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EXTENDING TAMM’S THEOREM

by L. van den DRIES & C. MILLER

Introduction.

The theorem of M. Tamm [T] referred to in the title of this paper can
be stated as follows:

Given a finitely subanalytic function f : U — R on an open set
U C R", there is a natural number N such that for all open U’ C U, if
f1U" isCN, then f | U’ is analytic.

(Here and throughout this paper, “analytic” means “real analytic”.)

“Finitely subanalytic” [D2] is the same as “globally subanalytic”
[KR], and is a better behaved notion than “subanalytic”. We give several
definitions of “finitely subanalytic” below. Here we just mention that
bounded subanalytic sets in R™ as well as their complements are finitely
subanalytic. (A map f: A — R™ with A C R™ is finitely subanalytic if its
graph is a finitely subanalytic subset of R™*7.)

In this paper we extend Tamm’s theorem simultaneously in two ways:

(1) We allow U and f to depend on parameters, with an N indepen-
dent of the parameters.
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(2) We allow f to be definable, not just in terms of addition, multi-
plication, and analytic functions on sets [—1,1]™ for m € N — this would
give us just the finitely subanalytic functions — but also in terms of the
power functions z — z" : (0,00) — R, which are not subanalytic at 0 for
irrational r.

In (2) above, “definable” is a certain technical notion arising from
logic; we introduce it without referring explicitly to logical concepts.

DEFINITION. — A structure S on R consists of a collection S,, of
subsets of R™, for each n € N, such that

(1) S, is a boolean algebra of subsets of R™, in particular R™ € S,,;

(2) S, contains the diagonals {(z1,...,2,) € R"™ : z; = z;} for
1<i<j<my

(3) f A€ S,, then A X R and R x A belong to Sp+1;

(4) if A € Spy1, then w(A) € S,, where m : R"*! — R" is the
projection on the first n coordinates.

We say that a set A C R™ belongs to S if A € S,,, and that a map
f: A — RF with A C R™ belongs to S if its graph I'(f) := {(z, f(z)) €
R™** : x € A} belongs to S. Instead of “A belongs to S” we also say “S
contains A”; (similarly with maps).

Given structures S = (S,) and &’ = (S},) on R we put S C &’
if S, C &), for all n € N; this defines a partial order on the set of all
structures on R. Given sets 4; C R™(®) (¢ in some index set I'), and functions
fi : Bj —» R with B; C R*() (j in some index set J), there is clearly a
smallest structure on R containing all sets A; and all functions f;; we call
this the structure on R generated by the A;’s and the f;’s. (A function
f:R% = {0} — R is identified with the corresponding real constant f(0).)
A set A C R is said to be definable in terms of the A;’s and the f;’s, or
to be definable in (R, (A;)icr, (fj)jes), if A belongs to the structure on R
generated by the A;’s and the f;’s; (similarly with maps). For example, by
Tarski-Seidenberg, a set X C R™ is definable in (R, +, -, (7)rcr) if and only
if X is semialgebraic.

These notions all make sense with R replaced by any set. However,
of special interest for analysis and topology are the “o-minimal” structures
on R, which are the simplest structures on R compatible with the ordering
of the real line.
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DEFINITION. — A structure S on R is o-minimal (“order-minimal”)
if

(S1) {(z,y): z <y} €S2, and {a} € S; for each a € R;

(S2) each set in S, is a finite union of intervals (a,b), —oo < a < b <
+00, and points {a}.

(We think of (S2) as a minimality requirement, since each structure on
R satisfying (S1) must contain at least all finite unions of intervals and
points.) If an o-minimal structure S is generated by sets A; C R™® (i in
some index set I) and functions f; : B; — R with B; C R*? (j in some
index set J), then we also say that (R, (4;)icr, (fj)jes) is o-minimal.

Each subset of R™ belonging to an o-minimal structure S on R has
only finitely many connected components, and each component also belongs
to S. The class of semialgebraic sets is an o-minimal structure on R, as is
the larger class of finitely subanalytic sets: B C R™ is finitely subanalytic
if and only if B = f(A) for some bounded semianalytic set A C R™ and
some semialgebraic map f : R™ — R™. (A map from a subset of R™ into
R™ is semialgebraic if its graph is a semialgebraic subset of R™*"; unlike
some authors, we do not require semialgebraic maps to be continuous.)

DEFINITION. — A structure on (R, +,-) is a structure on R contai-
ning the graphs of both addition and multiplication.

Let S be a structure on (R,+,-). Then the usual order relation <
necessarily belongs to S; the set {(x,y) € R? : z < y} is the projection of

{(x’y,z) GRB:y=x+z2},

and {(z,9) €R? 1z <y} = {(z,9) €R? : 2 <y} — {(z,9) € R? : z = y}.
Given a set X € S,, its closure and interior are also in S,,. Given a function
f : U — R belonging to S with U open in R", the set of points in U where
f is differentiable belongs to S, and if f is differentiable on U, then each
partial derivative also belongs to S. Throughout this paper, we use many
such basic facts (familiar to logicians); proofs are left as exercises.

An o-minimal structure on (R, +, -) shares many of the nice properties
of the class of semialgebraic sets; the sets in such a structure can be
triangulated by means of homeomorphisms in the structure, and Hardt’s
semialgebraic triviality theorem [H] extends to such o-minimal structures
on R. The theory of o-minimal structures is a wide-ranging generalization
of semialgebraic and subanalytic geometry; one can view the subject as a
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realization of Grothendieck’s idea of topologie modérée, (outlined in the
unpublished notes Esquisse d’un programme, 1984). The first papers on
o-minimality are [D1], [PS] and [KPS]; for an extensive and systematic
account, see [D3].

We now return to the subject of this paper.

Notation. — Given a subfield K of R, RX denotes the set R
equipped with

(1) addition and multiplication (functions on R2?),
(2) all analytic functions f : [-1,1]™ — R, for all m € N,

(3) the power functions z +— z" : (0,00) — R for all r € K.

Convention. — In this paper we say that f : A - B with A CR™
and B C R" is analytic if f is the restriction to A of an analytic map
g : U — R™ with U an open neighborhood of A in R™ and g(A4) C B.
We also say that such a map f is analytic at a point a € A if there is an
open set U C R™ with a € U C A such that f | U is analytic; (note then
that a € int(A)). We also work similarly with “analytic” replaced by “CP”,
1<p<oo

The sets definable in RX form an o-minimal structure on (R, +,-),
and some basic properties of this structure are established in [M2].

For K = Q the sets definable in R, are exactly the finitely subana-
lytic sets (see [DD], [D2]), and in fact the power functions z? for ¢ € Q are
superfluous here, since they are definable in terms of just multiplication.

We can now give a precise formulation of our extension of Tamm’s
theorem:

MAIN THEOREM. — Let f : A — R be definable in RE ; A C R™*+".
Then there exists N € N such that for all x € R™ and all open sets U C R™
with U C A, == {y € R" : (z,y) € A}, if f(z,-) is CN on U, then f(z,-)

is analyticon U.
(We let f(z,-) denote the function y — f(z,y): Az — R.)

COROLLARY. — Let A C R™ be definable in RX . Then Sing(A),
the set of singular points of A, is definable in RX .

(See §5 for a definition of Sing(A)).
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We cannot follow here Tamm’s original proof [T], nor the proof
by Bierstone and Milman [BM], since these depend on properties of
subanalytic sets not shared by all sets definable in RX if K # Q. Instead
we adapt (and simplify in some places) the proof of Tamm’s theorem given
by Kurdyka [K]. One important tool used in [K] is Pawtucki’s “Puiseux
expansion with parameters for subanalytic functions” from [P]. Much of the
technical work in this paper goes into establishing the Expansion Theorem
of §4, which for K = Q is a somewhat stronger version of Pawtucki’s result.

Here then is a brief outline of the contents of this paper. In §1
we review some basic properties of o-minimal structures needed for our
purpose. In §2, we discuss Gateaux differentiability and its relation to
analyticity and o-minimality. In §3, some results about RX are given. The
statement and proof of the aforementioned Expansion Theorem constitutes
84. Finally, in §5, we prove the Main Theorem and some corollaries.

1. o-minimal structures on R.

Throughout this section, S denotes some fixed, but arbitrary, o-
minimal structure on R. “Definable” means “belonging to S”.

1.1. MoNOTONICITY THEOREM. — Let f : R — R be definable.
Then there exist (extended) real numbers —oco = ap < a1 < ... <
any < an4+1 = +oo such that f | (an,an+1) is either constant, or strictly
monotone and continuous, forn =0,...,N.

(See [D1] for a proof.)

Remarks.

(1) The statement holds with “differentiable” instead of “continuous”
if S is an o-minimal structure on (R, +, -); (see [D1]). Consequently, the ring
of germs at +oo of all definable functions f : R — R is a Hardy field. The
converse is also true: a structure R on (R,+,-) containing all singletons
{r} for r € R is o-minimal if every function f : R — R belonging to R
is of constant sign (—1, 0 or 1) for all sufficiently large (depending on f)
positive real arguments; (see [DMM]).

(2) For every presently-known o-minimal structure on (R, +,-), the
statement holds true with “analytic” in place of “continuous”.
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Cells and cell decomposition.

We define the cells in R™ as certain kinds of definable subsets of R";
the definition is by induction on n:

(1) The cellsin R (= R!) are just the points {r} and the open intervals
(a,b), ~o0 < a < b< +oo;

(2) Let C CR™ be acell and let f, g : C' — R be definable continuous
functions such that f < g on C, then (f,9) :={(z,7) e CxR: f(z) <1 <
g(z)} is a cell in R™*1; also, given definable continuous f : C' — R on a cell
C in R", the graph I'(f) C C x R and the sets {(z,7) € C xR : 1 < f(z)},
{(z,r) e C xR : f(z) <r} and C x R are cells in R"*!.

(We also consider R® = {0} as a cell in R%; so (2) even holds for n = 0.)

The dimension of a cell C in R™, denoted dim(C), is defined by
induction on n:

(1) For n = 1, put dim(C) := 0 if C is a singleton, and put
dim(C) := 1 if C is an open interval.

(2) Let C be a cell in R**!. Then w(C) is a cell in R™, where
7 : R**1 — R is the projection on the first n coordinates. Put dim(C) :=
dim(7(C)) if C is of the form I'(f) for some definable continuous f : 7(C) —
R, and put dim(C) := 1 + dim(w(C)) otherwise.

(We also put dim(R?) := 0.)
Note. — Clearly, if C is a cell in R” and C is open, then dim(C) = n.

1.2. Given i = (i1,...,im) With 1 < 43 < -+ < iy, < n, define
m; : R® — R™ by m(21,...,Zn) := (Tiy, "+, i, ). It is easy to check that
if C is a cell in R™ of dimension m, then there is some i = (i1,...,%n) as
above such that m; maps C homeomorphically onto an open cell in R™.
Note also that 7; [ C is definable.

A decomposition of R™ is a special kind of partition of R™ into finitely
many cells. Definition is by induction on n:

(1) A decomposition of R! (= R) is a collection of intervals and points
of the form

{(-Ooyal)a (ala a'2)a L) (alm +OO), {al}, ) {(lk}},
with a; < ... < a real numbers. (For k = 0 this is just {(—o0,0)}.)

(2) A decomposition of R™*! is a finite partition of R**! into cells
A such that the set of projections 7(A) is a decomposition of R™, where
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7w : R"! — R™ is the projection on the first n coordinates. (Note that
different cells can have the same image under 7.)

In a similar manner, one can define C? cells and C? decompositions,
by requiring that the functions occurring in part (2) of the definition of cells
be CP, for p a positive integer or p = oo; similarly for analytic cells and
analytic decompositions. Each CP cell in R is a connected C? submanifold
of R™, CP diffeomorphic via some coordinate projection 7; [ C to an open
CP cell in R™, for some m < n; similarly with “CP” replaced by “analytic”.

Note. — Cells and decompositions are always relative to some
particular structure; (the structure S throughout this section).

The projection mC of a decomposition C of R™*" onto R™ is the
collection {n(C) : C € C}, where 7 : R™*" — R is the projection map onto
the first m coordinates. (Note that 7C is then a decomposition of R™.) A
decomposition of R™ is said to partition a set A C R™ if A is a union of
cells in the decomposition.

THEOREM. —  The structure S admits cell decomposition; i.e.,

(I,) given definable sets Aj,...,Ar C R™, there is a decomposition of
R™ into cells partitioning Ai,..., Ak,

(IL,) for every definable function f : A — R, A C R", there is a
decomposition of R™ into cells partitioning A such that each restriction
f1C:C — R is continuous for each cell C C A in the decomposition.

(See [PS] and [KPS].)

Remark. — If S is moreover a structure on (R, +, -), then the state-
ment holds with “C¥ cells” and “C™” in place of “cells” and “continuous”,
respectively, for every fixed positive integer N; i.e., S admits CN cell de-
composition. It is an open question at present as to whether or not every
o-minimal structure on (R, +,-) admits C* cell decomposition, or even
analytic cell decomposition.

Orders of growth of definable functions.

A structure R on R is exponential if the exponential function e*
belongs to R; R is polynomially bounded if for every function f : R — R
belonging to R, there exists some N € N such that ultimately |f(z)| < z/.
(Ultimately abbreviates “for all sufficiently large positive arguments”.) If
R is generated by sets A; C R™® (i in some index set I) and functions
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fj : Bj = R with B; C R"() (j in some index set J), then we also say
that (R, (A;)ier, (fj)jes) is exponential if R is exponential; similarly for
polynomially bounded.

1.3. THEOREM (Growth Dichotomy). — Let R be an o-minimal
structure on (R, +,-). Then either R is exponential, or R is polynomially
bounded. If R is polynomially bounded, then for every f : R — R
belonging to R, either f is ultimately identically equal to 0, or there exist
nonzero ¢ € R and a real power function x" belonging to R such that
f(z) =cz" + o(z") as ¢ — +o0.

(See [M1] for the proof.)

The first known example of an exponential o-minimal structure on
(R,+,-) is due to Wilkie [W], who established that the structure on R ge-
nerated by addition, multiplication, all real constants, and exponentiation
is o-minimal. The structure on R generated by addition, multiplication,
exponentiation and all analytic functions f : [-1,1]™ — R for all m € N, is
o-minimal and admits analytic cell decomposition; (see [DM] and [DMM)]).

Polynomially bounded o-minimal structures on (R, +,-).

We will be particularly concerned in this paper with the polynomially
bounded case. For the remainder of this section, we assume that S is a
polynomially bounded o-minimal structure on (R, +, ).

The following variant of a result from [M2] is crucial to later develop-
ments:

1.4. THEOREM (Piecewise Uniform Asymptotics). — Let f: A x
R — R be definable, A C R™. Then there exist ry,...,r¢ € R such that for
all z € A, either t — f(z,t) : R — R vanishes identically for all sufficiently
small (depending on x) positive t, or f(z,t) = ct™ + o(t™) as t — 0% for
somei € {1,...,£} and c =c(z) € R, ¢ # 0.

Remark. — A “definable” version of the Lojasiewicz inequality
follows from this fact; (see [M2]).

Let U be an open subset of R", a € U, and let f : U — R be given.
If f is CN at a and all partial derivatives of f of order less than or equal
to N vanish at a, then f is said to be N-flat at a. If f is N-flat at a for all
N € N then f is said to be flat at a.
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1.5. THEOREM (Uniform Bounds on Orders of Vanishing). — Let
f : A — R be definable, A C R™*". Then there exists N € N such that for
all (z,y) € A, ify € int(A;) and f(z,-) is N-flat at y, then f(z,z) =0 for
all z € A, sufficiently close to y.

(See [M3] for the proof.)

In the special case that m = 0 and A is open, we have that for all
y € A, if f is flat at y, then f vanishes identically in a neighborhood of y.
It follows easily then that the set of all definable C*° functions f : U — R,
for a fixed connected definable open set U C R", is an integral domain; we
denote it by C3f(U). Furthermore, C$?(U) is a quasianalytic class; i.e., if
f€CE(U) and f is flat at some zo € U, then f = 0.

The descending chain condition on zero sets.

Given f: A —» R®, A CR™, put Z(f) := {a € A: f(a) = 0}. Note
that if f is definable, then so is Z(f).

1.6. PROPOSITION. — Assume that S admits C* cell decomposi-
tion. Then given a family (f; : A — R);en of definable C* functions,
A C R", there exists M € N such that

Nz = 2(f)-

€N i<M

Proof. — To avoid trivialities, let us suppose that @ # Z(fo) # A.
By taking a C*° decomposition of R™ partitioning A, we may assume that
A is a C cell; in particular, A is connected. We proceed now by induction
on dim(A) and n.

The result is trivial if dim(A4) = 0. So suppose that dim(A) =d > 0,
and that the result holds for all lower values of d and n.

If A is nonopen, then A is C*° diffeomorphic via some coordinate
projection 7 = 7; [ A to an open cell 7(4) C R™ with m < n; (see 1.2).
By the inductive assumption, we have

Z(fien™) =[] Z(fion™")
ieN i<M
for some M € N; thus,

N z(f) =) 2(fi)

i€N i<M
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as desired.

Now suppose that A is open. Take a partition P of Z(fo) into finitely
many C* cells B; note that dim(B) < d, since otherwise fo would vanish
on a nonempty open subset of A, hence fo = 0 (by quasianalyticity). By
the inductive assumption, for each B € P there exists M (B) € N such that

Nz(f1B)= (| Z(f!B).

i€N i<M(B)
Hence,
Nz = 2(f),
ieN i<M
where M := max{M(B) : B € P}. m]
Remark. — The assumption that S is polynomially bounded and

admits C* cell decomposition may be removed if one assumes that A is
a definable analytic submanifold of R™ and that each f; is analytic; (see
Tougeron [To]).

2. Gateaux differentiability, analyticity and o-minimality.

In this section, we give a characterization of analyticity (at a point)
for real functions that is a slight variant of a result of Bochnak and Siciak
[BS].

First, we reformulate a result of Abhyankar and Moh on power series:

2.1. PROPOSITION. — Let F(Xy,...,X,) € R[Xq,...,X,] and
suppose that for all z € R™ the series F(z:1T,...,z,T) € R[T] is
convergent. Then F(X;,...,X,) is convergent.

Proof. — We proceed by induction on n; the case n = 1 is trivial.

Assume the result for n. Let F(X1,...,Xn+1) € R[X1,..., Xn+1], and sup-
pose that for all z1,...,Zn41 € R, the series F(21T,...,2,+1T) € R[T] is
convergent. Let 7 € R, and € R™. Then the series F(217,...,z,T,rz,T)
is convergent. By the inductive assumption, the series F(Xq,..., Xp,7X,)
is convergent. It follows then from [AM] that F(Xi,...,X,) is conver-
gent. O
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DEFINITION. — Let f : U — R be a function, U open inR", z € U.
Let k be a positive integer and suppose that for each y € R™, the (partial)
function t — f(z + ty) is k-times differentiable at t = 0. If the map

d* f(z + ty)

is given by a homogeneous polynomial in y of degree k, then f is k-times

Gateaux differentiable at z, or G* at x. If f is G* at z for all k > 0, then
f is G*™ at x.

For f and z as in the preceding definition, if f is C* at «, then f is
G* at x. The converse fails; indeed, f can be G* at a point z, and yet not
even be continuous at z. (For example, consider the characteristic function
of {(z,z?) : z > 0}, which is G* at (0,0).)

Notation. — For z € R™, ||z|| denotes the usual euclidean norm
of .

2.2. PROPOSITION. — Let U C R™ be open, let x € U. Then
f : U — R is analytic at = if and only if f is G*® at x and there exists
€ > 0 such that for all y € R™ with ||y|| < 1, the function t — f(x + ty) is
defined and analytic on (—¢,¢€).

Proof. — The forward implication is clear. For the other direction,
it suffices to show the result for U a neighborhood of 0, with £ = 0 and

f(0)=0.
Since f is G* at 0, for all k£ > 0 the function 6 : R™ — R defined by

d*f(t
) = T2 (0
is given by a homogeneous real polynomial 6x(Y3,...,Y,) of degree k. Put

F(Yy,...,Yn) =Y (1/kY6(Y1,...,Yn) €R[Y3,..., Vo];
k=1

(the “Taylor series” of f at 0).
Let y € R™, ||y|| < 1. Then, for the formal series F, we have

oo oo

FuT,...,ynT) = > (1/k)6k (1T, ..., yaT) = > _(1/k)6k(v)T* € RIT].
k=1 k=1

Now there exists € > 0 such that f(ty) is defined and

oo

Flty) =Y (1/k) 8k (y)t*

k=1
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for all |t| < e. Thus, F(y1T,...,y,T) is convergent. By the previous
proposition, F(Y1,...,Y,) is convergent, say on some open neighborhood
V C (—&,e)" of 0 € R™. Let F also denote the analytic function on V
thus obtained. Then for every line L C R™ through the origin, we have
fI1(VNL)y=F [ (VNL).Hence, f [ V = F [ V, and f is analytic
at 0. O

We will need the following fact; (the proof is left to the reader).

2.3. Let n € N. Then for all ¥ € N there exist points p(k,1),
...,p(k, u(k)) € R™ and linear functions ai,...,a,x) : R*® — R such
that for all z € R¥(F),

w(k)
Pi(z,Y):= Y a;(x)M;(Y) € R[Y]
j=1

is the unique homogeneous real polynomial P(Y) of degree k with
P(p(k,3)) = z; for i = 1,...,u(k), where p(k) is the dimension of the
vector space of homogeneous polynomials in Y := (Y3,...,Y;,) of degree k
over R and M;(Y),..., M) (Y) are the monomials of degree k in Y.

2.4. LEMMA. — Let S be a structure on (R, +,-), andlet f : A —» R
belong to S, A C R™*™, such that A, is open in R™ for all x € R™. Then
for all k > 0 there exists wg : A x R® — R belonging to S such that for all
(z,y) € A, f(x,-) is G* at y if and only if wi(z,y,2) = 0 for all z € R".

Proof. — For positive integers k define ¢ : A x R" — R as follows:
if (z,y) € Aand t — f(z,y+1tz) is k-times differentiable at 0 for all z € R",
then put

k
sr(ary,2) = HLEEEE) ),

otherwise, put ¢x(z,y, 2) := 1. Note that ¢; belongs to S.

For each k > 0, choose points p(k,1),...,p(k, u(k)) € R as in 2.3,
and define v : A x R®™ — R by

'Uk(a:vya Z) :=Pk(¢k(m,y’p(k’ 1))’ oo ,¢k(-’17, y’p(k, :u'(k)))a Z)a (Pk as in 23)
Define wy : A x R — R by wg := vx — ¢x. Then wy belongs to S, and

for all (z,y) € A, f(z,-) is G* at y if and only if wk(z,y,z) = 0 for all
z € R™. ]

2.5. PROPOSITION. — Keep all assumptions and notation as in the
preceding lemma and its proof. Assume in addition that






