \leq t < 1 \), be a divergent curve on \(M_{k,q} \). Suppose that \(q = 3, 4 \) and \(\lim_{t \to 1} \tilde{t}(t) = 0 \). In this situation since \(\eta_q \) has double poles at \((0, \pm i) \) we conclude that \(l(t) \) has infinite length. So, we can suppose that for each \(q \) that \(\lim_{t \to 1} |\tilde{t}(t)| = \delta \) and that there exists \(0 < \varepsilon^* < 1 \) such that

\[
\frac{\delta + 1}{2} \leq |\tilde{t}(t)| \leq \delta \quad \text{for every} \quad \varepsilon^* < t < 1.
\]

Then, as \(h_q \) satisfy Lemma 2.1

\[
\int_l (1 + |g_q|^2) |\eta_q| \geq \int_l |g_q^2 \eta_q| \geq \frac{\lambda_q^2}{4(1 + \delta^2)} \int_l |h'_q \left(\frac{z}{\delta} \right)|^2 |dz| = \infty.
\]

So, \((g_q, \eta_q) \) satisfies (C.3) of Theorem 2.1. This proves that \((g_q, \eta_q) \) defines a complete minimal immersion \(X_q : M_{k,q} \to \mathbb{R}^3 \). Furthermore, as in (14) the third coordinate of the immersion verifies

\[
|X^3_q(z,w)| = |\text{Re} \int_{(1,0)}^{(z,w)} g_q \eta_q| = |\text{Re} \frac{\lambda}{\delta} h \left(\frac{z}{\delta} \right)| < \infty.
\]

This completes the proof of Theorem 1.1.

BIBLIOGRAPHY

C.J. COSTA,
Departamento de Geometria
Instituto de Matemática
Universidade Federal Fluminense
24020-005 Niterói RJ (Brazil)

&P.A.Q. SIMÕES,
Departamento de Matemática
Instituto de Matemática e Estatística
Universidade de São Paulo
C.Postal 20570, Ag. Iguatemi
01498-970 São Paulo SP (Brazil).