EDOARDO BALLICO

A splitting theorem for the Kupka component of a foliation of $\mathbb{C}P^n$, $n \geq 6$. Addendum to a paper by O. Calvo-Andrade and N. Soares

<http://www.numdam.org/item?id=AIF_1995__45_4_1119_0>
A SPLITTING THEOREM FOR THE KUPKA COMPONENT OF A FOLIATION OF CP\(^n\), \(n \geq 6\).

ADDENDUM TO A PAPER BY O. CALVO-ANDRADE AND N. SOARES

by Edoardo BALLICO

A codimension one singular holomorphic foliation \(F\) of \(\mathbb{CP}^n\) is given by \(\omega \in H^0(\mathbb{CP}^n, \Omega(k))\) (for some \(k\)) with \(\omega \neq 0\), \(\omega\) not vanishing on a hypersurface. The Kupka subset \(K(F) := \{P \in \mathbb{CP}^n : \omega(P) = 0, d\omega(P) \neq 0\}\) of the singular set \(S(F) := \{P \in \mathbb{CP}^n : \omega(P) = 0\}\) of \(F\) has remarkable properties (e.g. if not empty it is a smooth submanifold of pure codimension 2 with strong stability properties with respect to deformations of \(F\)). For much more on this topic, see [GLM] and [CS]. Let \(K \neq \emptyset\) be a Kupka component of \(F\), i.e. ([CS]) a connected component of \(K(F)\). It was proved in [CL] that if \(K\) is a complete intersection, then \(F\) has a meromorphic first integral. Motivated by this result in [CS] it was conjectured and proved in some cases that every Kupka component is a complete intersection. Here we prove the following result.

Theorem. — Let \(F\) be a codimension 1 singular holomorphic foliation of \(\mathbb{CP}^n\), \(n \geq 6\), induced by \(\omega \in H^0(\mathbb{CP}^n, \Omega^1(k))\) and such that the codimension 2 component of the singular set of \(F\) consists of a single compact Kupka component \(K\) with \(\deg(K) \neq k^2/4\). Then \(K\) is a complete intersection.

Key words: Singular foliations – Codimension 1 foliations – Kupka component – Complete intersection – Unstable vector bundle – Rank 2 vector bundle – Splitting of a vector bundle – Meromorphic first integral.
The proof of this result uses in an essential way the results proven in [CS] and [GML]. We consider this paper as an addendum to [CS] and we invite the reader to turn to [GML] and [CS] for background, motivations, several results used here, and so on. For the results used on vector bundles and codimension 2 submanifolds of \mathbb{CP}^n, see [OSS], [FL] and [CS].

Assume that F is induced by $\omega \in H^0(\mathbb{CP}^n, \Omega^1(k))$. Let N_K be the normal bundle of K in \mathbb{CP}^n. By [CS], Corollary 3.5, N_K is the restriction $E|K$ to K of a rank 2 vector bundle E on \mathbb{CP}^n. K is a complete intersection if and only if E is the direct sum of two line bundles ([OSS]). If $n \geq 6$ every line bundle on K is the restriction of a line bundle on \mathbb{CP}^n (see [FL]). Hence, by a very nice result of Faltings ([F]) if $n \geq 6$ and N_K is the direct sum of two line bundles, K is a complete intersection. By [CS], Cor. 4.5 (2), we may assume $k > 0$. By [CS], Th. 3.4 (2) to prove our result we may distinguish two cases, according to the transversal type of K. First assume that the transversal type of K is given by $\eta = px dy - qy dy$ with p, q positive relatively prime integers. Look at [GML], Th. 2.3 and its proof at page 321 (in particular the two lines before eq. (2.6)) and use that K is simply connected if $n \geq 6$ ([FL], Cor. 6.3). The quoted result [GML], Th. 2.3, was the essential input for the proof of [CS], Th. 3.4; then [CS], Th. 3.4, and the calculations in [CS], §4, on the applications of the Baum-Bott formulas to K gave the proof of [CS], Cor. 4.5. By [GML], page 321, N_K is in this case the direct sum of two line bundles. Hence our theorem is proved in this case. Now assume that the transversal type of K is given by $\eta = px dy - qy dy$ with $p = q = 1$. By [CS], Th. 4.2, we have $\deg(K) = k^2/4$. Hence our theorem is proved even in this case.

The author was partially supported by MURST and GNSAGA of CNR (Italy).

BIBLIOGRAPHY

Manuscrit reçu le 6 mars 1995,
accepté le 7 avril 1995.

Edoardo BALLICO,
Dept. of Mathematics
University of Trento
38050 Povo (TN) (Italie).