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SOLUTIONS ENTIERES D’UN SYSTEME
D’EQUATIONS AUX DIFFERENCES. II

par J.-P. BEZIVIN et F. GRAMAIN

1. Introduction et résultats.

Soit s un entier naturel positif. Pour A = (A1,...,)s) et 8 =
(B1,-...,Bs) € C*, on pose

(Av ﬂ) = A1/81 + ...+ Asﬁs-

Considérons la fonction entiere z — f(z) = exp({z,7)) de la variable
z € C*, o1 vy est un élément non nul de C?. Il est immédiat que le C(z)-
sous-espace vectoriel de l’espace M des fonctions méromorphes sur C*
engendré par les translatées de f dans la direction vy, c’est-a-dire par toutes
les fonctions z — f(z + kv) (k € N), est de dimension 1 sur C(z).

Plus généralement, soit f une fonction méromorphe de la forme
f(z) = Y Ra(2)exp((z, V),
Aer

ou I' est une partie finie de C® et les Rx(z) des fractions rationnelles &
s variables complexes. Le sous-espace vectoriel de M engendré sur C(z)
par les translatées de f dans la direction 7y est alors de dimension finie; il
en résulte que f vérifie une équation aux différences non triviale dans la
direction v, de la forme

> Bu(2)f(z+ k) =0,

0<k<N

Mots-clés : Equations aux différences — Polynémes exponentiels — Equations différentiel-
les linéaires.
Classification math. : 39A — 39B - 34A — 33B - 30D.
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ol les P sont des polynémes non tous nuls en s variables complexes.

Dans cet article, nous allons examiner la réciproque de cette propriété.

Plus précisément, nous allons démontrer que si la fonction entiére f vérifie
suffisamment d’équations aux différences finies distinctes (nous verrons plus
loin la signification & donner & cette expression), alors f(z) s’écrit sous la
forme

S Ra(z) exp((z, V),

AeT
ol les X sont des éléments de C* et les Ry (2) des fractions rationnelles en
s variables complexes.

Cette question avait été posée par D. W. Masser, a la suite des travaux
de F. Gramain sur les fonctions entiéres f d’une variable complexe telles
que f(Z[:]) C Z[i] (cf. [Gra], [Mas]). Dans article [BéGra], une réponse
partielle avait été donnée a ce probléme dans le cas d’une variable complexe.
Nous verrons comment compléter ce travail et donner une solution générale,
au moins dans le cas d’une variable. Dans le cas de plusieurs variables, nous
serons obligés de nous imposer une condition technique (voir plus bas), sur
les directions des équations aux différences finies que nous considérerons.
Nous allons démontrer les résultats suivants.

THEOREME 1.1. — Soit s un entier positif, et, pour tout j =
1,...,2s, soit §; un polynéme exponentiel en s variables complexes. Soient
d’autre part y; (j = 1,...,2s) des éléments R-linéairement indépendants
de C?.

On suppose que, pour tout j = 1,...,2s, la fonction f, entiére sur
C?, vérifie une équation aux différences finies non triviale

Y. Pui(2)f(z+ k) = 05(2),
0<k<N;
ot les Py ; sont des polynémes & s variables complexes, non tous nuls. On
suppose de plus que les v; engendrent s droites complexes.

Alors f est le quotient d’un polynéme exponentiel par un polynéme.

La condition que les 7y; engendrent s droites complexes est la condition
restrictive sur les directions des équations aux différences annoncée plus
haut. Cela ne semble étre qu’une condition technique due & notre méthode
de démonstration. Il est probable que la seule condition, plus naturelle, que
les v; (j = 1,...,2s) soient R-linéairement indépendants soit suffisante
pour assurer la méme propriété.
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Pour s = 1, les deux conditions coincident, de sorte que nous obtenons
le résultat suivant.

COROLLAIRE 1.2. — Soient a et 8 deux nombres complexes non
nuls, tels que o/ ¢ R, et f une fonction entiére d’une variable complexe
vérifiant le systéme de deux équations aux différences

Z Pr(2)f(z+ ka) = ®(2)

0<k<K
Y Qu()f(z+mp) =¥(z),
0<m<M
ot les Py et Q,, sont des polynémes, avec PkQur # 0, et o ® et ¥ sont
des polynémes exponentiels.

Alors f est le quotient d’un polynéme exponentiel par un polynéme.

Ce résultat permet d’enlever dans le théoréme 6.1 de [BéGra]
I’hypothese restrictive qu'un déterminant construit a partir des coefficients
des deux équations aux différences soit non nul.

Pour s = 1, nous étudierons aussi le cas d’un systéme d’une équation
différentielle et d’une équation aux différences. Nous parviendrons aussi
dans ce cas & enlever la condition restrictive du théoréme 8.1 de [BéGra],
pour donner la réponse générale.

THEOREME 1.3. — Soit a un nombre complexe non nul, et f une
fonction entiére d’une variable complexe vérifiant le systéme des deux
équations

S Qu(2)f(z + ka) = B(2)

0<k<K

Y. Pu(@f(2) = ¥(2),

0<m<M

ot les Py et Q,, sont des polynémes, avec PkQur # 0, et ot @ et ¥ sont
des polynémes exponentiels.

Alors f est le quotient d’un polynéme exponentiel par un polynéme.
Enfin, nous donnerons aussi le cas & s variables, sans I’hypotheése

restrictive que les pas récurrents engendrent s droites complexes, quand les
équations aux différences sont & coefficients constants.

THEOREME 1.4. — Soit s un entier positif, et, pour tout j =
1,...,2s, 6; un polynéme exponentiel en s variables complexes. Soient
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d’autre part v; (j = 1,...,2s) des éléments R-linéairement indépendants
de C°. On suppose que, pour tout j = 1,...,2s, la fonction f, entiére sur
C?, vérifie une équation aux différences finies non triviale de la forme

Z a'n,jf(z + n7j) = ej(z)’

0<n<N;
ol les ay, ; sont des constantes complexes non toutes nulles.

Alors f est un polynéme exponentiel.

Nous avons eu récemment communication d’un manuscrit de Jean-
Jacques Loeb, ([Loe]), ol celui-ci démontre le théoréme 1.4, par une
méthode différente de celle que nous utiliserons. Cette méthode lui permet,
toujours dans le cas de coefficients constants, d’aborder le cas ot la fonction
f est une fonction de classe C* sur RS.

2. Réductions du probléme.

Nous commengons par montrer qu'’il suffit de démontrer les théoremes
1.1, 1.3, 1.4 et le corollaire 1.2 dans le cas ol les polynémes exponentiels
apparaissant dans les seconds membres des équations sont nuls.

Pour cela, il suffit de remarquer que si ® est un polynéme exponentiel
en s variables, et v € C*\ {0}, les translatées de ® dans la direction ~y
engendrent un espace vectoriel de dimension finie sur C. Il en résulte que ¢
est dans le noyau d’un opérateur non nul, aux différences dans la direction 7,
et & coefficients constants. En composant cet opérateur avec ’opérateur aux
différences dans la direction 7y et & coefficients polynémes (ou & coefficients
constants dans le cas du théoréme 1.4) qui apparait au premier membre, on
trouve le résultat annoncé. En ce qui concerne le théoréme 1.3, il faut de
plus remarquer que tout polynéme exponentiel & une variable est dans
le noyau d’un opérateur différentiel a coefficients constants non trivial.
Nous nous contenterons donc de démontrer les résultats quand les seconds
membres sont nuls.

Nous revenons maintenant sur les hypothéses du théoréme 1.1 con-
cernant les pas récurrents. Les éléments 7; (1 < j < 2s) sont linéairement
indépendants sur R. L’ensemble des droites complexes Cv; (j =1,...,2s)
engendrées a donc un cardinal compris entre s et 2s. Supposons, comme
dans le théoréme 1.1, que ce cardinal soit s. Alors on peut regrouper
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deux par deux ces éléments, et quitte & changer les indices, supposer que
Cv; = Crvj4s (j =1,...,s). Il résulte du fait quelesv; (j =1,...,2s) sont
linéairement indépendants sur R que {~v1,...,7s} est une base du C-espace
vectoriel C®.

Soit {e;; 7 = 1,...,s} la base canonique de C*®. On peut alors,
par un changement de base dans C°, se ramener au cas ou 7v; = oje;
et vj+s = fBjej, avec aj,3; € C\ {0}, a;/8; ¢ R. La fonction f sera
remplacée par une fonction g de la forme g(z) = f(Mz), ot M est une
matrice inversible & coefficients complexes, et il est clair que démontrer que
g est le quotient d’un polynéme exponentiel par un polynome est équivalent
a démontrer cette propriété pour f.

Nous pouvons donc supposer que le systéme vérifié par f est de la
forme

Z Ajm(2)f(z1,.. 0,25+ ma, ..., 25) =0
OSmSM]

Z Bjn(2)f(z1,...,2; +nBj,...,2,) =0
0<n<N;

pour j=1,...,s.

3. Quelques lemmes.

LEMME 3.1. — Soient s > 1 un entier positif, Z1,...,Zs_1 et T
des indéterminées. On note C[Z] := C|Z,...,Zs—1], de sorte que, pour
s =1, on a C[Z] = C. Soient o et 3 deux nombres complexes linéairement
indépendants sur Q et soient A et B des polynémes non nuls et de contenu
1 dans I’'anneau C[Z] [T des polynémes en Iindéterminée T .

Alors il existe des entiers Ko et Lo et un polynéme H € C[Z] [T tels
que l'on ait

peed( [] 4@z.T+ka), [[ BZT+69)=H(ZT)
0<k<K 0<e<L
pour tout couple (K, L) € N2 vérifiant K > K et L > L.

De plus on a les estimations degy H < degp A-degy B, degz H <
degy A-degy B et deg H < degp A-deg B, si deg désigne le degré total.

Démonstration. — D’apres le lemme de Gauss (sur le contenu d’un
produit), les produits [[ A(Z,T +ka)et [] B(Z,T + ¢8) sont de
0<k<K 0<<L

contenu 1.
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Soient A(Z,T) = [] Ai(Z,T) et B(Z,T) = 1[I B;(Z,T) les
i€l =

J

décompositions de A et B en produits de facteurs irréductibles. Alors

A(Z,T+ka) =[] Ai(Z,T+ka) et B(Z,T+¢3) = T B;j(Z,T+4¢3) sont
i€l j€d

les décompositions en produits de facteurs irréductibles de A(Z, T + ko) et
B(Z,T +¢p).

Notons A;x = Ai(Z,T + ka) et Bjp = Bj(Z,T + £8). Le polynéme
A; i est un facteur de ] B(Z,T + ¢8) si et seulement s’il existe un
0<I<L
couple (j,£) tel que A; x = Bj ;.
Vérifions que, pour (4, ) fixé, il existe au plus un couple (k, ¢) tel que
Aix = Bjg : en effet, si (K',€) # (k,£) vérifiait aussi A, » = Bj, on
aurait
Ai(Z, T) = Ai(z, (T - ka) + k'a) = Bj(_Z_, (T - ka) + fﬂ)
=B;(Z,(T — ka+£8—-008)+¢p)
=Ai(Z,(T—ka+08—¥08)+kKa)=A,(Z,T+ x),

avec z = (k' — k)a+ (£ — £)3 # 0 puisque « et 3 sont linéairement
indépendants sur Q. Ainsi le polyndme A; serait périodique en T', donc
dans C[Z], ce qui est exclu, puisque le contenu de A est 1.

Cela montre la finitude de ’ensemble des (k,£) € N? pour lesquels il
existe (¢,7) vérifiant A, = Bj,. Il existe donc des entiers Ky et Lo tels
que

e si k > Ky le polynéme A(Z,T + ko) est étranger & tous les
polynémes B(Z,T + ¢8) (¢ € N);

e si £ > Ly le polyndme B(Z,T + £8) est étranger & tous les
polynémes A(Z,T + ko) (k € N).

Le pged considéré est donc le pged H des deux polynomes
Il Az T+ke) e¢ [ B(ZT+4s)
0<k<Ko 0<¢<Lo
des que K > Ky et L > Ly.

De plus, pour un ¢ fixé, 'identité A; = B;, n’a lieu qu'au plus
une fois pour chaque j € J. Cela fournit pour le pged H un facteur du
type [l B;(Z,T +¢;B), avec J; C J, donc de degré en Z < deg, B et

je€J;
de degré en T < degp B. On a donc degy H < cardI.degy B, degz H <

card I.degy B et deg H < card I. deg B. Il suffit de remarquer que card I <
degr A pour conclure. a
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LEMME 3.2. — Avec les hypothéses et les notations du lemme 3.1,
si M et N sont des entiers naturels non nuls, on pose

Ba(2,T) =peged(AZ,T) [ HEZT+ ko)
1<k<M
[I HZT+ka)1<m< M)

0<k<M
k#m

et
85(2,T) =vecd(B(Z,T) ] H(ZT+ep);
1<¢<N
[I BEZT+),1<n< N),

0<e<N
L#£n

les pged étant pris dans 'anneau C[Z] [T'] des polynémes en I'indétermi-
née T.

Alors les polynémes
A(Z,T) Il H(Z T +ka)

* 1<k<M
et
B(z,T) I H(ZT+1¢pB)
1<¢<N
B*(Z,T) = =
&0 B5(Z,T)

sont premiers entre eux dans C[Z] [T] et de contenu 1.

Démonstration. — Soit P € C[Z][T]\ C[Z] un polynéme irréductible
(de contenu 1). Si @ est un élément non nul de C[Z] [T], on note ordp Q
la multiplicité de P en tant que diviseur de Q. Il s’agit de vérifier que
ordp A* =0 ou ordp B* = 0.

D’apres la preuve du lemme 3.1, par construction de H on a

ordp H = min{z ordp A(Z,T + ka); Zordp B(Z,T + E,B)}.
k>0 £>0
Par symétrie, il suffit donc de voir que, siordp H = > ordp A(Z, T + kc),
k>0
alors on a ordp A* = 0. Et pour cela il suffit de vérifier que, pour tout
entier m (1<m < M), ona

Sm=ordp [[ H(Z T+ka)-ordpA(Z,T) [[ H(Z T+ka)>0.

0<k<M 1<k<M
k#m
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Or
Sm =ordp H(Z,T) —ordp H(Z,T + ma) — ordp A(Z,T)
=Y ordp A(Z,T+ka)— Y _ ordp A(Z, T+ma-+ka)— ordp A(Z,T)

k>0 k>0
= Y ordpA(Z,T+ka) >0,
1<k<m-—1
et le lemme est démontré. 0
LEMME 3.3. — Soient t > 1 un entier positif, U, V1,...,V;, Z et T

des indéterminées, et soient P € C[U,V, Z]\ {0} et Q € C[U,V,T]\ {0}.
Si le résultant R € C[V, Z,T] obtenu en éliminant U entre P et Q est nul,

alors chacun des polynémes P et () admet un facteur non constant dans
cu,v].

Démonstration. — Le fait que R = 0 montre que les degrés en U de
P et Q sont > 1. Par symétrie il suffit de montrer que @ admet un facteur
non constant L € C[U, V].

Notons Q = 3 Q,(U,V)T* et soit L € C[U, V] le pged dans C(V)[U]
7

des Qq, choisi de contenu 1 € C[V] : il existe des polynémes A, € C[U, V]
et B € C[V]\ {0} tels que } A¢(U,V)Q((U,V) = B(V)L(U, V).
- :

Fixons v € C! et 2 € C tels que P(U,v,2) # 0 et B(v) # 0. Alors
le polynéme P(U, v, 2) n’a qu’un nombre fini de racines et, comme R = 0,
pour tout ¢t € C, le polynéme Q(U,v,t) a au moins une racine commune
avec P(U,uv,2). 1l existe donc une infinité de valeurs de ¢ pour lesquelles
cette racine est la méme, disons u € C : le polynéme Q(u,v,7) € C[T]
est le polynéme nul. Il en résulte que Q¢(u,v) = 0 pour tout ¢, donc que
L(u,v) = 0, ce qui montre que le polynéme L n’est pas constant. Or L a
été choisi de contenu 1 € C[V] et il divise tous les Q, dans C(V)[U], c’est
donc un facteur de Q dans C[U, V). O

LEMME 3.4. — Soient n > 1 un entier positif, Uy,...,U, et T
des indéterminées, et soient o et 8 deux nombres complexes linéairement
indépendants sur Q. Si P et Q sont des éléments non nuls de C[U, T, alors
il existe une partie S de mesure nulle de C™ telle que I’ensemble des w € C
pour lesquels il existe u ¢ S vérifiant P(u,e“®) = Q(u,e“P) = 0 soit un
ensemble fini.
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Démonstration. — Chacun des polynémes P et @ a une décomposi-
tion
P(U,T) =p(T)p2(U) [[ AW, T) , QU,T) = 2 (T)2(U) [ [ Qi (U, T),
i€l jeJ

ou p1 et 1 € C[TY, p2 et g2 € C[U], et les P; et Q; sont des polynomes
irréductibles dans C[U, T faisant effectivement intervenir les indéterminées
UetT.

Alors les égalités P(u,e”®) = Q(u,e”?) = 0 peuvent se produire de
différentes maniéres.

Premiére maniére. — Les égalités p;(e“*) = ¢1(e“?) = 0 ne donnent
qu’'un nombre fini de w € C. En effet, si a est un zéro de p; et b un zéro
de qi, et si e°* = q et e¥°® = b, alors on a e“* = q si et seulement si
w = wpy + 2ikm/a (k € Z) et e*? = b si et seulement si w = wp + 2iér/B
(¢ € Z). Mais a et § sont linéairement indépendants sur Q, donc 1’égalité
wo + 2ikm/a = wp + 2ilw/B n’est réalisée que pour k = ¢ = 0. Ainsi
le nombre des w € C vérifiant p;(e“®) = ¢1(e“?) = 0 est majoré par
min(deg p1,degq1).

Deuxiéme maniére. — Les égalités pa(u) = 0 ou g2(u) = 0 définissent
une sous-variété algébrique de C™, stricte (c’est-a-dire # C™) car paga # 0.
C’est une partie de mesure nulle de ’ensemble exceptionnel S cherché.

Troisiéme maniére. — On peut aussi étre dans la situation ou il existe
j € J tel que

pl(e“’o‘) =0= Qj(g, e“’ﬁ)
(ou dans la situation symétrique obtenue en échangeant les roles de P et Q).

L’équation p;(e¥*) = 0 a un nombre au plus dénombrable de racines
w € C. Pour chacune de ces valeurs de w, 1'équation Q;(u, e“?) = 0 définit
une sous-variété algébrique de C™, de mesure nulle car Q;(U,e“P) # 0.
En effet les facteurs du type T — e“P de Q ont été regroupés dans le poly-
noéme q; .

Cette situation contribue encore & S par une partie de mesure nulle,
puisque c’est une réunion dénombrable de sous-variétés algébriques strictes
de C™.

Quatriéme maniere. — Le seul cas restant a étudier est celui ou il existe
i€IetjeJtels que Pi(u,e”®) = Q;(u,e“?) =0.
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En oubliant les indices, il s’agit d’étudier les équations P(u,e**) =
Q(u,e“?) = 0, ou P et Q sont irréductibles et dépendent effectivement de
U et de T'. On est alors amené & distinguer deux cas :

Premier cas. — 1l existe un entier m, 1 < m < n, tel que, en notant
Uy =(U,...,Up)et Uy = (Uns1,-.-,Un),onait P(U,T) = P((U;,0),T)
et Q(.U_.a T) = Q((QaQZ)?T)

Comme le polynéme P n’est pas nul, 'équation P(u,T) = 0 définit
une variété algébrique S; x C*~™ # C™. Pour chaque u; ¢ Si, I’équation
P((u;,0),e**) = 0 a un nombre au plus dénombrable de solutions w € C.
Pour chacune de ces valeurs w, I’équation Q((0,u,),e“?) = 0 définit une
sous-variété algébrique Sa(uy,w) de C*™™, et cette variété n’est pas C*~™
car Q n’a pas de facteur de la forme T — e“P.

On obtient ainsi la contribution |J U {uy} x S2(u;,w)
4 #5 p((u,,05,e4)=0

4 l'ensemble S. Si H(u;) = 0 est une équation de la variété Sy, cette
contribution est la projection A sur C™ (’espace des (uy,u,)) de I'image
réciproque B de C* x {(0,0)} par lapplication continue (u;,us,w) —
(H(uy), P((y;,0),e*%), Q((0,uy), e“?)). L’ensemble B est localement fermé
dans C™ (intersection de I’ouvert image réciproque de C* x C? et du fermé
image réciproque de C x {(0,0)}), donc réunion dénombrable de compacts.
Sa projection A, réunion dénombrable de parties compactes, est donc un
ensemble borélien, et, comme toutes ses coupes (& u; fixé) sont de mesure
nulle, il est de mesure nulle.

Deuxiéme cas. — Les polynémes P et ) sont tous deux de degré > 1
en 'une des indéterminées U;.

En changeant le nom et ordre des indéterminées (U; devient U et les
autres U; sont regroupés en V), on suppose que P(U,V,Z) et Q(U,V, Z)
dépendent effectivement de U. Par hypothése, P et @ n’ont pas de facteur
non constant dans C[U,V], donc le lemme 3.3 montre que le résultant
R(V,Z,T) obtenu en éliminant U entre P(U,V, Z) et Q(U,V,T) n’est pas
nul. Il existe donc un polynéme non nul H € C[V] tel que, pour tout
v € C"1 vérifiant H(v) # 0, on ait R(v, Z,T) # 0. Comme « et 8 sont
linéairement indépendants sur Q, les fonctions z — e®* et z — €P* sont
algébriquement indépendantes, donc la fonction entiére de type exponentiel
2 — R(v,e**,e#*) a un nombre au plus dénombrable de zéros w € C.

Fixons donc v€C"! et weC tels que H(v)#0 et R(v,e“*,e*?) = 0.
11 existe alors u € C tel que P(u,v,e*) = Q(u, v, e“?) = 0. Si le polynéme
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P(U,v,e“*) de C[U] n’est pas identiquement nul, il n’y a qu’un nombre

fini de tels u. Il reste & voir que, quitte & choisir v hors d’une sous-variété

algébrique stricte de C™~! indépendante de w, on est bien dans cette

situation : notons P(U,V,T) = 3 ¢x(V,T)U*. Comme le polynéme P est
k

irréductible et fait intervenir effectivement I'indéterminée U, les polynémes
¢k sont premiers entre eux dans C(V)[T] : il existe des polynémes W}, €
ClV,T) et W € C[V]\{0} tels que > Wi (V, T)pr(V,T) = W (V). Alors, si
W (v) # 0, pour tout t € C il existe’;c tel que g (v,t) # 0. Il en résulte que,
si W(uv) # 0, pour tout choix de w € C, le polynéme P(U,v,e“*) € C[U]
n’est pas nul.

Notons V la sous-variété de C"~1 des zéros du produit H(V)W (V).
La contribution de ce cas & I’ensemble exceptionnel S est la réunion pour
v ¢ V des D(v) x {v}, ou D(v) est ’ensemble (dénombrable) des u € C
pour lesquels il existe w € C tel que P(u,v,e**) = Q(u,v,e“?) = 0.
C’est la projection sur C™ (I'espace des (u,v)) de I'image réciproque de
C* x {(0,0)} par application continue

(u,v,2) — (H@)W (v), P(u,v,e%), Q(u, v, €°?)).

C’est donc, comme plus haut, un ensemble borélien et, comme toutes ses

coupes (& v fixé) sont de mesure nulle, il est de mesure nulle. O
LEMME 3.5. — Soient o un nombre complexe non nul, s > 2 et
M > 0 des nombres entiers, T, Z1,...,Zs_1 et Z; des indéterminées. On

notera Z = (Z1,...,Zs—1). Pour 0 < m < M, soient A,, € C|Z, Z]
des polynémes non tous nuls. Alors il existe une partie S de C*~! de
mesure nulle et un polynéme non nul R € C[T] tels que, pour tout
¢ € C*71\ S, Ie degré d de tout polynéme non nul P € C[Z,] vérifiant

Y An(¢, Z)P(Zs + ma) = 0 est un zéro de R.
o<m<M

Démonstration. — On note X 'opérateur défini par

Xf(zla--'azs—lazs) = f(zlw-'vzs—l’zs +a)

On définit alors le “polyndme indiciel” de Popérateur Y. An(Z, Zs)X™.
0<m<M

Pour tout K € N on pose Sx(Z,Z,) = 5. Am(Z,Z,)(ma)*
0<m<M
(toujours avec la convention que 0° = 1), et on note ax = degy, Sk — k.

Il existe des aj différents de —oo : sinon on aurait Sy = 0 pour tout k;
mais les équations Sy = 0 (0 < k < M) peuvent étre considérées comme
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un systéme de Cramer en les inconnues A,,, car son déterminant est le
déterminant de Vandermonde construit sur les ma (0 < m < M), donc
n’est pas nul. Cela contredirait le fait que les A,, ne sont pas tous nuls.

L’ensemble des ay est majoré (par le plus grand des degrés en Z, des
Ap,) : soit a € Z son élément maximal et soit I ensemble des k € N pour
lesquels on a ax = a. Pour k € I on note si(Z)Z2** le terme de plus haut
degré en Zs de Sk(Z, Z,).

On pose alors

ez 1) =Y (@),
kel
o (T) _ T(T-1)...(T-k+1)

k k!
car les polyndmes binomiaux sont de degrés tous distincts et les sx(Z2)

sont tous non nuls. Dans Panneau factoriel C[T] [Z] on écrit Q(Z,T) =
R(T)Q1(Z,T) et on dit que le contenu R € C[T] de Q est le polynéme
indiciel de 'opérateur considéré.

. Le polynéme Q(Z,T) n’est pas nul

Soient alors { € C*~! et P € C[Z,] tels que

Z Am(gv Zs)P(Zs + ma) = 0.

0<m<M

La formule de Taylor

k
P(Z,+ma) =) MP(’“)(ZS),
k!
k>0
la somme étant en fait finie, permet d’écrire la relation précédente sous la
forme

' mao k
SN A, ZS)LI!l-P(’“)(Zs) =" Sk(¢, Zs)%PUC)(ZS) =0.

k>00<m<M k>0

1
Or, si P est de degré d, on a degy_(Sk(Z, ZS)EP(’“)(ZS)) =ar+k+d—k =
ar+dsid > k, et = —oo sinon. Il en résulte que le coefficient (nul) du terme
de degré a + d en Z, dans l'identité ci-dessus est le produit du coefficient

dominant de P par Y sk(ﬁ)(Z) = Q(¢,d); on a donc Q(¢,d) = 0.
ker - -
Pour tout n € N, S, = {¢ € C*7!; Q1(¢,n) = 0} est une sous-
variété algébrique stricte de C*~!, puisque, le contenu de @ € C[T] [Z]
étant 1, Q1 n’est pas divisible par ' — n. Il en résulte que, si ¢ n’est pas

dans S = |J Sy, on a R(d) =0. O
neN
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LEMME 3.6. — Soient fi, ...,fx des applications de C dans C.
L’application de C* dans C qui & (z1,...,2x) associe le déterminant
det(f;(2i))1<i,j<k est identiquement nulle si, et seulement si, les applica-
tions f1, ...,fx sont linéairement dépendantes sur C.

Démonstration. — C’est clair, par récurrence sur k. a

LEMME 3.7. — Soient s > 2 un nombre entier, o € C*~1\ {0} et
H € C[¢, z] un polynéme non nul en les s indéterminées (C1,...,{s-1,2).
Soient Ay, (1 < m < M) des éléments non tous nuls de C[(, 2]. Alors il

existe une partie finie S de C telle que, si f : C* — C est une fonction
vérifiant la relation non triviale aux différences finies Y, Apn((,2)f(C+
0<m<M - -

ma, z) = 0, alors, pour tout u € C\ S la fonction de s — 1 variables
¢+ gu(¢) = H(S,u)f(¢,u) satisfait une relation non triviale de la forme

> B w(€)9u( + ma) = 0, ot les By, ., sont des éléments non tous
0<m<M

nuls de CI[¢].

Démonstration. — Soit u € C. Spécialisons la relation aux différen-
ces satisfaite par f au point z = u et multiplions-la par le produit, pour
0<m< M,des H (g + ma,u). On obtient une relation aux différences
satisfaite par la fonction g,. Cette relation n’est pas triviale dés que u
n’est pas dans dans la réunion de P’ensemble fini des zéros communs
aux Am([¢,2] € C[¢] [2] et de I'ensemble fini des zéros du produit des
H(¢ +ma, 2). O

4. Preuves du théoréme 1.1 et du corollaire 1.2.

Nous allons procéder par récurrence sur I’entier s. Nous rappelons tout
d’abord le résultat suivant (qui se déduit du théoreme 6.1 de [BéGra)).

THEOREME 4.1. — Soient o et 3 € C* vérifiant o/ ¢ R, et f une
fonction entiére satisfaisant les relations
> Un(2)f(z+ma)=0
0<m<s

> Va(2)f(z+nB) =0,

0<n<t

ot Uy € CIX] (0 <m <), V, € CIX|](0<n <t), UV #0 et
pged(Us, Vo) = 1. Alors f est un polynéme exponentiel.
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Ceci étant rappelé, soient s un entier positif et f une solution entiere
d’un systéme d’équations aux différences de la forme

Z Ajm(2)f(z1,..., 25 + may,...,25) =0

OSmSMj
Z Bjn(2)f(z1,.. ., 2 +nPj,...,2) =0
0<n<N;
pour j =1,...,s
Nous allons distinguer la variable z,; nous posons désormais z =
(21y-..,25) = (2%, 25), avec 2* = (21,...,25-1)-
Pour j = s on a le systéeme
Z As,m(z*, zs)f(Z*v zZs + mas) =0
0<m< M,
Z Bsn(2%,25) f(2%, 25 + nfs) = 0.
0<n<N,
Nous notons To(2*) (resp. Tp(2*)) le contenu de A, o(z*,2s) (resp.
B, 0(2*,25)) comme polynéme de C[z*] [z5]. Soit H(z*,zs) le polynome
associé & Aso(2*,25)/Ta(2*) et Bso(2*,2s)/Tp(2*) par le lemme 3.1. La
fonction g(z*, zs) = H(2*,2s)f(2*, zs) vérifie le systéme suivant :

> Agm(zt2) [[ H 26 + es)g(2*, 26 + mag) =0

0<m<M, j#m
> Bon(z%,20) [[ H(z" 25 +385)9(2", 25 +nfBs) = 0
0<n<N, j#n

En divisant la premiere équation par le pged des termes

Aso(z*,25) [1 H(z* zs+ jos) et des [[ H(z*,2s + jas) pour m > 0,
1<j<m J#m
et la seconde par le pged des

Bso(2*,2,) [1 H(2*,2s+3Bs), I H(2*,25+ jBs) , pour n > 0,
1<j<n . i#n

on trouve un systéme d’équations de la forme
Z Ag (2", 25)9(2" 25 + mas) =0

0<m< M,
Z B;,n(Z*v 25)9(2", zs + nBs) =0
0<n<N,
avec la propriété, grice au lemme 3.2, que les termes Aj (2%, 2s) et
B (2", 2s) n’ont plus comme facteurs communs possibles que des poly-
némes en z*.

Nous introduisons le résultant de ces deux polynoémes en la variable
s, que nous notons R(z*), et qui est donc un polynéme non nul en s — 1
variables complexes.
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Nous démontrons maintenant le résultat envisagé pour s = 1. Dans
ce cas, nous nous sommes ramenés au cas signalé plus haut, ol les deux
polynémes Aj(z1) et B(z1) n’ont pas de racine commune. Par suite, on
peut appliquer le théoréme 4.1, et il en résulte que g(z1) est un polynéme
exponentiel. Comme f est le quotient de g par un polynéme, on a bien
démontré le cas général pour une variable, c’est-a-dire le corollaire 1.2.

Ceci étant posé, nous continuons notre démonstration du cas général,
en supposant s > 2. Les deux polynomes Aj ((z*,z2s) et Bj (2", 25) étant
non nuls, on choisit deux coefficients a(z*) et b(z*) non nuls de ceux-ci.
On note S; la partie de C*~! formée des z* tels que a(2*)b(2*)R(2*) = 0.
Il est clair que S; est une partie négligeable pour la mesure de Lebesgue
sur C*~1. Le fait que a(2*)b(2*) soit non nul nous assure que les équations
spécialisées en un tel point z* ¢ S; ne sont pas triviales.

Soit maintenant ¢, (resp. £3) le maximum des degrés en z, des
polyndmes Aj ;(z*,z;) (resp. B ;(2*,25)). On définit les polynémes P et
Q par

P, X)= > aj(z")X), Q@,X)= Y bi(z")X,
0<j<M, 0<j<N,
ot 'on a noté a; (resp. b;) les coefficients de zf> (resp. de P ) dans
A (2%, 25) (resp. By ;(2* ,25)). D’aprés le lemme 3.4, il existe une partie
Sy de C*~1, négligeable pour la mesure de Lebesgue, et un ensemble fini
Q, tels que, pour tout 2* ¢ S, tout w € C solution de P(z*, exp(w)) =
Q(z*,exp(w)) = 0 appartient & Q.

Pour chaque w € {2, on regarde I’équation suivante, en 'inconnue
P e Clz]

Z A} (27, 25) P(2s + mas) exp(mwas) = 0.
0<m<M,

D’apres le lemme 3.5, il existe pour chacun de ces w une partie S, de
C*~1, négligeable pour la mesure de Lebesgue, et un entier d,, tels que,
si z* n’appartient pas & S, et si P est solution de I’équation précédente,
alors le degré de P est plus petit que d,. Appelons S3 la réunion des S,
et d le maximum des d,, pour w € Q. La partie S3 est une partie de C°~!
négligeable pour la mesure de Lebesgue, et si un polynéme P est solution
d’une des équations précédentes pour un w € €, alors son degré est majoré
par d.

Soit S I’ensemble réunion de Sj, Sz et S3. Pour z* ¢ S, la fonction
g(z*,z5) considérée comme fonction entiére de la variable z; est solution
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du systeme
Z A:,m(Z*’ 25)9(2*, 25 + mas) =0

0<m<M,
Z B; (2%, 25)9(2%, 25 + nfs) = 0.
0<n<N,
Comme on I’a déja vu, ce systéme vérifie les hypothéses du théoréme 4.1; il
en résulte que g(z*, z;) est un polynome exponentiel, de la forme g(z*, z5) =
> P,(zs) exp(wzs), ou les w sont dans C et les P, des polynémes non nuls.

En utilisant 'indépendance linéaire sur C(z;) des fonctions zs — exp(wz;s),
il en résulte que, pour tout w, on a
Z A§ (27, 25) Pu(2s + mas) exp(mwas) =0
0<m< M,
et
Z B; (2", zs) P (25 + nf;) exp(nwfs) = 0.

0<n<N,

En considérant les termes de plus haut degré en z, de ces deux
équations, il vient

P(z*,exp(was)) = Q(2*,exp(wfs)) = 0,
ou P et Q sont les polynémes définis auparavant; par suite, compte tenu

du fait que z* n’appartient pas & l’ensemble S, il en résulte que les w
appartiennent & ’ensemble fixe €2 indépendant de z* introduit plus haut.

Comme 2* n’appartient pas & ’ensemble S3, les polynémes P,, (w € )
sont de degré majoré par une constante d indépendante de 2* ¢ S. Il
existe donc une partie finie I de N x C (contenue dans {0, ..., d} x Q, donc
indépendante de 2* ¢ ) telle que, pour tout z* ¢ S et tout z; € C on ait

(*¥) 9(2", 25) = Z aj,w(Z*)zg exp(wz;).
(Gw)el
Les fonctions 2z, — 2J exp(wzs) ((4,w) € I) sont linéairement indépendantes
sur C. Par le lemme 3.6, il existe donc des nombres uy € C (1 < k <
card(I)) tels que le déterminant construit sur les u exp(wuy) ne soit pas
nul. 11 en résulte qu’il existe des ;. x € C ((j,w) € I, 1 < k < card(I))
tels que, pour tout (j,w) € I et tout z* ¢ S on ait
aj,w(z*) = Z /\j,w,kg(z*,uk).
1<k<card(I)

Le membre de droite de chacune de ces identités est une fonction entiere
de la variable z* € C*~!, donc a;., se prolonge en une fonction entiére sur
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C*~1. Comme S est d’intérieur vide (car il est de mesure nulle) et que g
est entiére sur C?, il en résulte que 1’égalité (*) se prolonge en une identité
sur C°.

Le lemme 3.7 montre que, quitte & choisir les u hors d’une partie finie
de C, ce qui est possible puisque le déterminant du lemme 3.6 est, dans
le cas ou nous 'utilisons, une fonction entiére non identiquement nulle, les
fonctions z* — g(z*, uy) satisfont des relations non triviales aux différences
dans les 2(s — 1) directions définies par les o et §; (1 < j < s—1). Ainsile
C(z*)-espace vectoriel engendré par les translatées de chacune des g(z*, ug)
dans la direction a; (resp. §;) est de dimension finie. La relation exprimant
les a;., en fonction de g montre alors qu’il en est de méme pour ceux-ci.

L’hypothése de récurrence appliquée a ces fonctions montre qu'’il
existe des polynémes non nuls dont le produit par les a;, est un
polynoéme exponentiel. Il existe donc un polynéme non nul V(z*) tel que
V(2*)g(z*, 2zs) = V(2*)H(z*, z5) f(2*, 25) soit un polynéme exponentiel, ce
qui termine la démonstration. O

5. Le cas d’un systéme différence-différentiel.

Dans cette partie, nous allons compléter les résultats de [BéGra]
dans le cas d’une variable complexe et d’un couple d’une équation aux
différences & coefficients polynémes et d’une équation différentielle & coef-
ficients polyndmes.

Nous aurons tout d’abord besoin du théoréme 8.1 de [BéGra], que
nous rappelons, en renvoyant le lecteur & cet article pour les notations.

PROPOSITION 5.1. — Soit X = el et f une fonction entiére
vérifiant
Y Un(X)2mf=0 (1)
0<m<s
> Va(D)2"f=0 )
0<n<t

oulU, €ClX](0<m<s),V,e€C[D] (0<n<t)et UV #0.
On pose, pour 1 <i,j < s+t,

Z(—l)’”‘s+j‘i( b= )r"“s“"'Um(X) si 1<i<t

0<m<s m—s+j—t
A — i sHt—i .
> (—1)“+J—1( , ,)V,S"ﬂ—“(D) si t+1<i<s+t.
n+j—1

0<n<t
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Si det(a; ;) € C[X, D] n’est pas nul, alors f est un polynéme exponentiel.
On en déduit le résultat suivant.

COROLLAIRE 5.2. — Soient a € C* et f une fonction entiére d’une
variable complexe vérifiant le systéme des deux équations suivantes :

> Qu2)f(z+ka)=0

0<k<K

Y. Pu(2)f™(z)=0

0<m<M
ot les Py et Qy, sont des polynémes, avec PyyQg #0 .

Si les polynémes Qg et Py sont premiers entre eux, alors f est un
polynéme exponentiel.

Démonstration. — 1l suffit de démontrer que, sous I’hypothese que
les polynémes Qo et Pps sont premiers entre eux, le déterminant introduit
dans la proposition 5.1 est non nul. Nous traduisons pour cela ces équations
sous la forme (1) et (2) de la proposition 5.1 (voir [BéGra] pour les détails)
et nous allons calculer le coefficient du terme de plus haut degré en D dans
le terme constant du déterminant det(a; ;), considéré comme polynéme en
la variable X.

Ce terme s’obtient en spécialisant tout d’abord X en 0. L’opérateur

T n’est autre que I'opérateur X i Il en résulte que 7FU, spécialisé en

X =0est nul si k > 0. Il en résulte que, pour 1 < i < ¢, le coefficient a; ;

est nulsi j—i—s > 1, et égal & Usy;—;(0) dans le cas contraire. L’équation

(1) montre que Qo(z) = 3. Ux(0)2*. On cherche maintenant le coefficient
k

du terme de plus haut degré en D. On remarque pour cela que le maximum
des degrés des polynémes V,, est M et que, si b, est le coefficient de DM
dans V,, alors Pyp(2) = Y. bup2™
0<n<t

D’apres les expressions données dans la proposition 5.1, si t +1 <
i < s+t, le coefficient de DM dans a; ; est nul si j —¢ > 0 et égal & b;_;
dans le cas contraire. Il en résulte que le coefficient cherché n’est autre que
le résultant de Sylvester des deux polynémes Pps et Qp, qui est non nul,
puisque Pps et Qo sont premiers entre eux, ce qui termine la démonstra-
tion. O

Nous aurons besoin de quelques lemmes, analogues & ceux de la
partie 3.
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LEMME 5.3. — Soient Z une indéterminée, et A et B des polynémes
non nuls dans 'anneau C[Z]. Alors il existe un entier Ky et un polynéme
H € C[Z] tels que I'on ait

pged (MHK A(Z + k), B(Z)K) = H(Z)

pour tout K € N vérifiant K > K.

Démonstration. — Le polynéme A(Z + k) est premier au polyndéme
B deés que k est assez grand et ’assertion en résulte. a
LEMME 5.4. — Avec les hypothéses et les notations du lemme 5.3,

si M est un entier naturel non nul, on pose

A(Z) = pgcd(A(Z) [ Bz+k; [] HZ+k,1<m< M)
1<k<M 0<k<M
k#m
le pged étant pris dans anneau C[Z] des polynémes en I'indéterminée Z.

Alors les polynémes

AZ) TI H(Z+k)
A*(2) = 19“51(”2) et B(Z)

sont premiers entre eux dans C[Z].

Démonstration. — Le polynéme H ne possede comme zéros éven-
tuels que les zéros de B. Soit # une racine de B. Alors on a ordg(H) =
> ordg4x(A). En effet, pour N assez grand (N > Ko+1) ona N ordg(B) >
k>0
ordg(H).

Pour m > 1 posons

A(Z) TI H(Z+k)

1<k<M
Sm=ordg [[ H(Z+k)—ord A D)
OSEI;SM

On a
Sp = —ordgym (H) + ordg(H) — ordg(A).
D’autre part on a ordg(H) > > ordg4+r(A), et il en résulte, comme dans

- k>m
le lemme 3.3, que ordg(A*) = 0. O
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Nous passons maintenant & la démonstration du théoréme 1.3.

Nous prenons pour A le coefficient constant @y de ’équation aux
différences vérifiée par f, et pour B le coefficient P)s de I’équation
différentielle vérifiée par f. Soit H le polyndéme associé par le lemme 5.1
a ces deux polynémes. Nous posons ¢g(z) = H(z)f(z). En multipliant

I’équation aux différences dont f est solution par [[ H(z + j) on voit
0<j<K
que g(z) satisfait

Z Qk(2) H H(z+j)g(z+k)=0.

0<k<K 0<j<K
- Ji#k

De méme, en multipliant I’équation différentielle par H(z)™*!, on
obtient la relation

3 Cul2)g™(2) =0,
0<m<M

ot Ci(2) = Py (2)H(2)M.

En divisant les coefficients de la premiére équation par A(z), on trouve
une nouvelle équation aux différences a coefficients polynémes

3 Qi=)g(z+k) =0.

0<k<K

Par le lemme 5.4, le polynéme @ et le polynéme Cjs sont premiers
entre eux; par la proposition 5.2, la fonction entiere g est alors un polynéme
exponentiel, et ceci termine la démonstration du théoréme 1.3. 0

6. Le cas général a coeflicients constants.

Nous démontrons maintenant le théoréeme 1.4.

Soient donc vy; (j = 1,...,2s) des éléments de C*, que nous supposons
R-linéairement indépendants. On suppose que la fonction entiere f vérifie
le systeme

(S) > an;f(z+ny;) =0,
0<n<N;

ol, pour chaque j, les a, ; sont des éléments non tous nuls de C. En
particulier, on peut toujours supposer que ag ; # 0. Avant de commencer
la démonstration, nous aurons besoin de quelques notations et quelques
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lemmes. Pour z € C?, on pose ||z|| = (|z1]|?+. ..+ |2s|2)'/2. Nous rappelons
qu’une fonction g entiere sur C* est dite de type exponentiel s’il existe
deux constantes positives A etB telles que |g(z)| < Aexp(B||z||) pour tout
z € Cs.

On montre de la méme fagon que dans [BéGra] que l’espace des
fonctions entiéres de type exponentiel opére sur ’espace des fonctions
entieres sur C° de la fagon suivante : si g est entiére de type exponentiel,
g(z) = 3 an2™, et si f est entiére, on pose

neNs
o™ ons
9(z)(f) = Z anéz—iq - ézg_sf(z)

neNs
Pour v = (711,...,7s) € C?, Popérateur de translation f +— f(z+7)

peut se voir comme l'opérateur différentiel d’ordre infini exp ('yl B0 +...+
21

0
735) en raison de la formule de Taylor.

On note désormais z; = 5%, de sorte que le systéme précédent
devient, en posant Pj(X) = Y an;X",
0<n<N;
(8) Py(exp({13,2))(f) = 0, avec P;(0) # 0.
Soit g = (91, ..., 9p) un p-uplet de fonctions entiéres de type exponen-

tiel sur C*. On pose, pour z € C, ||g||(2) = (|g1(2)|> + ... + |gp(2)[?) /2.
Avec ces notations, on a le résultat suivant.

LEMME 6.1. — Pour qu’une fonction entiére h de type exponentiel
sur C*® appartienne a la racine de l'idéal engendré par les fonctions
g1,-..,9p dans 'espace des fonctions entiéres de type exponentiel, il faut

et il suffit qu’il existe un entier k € N et des constantes positives A et B
telles que 'on ait

[h(2)|* < Allgll(2) exp(BI|z|l) pour tout = € C*.
Démonstration. — C’est le corollaire 4, p. 566 de [Sko]. O

LEMME 6.2. — On pose g;(z) = Pj(exp((7;,2))) pourj =1,...,2s,
ol P;(0) # 0 et les y; € C® sont R-linéairement indépendants. Il existe
un nombre réel positif R et une constante positive C' tels que, pour tout
z € C*® vérifiant ||z|| > R, on ait

lgl(2) = (g1 ()1 + ... + lgas(2) )2 > C.
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Démonstration. — Nous allons raisonner par I’absurde. Si ce n’était
pas le cas, il en résulterait 'existence d’une suite z,, d’éléments de C?, telle
que ||zn|| tende vers l'infini et g;(2,) tende vers zéro pour tout j.

On note u; 1, ..., ujn; € C* les zéros de P; (pas forcément distincts),
ol Nj est le degré de P;. Soit D une constante positive, et A; le coefficient
du terme de plus haut degré de P;. L’inégalité | P;(exp((v;,z))| < D s’écrit

N;

1451 T I exp((v52) — wjk| < D.
k=1

N

On en déduit que, quitte & extraire une sous-suite de la suite z,,
il existe pour tout j une racine fixée u; de P; telle que exp((7;,2n)) =
u; + €5(2n), ol €;(2y) tend vers zéro si n tend vers 'infini. Fixons une
détermination du logarithme. Comme u; est non nul, on a, pour tout n
assez grand, (7;, zn) = logu; + p;(2n) + 2inw;(2,), avec p;(2,) de limite
nulle quand n tend vers linfini, et w;(2,) € Z pour tous n et j.

Soit k € {1,...,s}. Comme les y; forment une R-base de C?, il existe
des 0 € R tels que

2s
> 0ix7; = (0,...,0,1,0,...,0) € C°,
j=1

ou le 1 intervient & la k-iéme place. Posons 2z, = (2in,...,2sn). 1l en
résulte que

2s 2s 2s 2s
Zhm = D03 k(Vjs2n) = Y O k108 w5+ D 0;kp;(2n) +2im Y 0 5;(2n)-
j=1 j=1 j=1 j=1
2s
Par suite Ré(zxn) = Ré( > Ok loguj) + dk(2n), ot Px(2n) tend vers
j=1

zéro si n tend vers l'infini. Il en résulte que les parties réelles des 2y ,, sont
majorées en valeur absolue par une constante M; indépendante de n et
de k.

On fait le méme raisonnement, en exprimant 1’élément (0,...,0, —,
0,...,0), ot le —i est & la k-itme place, pour exprimer —iz,; il existe
donc des 07, € R tels que

Im(zk n) = Ré(—izk.n) = Ré (Z 07 log uj) + br.2(2n),
ik

avec encore la propriété que ¢ 2(z,) tend vers zéro si n tend vers I'infini.
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Par conséquent, il existe My telle que | Im(2k )| < M, pour tous k et
n. Il existe donc une constante M telle que ||z,|| < M pour tout n, ce qui
contredit le fait que ||2,|| tende vers l'infini et termine la démonstration du
lemme. ]

LEMME 6.3. — Sous les hypothéses du lemme 6.2, la variété analy-
tique

V ={z € C% Pj(exp((7;,2))) =0, j=1,...,2s}
est constituée d’un nombre fini de points.

Démonstration. — Si z € V, alors, pour tout j = 1,...,2s, on
a exp((v;,2)) = uj, o u; est Pun des zéros de P;. Il en résulte que
(vj,2) = logu; + 2imkj, ou k; € Z. Avec les notations de la preuve du
lemme 6.2, on a donc

2s 2s
Ré(zy) = Ré (Za-,k log u,-) et Im(z) = Ré (Z% log’uj).
j=1

j=1

Ceci montre que les (Ré(2x),Im(2x)) appartiennent & un ensemble

fini, de sorte que ’ensemble V' est bien fini. O
LEMME 6.4. — Soit V la variété analytique du lemme précédent.
Soient k € {1,...,2s} et P un polynéme & une variable, s’annulant sur

la projection de V sur la k-iéme composante de C*. Alors il existe un
entier M, tel que P(z;)M* appartienne & I'idéal engendré dans I’espace des
fonctions entiéres de type exponentiel par les g;(z) = P;(exp({v;, 2)))-

Démonstration. — On peut supposer que N; = deg P; est non nul
pour tout j, sinon il n’y a rien & démontrer.

Nous allons d’abord démontrer qu’il existe des constantes positives
h,C et D telles que, pour tout z € C° tel que ||z|| < D, on ait

2s 1/2

IG1I(2) > Cd(z, V)", ot on a noté |IGII(2) = (L 1g;(2)7) " et d(z, V) la
1

distance de z 4 V.

Posons N = maxNj, soit ( € V et montrons que [|G||(z) >
d(2, V)N*2 pour tout z € B((, R), ol R est assez petit.

Si cela était faux, il existerait une suite z, tendant vers (, telle que
I'on ait ||G||(zn) < d(2n, V)N *2. Notons qu’alors 2, # ¢ pour tout n.
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On a d(zx,V) = ||zn — (|| d&s que n est assez grand, puisque V
est constitué d’un nombre fini de points. Il en résulte que, pour tout
j=1,...,2s,0n a

|Pj(exp (s, 2))I < [z = CIIN*2.

Quitte & extraire une sous-suite de la suite z,,, cela entraine qu’il existe une
racine a; de P; telle que

1 . ,
|exP((¥j: 20)) = a1 < ||/l — ¢+,
J

ol A; est le coefficient du terme de plus haut degré de P;. En passant a la
limite quand n tend vers l'infini, il vient a; = exp((v;,¢)), d’ol1, en posant
kj = (N +1)/N; > 1,

i 1 ‘ A .
lexp((7j,2n — €)) — 1] < |ay] l|III/N’||Zn — (|INFDNG <z, - (||
j
pour n assez grand. Cela se traduit par exp((y;, 2, — () = 140|120 —(||%,
ou 7}, est un nombre complexe de module plus petit que 1. Pourvu que n
soit assez grand, on peut donc écrire (;, z, — ¢) = log(1 + n,||2n — ¢||¥7).

Posons m = inf{k;; j = 1,..., N;}. On utilise les 6, x et 6} introduits
dans le lemme 6.2, et on en déduit qu'’il existe une constante ¢ > 0 telle
que, pour tout n assez grand, on ait ||z, — (|| < ¢||zn —¢||™. Comme m > 1
et ||z, — || > 0, il en résulte que la suite ||z, — C|| ne tend pas vers zéro si
n tend vers 'infini, ce qui est contradictoire.

Il existe donc un nombre réel R > 0 et un entier h tels que, pour

tout ¢ € V et tout z € |J B(¢,R), on ait ||G]|(2) > d(z, V). Soit
Cev
D > R+ max{|¢|; ¢ € V}. Sur le complémentaire de la réunion pour

¢ € V des boules ouvertes B({, R) dans la boule fermée de centre 0 et
de rayon D, la fonction ||G||, continue et ne s’annulant pas, est minorée
par une constante positive c¢;. Soit C' une constante positive telle que
Cmax{d(z,V)*; z € B(0,D)} < ¢; et C < 1. On a alors ||G||(z) >
Cd(z, V)" pour tout z € B(0, D), ce qui démontre I’assertion.

Compte tenu du lemme 6.2, on peut supposer la constante C' choisie
de fagon que l'on ait ||G||(2) > C pour tout z € C* vérifiant ||z|| > D.

Soit maintenant z = (z1,...,2s) € C*, et considérons le polynéme P
comme un polynéme en la variable z, de sorte que P s’annule sur V. Le
polynoéme P possede donc pour tout ¢ € V au moins une racine qui est la
k-iéme composante de {. Soit 2 I’ensemble de ces nombres complexes (qui
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peut avoir a priori un cardinal inférieur & celui de V, deux éléments de V'
pouvant avoir méme projection). On a donc
IP(2)| = 1Q(ze)| T Iz — wl,
wEeN
ot Q est un polynéme, donc est borné en module sur B(0, D). Il en résulte
qu’il existe une constante C; positive telle que
|P(2)| < C H |21 — wl|
weN
pour tout z € B(0, D).

Mais il existe (o € V' de projection wy tel que ||z — (|| = d(2,V). On
a donc |z — wo| < d(z,V), et comme [] (2x —w) est majoré en module
wFwo
par une constante indépendante de z € B(0,D) et {; € V, il en résulte
Pexistence d’une constante positive Cs telle que |P(z)| < Cad(z,V) pour
tout z € B(0, D). D’aprés ce qui précede, il existe une constante positive
Cs telle que |P(2)|* < C3||G||(2) pour tout z € B(0, D).

Soit maintenant A une constante positive. Comme | P(2)| exp(—A||z||)
tend vers zéro si ||z|| tend vers linfini, et comme ||G||(z) > C pour
l|z]| > D, il existe une constante 7 telle que |P(2)|* < n||G||(z) exp(A||z||)
pour tout 2 tel que ||z|| > D.

Finalement, il existe une constante M telle que
|P(2)|" < M||GI|(2) exp(Al|2]])

pour tout z € C?, et une application du lemme 6.1 termine la. démonstra-
tion. ]

LEMME 6.5. — Soit f une fonction entiére de s variables complexes.
On suppose que f vérifie un systéme d’équations aux dérivées partielles

1o}
- = 0’
Qk (82k ) (f)
ol Qk, pour k =1,...,s, est un polynéme non nul en une variable.

Alors f est un polynéme exponentiel.

Démonstration. — On procede par récurrence sur l’entier s. Le
résultat est bien connu pour s = 1. Supposons-le acquis pour s — 1.
Posons f(z) = Y lwn(zs)z{“...z:i‘ll. Pour tout n € N°°! on a

neENs—

Qs(i)(wn(zs)) = 0. Il en résulte que, pour tout n € N*"! on
0z
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peut écrire wy(2s) = Y. ¢jenz’ exp(a;jzs), ol les indices j,l et les a; ap-
jll

partiennent & des ensembles finis, ne dépendant que du polynéme Q;,

et les cj¢n sont des constantes complexes. Il en résulte que f(z) =

ZZ Vje(z1,. .., 2s-1)2¢ exp(a;2s).
Js

Les fonctions z; — z¢exp(a;z;s) étant linéairement indépendantes sur
C, on peut exprimer les 1;, comme combinaisons linéaires de fonctions
de la forme f(z1,...,2s—1,m), ol les n sont des nombres complexes conve-
nablement choisis. Il en résulte que ce sont des fonctions entieres, et qu’elles
vérifient un systeme d’équations aux dérivées partielles analogue a celui
dont nous étions partis, mais en s — 1 variables. L’hypothése de récurrence
permet alors de terminer la démonstration. O

Nous passons maintenant & la démonstration du théoréme 1.4.

Supposons donc que f est solution du systéme P;(exp((7;,)))(f)=0.
Le lemme 6.3 montre que la variété V = {2€C?; Pj(exp((v;,2))) = 0,
j=1,...,2s} est un ensemble fini. Il existe donc pour tout k un polynéme
non nul en la k-iéme composante de z € C® qui s’annule sur V. Il résulte
du lemme 6.4 qu'il existe des fonctions entiéres de type exponentiel g; x(2)
et des polyndmes non nuls en une variable Q tels que

Qk(2x) =Y 5,k(2) Pi(exp({15, 2)))-

Jj=1

0
L’opérateur différentiel Q (6—) est la somme d’opérateurs différen-
2k

tiels d’ordre infini que I’on peut appliquer & la fonction entiére f et on

a Qk((’?izk)(f) = 0 pour tout £k = 1,...,s. Ainsi la fonction entiere f

est solution d’un systéme d’équations aux dérivées partielles & coefficients
constants.

Le lemme 6.5 montre alors que f est un polynome exponentiel, ce qui
termine la démonstration. a
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