PETER J. GRABNER

Block distribution in random strings

<http://www.numdam.org/item?id=AIF_1993__43_2_539_0>

NUMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
BLOCK-DISTRIBUTION IN RANDOM STRINGS

by Peter J. GRABNER

1. Introduction.

We investigate some properties of infinite sequences of independent random variables, which take the values 0 and 1 with probabilities p and q respectively (Bernoulli’s scheme). It is one of the basic results of probability theory that the limit relation

$$\lim_{N \to \infty} \frac{\# \{1 \leq n \leq N - k : x_n x_{n+1} \ldots x_{n+k} = a_1 \ldots a_k \}}{N} = \mu_k(A)$$

holds in probability for all blocks $A = a_1 \ldots a_k$ of a given constant length k ($\mu_k(A)$ is the k-fold product measure generated by $\mu(\{0\}) = p$ and $\mu(\{1\}) = q$). This result can also be naturally imbedded into ergodic theory: consider the infinite product space $X = \{0,1\}^\mathbb{N}$ equipped with the infinite product measure μ_∞ generated by μ. Then the shift operator S (Bernoulli shift) on X defined by $S(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$ is an ergodic transformation on X (cf. e.g. [Wa]) and the above relation is a consequence of Birkhoff’s ergodic theorem.

It is now natural to ask how fast (depending on N) k could grow such that this relation persists. In order to answer this question we introduce a
special notion of discrepancy (cf. [HI], [KN])

\begin{equation}
D^k_N(x_1, \ldots, x_N) = \max_{A \in \{0,1\}^k} \frac{1}{\sqrt{p^k \mu_k(A)}} \left| \# \{1 \leq n \leq N-k : x_nx_{n+1} \ldots x_{n+k} = a_1 \ldots a_k \} - \mu_k(A) \right|.
\end{equation}

The following calculations will show that this is a proper measure for the distribution behaviour of the sequence \(x_1, x_2, \ldots \). Note that this definition agrees with the definition in [FKT] for \(p = q = \frac{1}{2} \).

Definition. A sequence \(x_1, x_2, \ldots \) is called \(k(N) \)-distributed with respect to \(\mu \) if

\[
\lim_{N \to \infty} D^k_N(x_1, \ldots, x_N) = 0.
\]

Our Theorem will show under which conditions almost all sequences are \(k(N) \)-distributed. Without loss of generality assume that \(p \leq q \). The notation \(\log_p n \) is the logarithm to base \(\frac{1}{p} \) : \(\log_p n = \log \frac{1}{p} n \).

Theorem. Let \(k(N) \) be a non-decreasing sequence of positive integers. Then the following 0-1-law holds

\[
\mu_\infty \left(\lim_{N \to \infty} D^k_N(x_1, \ldots, x_N) = 0 \right) = \begin{cases} 1 & \text{if } \log_p n - \log_p n - k(n) \to \infty \\ 0 & \text{otherwise.} \end{cases}
\]

It clearly follows from Kolmogoroff’s 0-1-law or the fact that the set

\[
\left\{ \lim_{N \to \infty} D^k_N(x_1, \ldots, x_N) = 0 \right\}
\]

is invariant under the (ergodic) shift \(S \), that the only possible values for the above probability are 0 and 1. The proof of this theorem will use bivariate correlation polynomials, which are a generalization of Guibas’ and Odlyzko’s correlation polynomials in one variable (cf. [GO]). Using these polynomials we are able to compute the probability generating functions of the events we are interested in.

2. Generating Functions.

Throughout this section let \(A = a_1a_2 \ldots a_k \) be a 0-1-string of length \(k \). We are interested in the cardinalities of the following subsets of the set
BLOCK-DISTRIBUTION IN RANDOM STRINGS

$S_{r,s}$ of strings containing r digits 0 and s digits 1:

\[(2.1)\]

\[f_A(r,s) = \# \{ B \in S_{r,s} : B \text{ contains } A \text{ only at the end} \} \]

\[g_A(r,s) = \# \{ B \in S_{r,s} : B \text{ contains } A \text{ only at the beginning and at the end} \} \]

\[h_A(r,s) = \# \{ B \in S_{r,s} : B \text{ does not contain } A \} \]

In order to compute the generating functions of these quantities we introduce the bivariate autocorrelation polynomial $[AA](z, w)$:

\[
[z^r w^s][AA](z, w) = \begin{cases}
1 & \text{if } a_1 a_2 \ldots a_k = a_{r+s+1} a_{r+s+2} \ldots a_k \text{ and the string } a_1 a_2 \ldots a_{r+s} \text{ contains } r \text{ digits 0 and } s \text{ digits 1} \\
0 & \text{otherwise,}
\end{cases}
\]

where $[z^r w^s]P(z, w)$ as usual denotes the coefficient of $z^r w^s$ in $P(z, w)$. We are now ready to formulate

PROPOSITION 1. — The generating functions of the combinatorial expressions (2.1) are given by

\[
F_A(z, w) = \sum_{r,s=0}^{\infty} f_A(r,s) z^r w^s \frac{z^{0(A)} w^{1(A)}}{z^{0(A)} w^{1(A)} + (1 - z - w)[AA](z, w)}
\]

\[
G_A(z, w) = \frac{(z + w - 1) z^{0(A)} w^{1(A)}}{z^{0(A)} w^{1(A)} + (1 - z - w)[AA](z, w)}
\]

\[
H_A(z, w) = \frac{[AA](z, w)}{z^{0(A)} w^{1(A)} + (1 - z - w)[AA](z, w)}
\]

where $0(A)$ and $1(A)$ denote the number of 0's and 1's in A respectively.

The proof of this proposition is analogous to the proof of the corresponding results for ordinary generating functions (cf. [GO]).

Remark 1. — Obviously these results can be generalized to any finite alphabet.

As in [FKT] we use these functions to compute the probability generating function (p.g.f.) of all strings containing the substring A exactly r times:

\[
\Phi_A^{(r)}(z) = \frac{z^{-kr}}{\mu_k(A)} F_A(pz, qz)^2 G_A(pz, qz)^{r-1} \text{ for } r \geq 1
\]

\[
\Phi_A^{(0)}(z) = H_A(pz, qz).
\]

Inserting the results of Proposition 1 and setting

\[(2.2) \quad P(z) = \frac{1}{\mu_k(A)} [AA](pz, qz)\]
yields
\[
\Phi_A^{(r)}(z) = \frac{z^k}{\mu_k(A)} \frac{\left((1-z)(P(z) - \frac{1}{\mu_k(A)}) + z^k \right)^{r-1}}{\left((1-z)P(z) + z^k \right)^{r+1}}
\]
\[
\Phi_A^{(0)}(z) = \frac{P(z)}{(1-z)P(z) + z^k}.
\]

3. Proof of the Theorem.

We split the proof into two parts; first we show that almost all sequences are \(k(N)\) distributed if \(l_p n - l_p l_p n - k(n) \to \infty\). Using our p.g.f. results we can write

\[
(3.1) \quad \mu_\infty (\#\{0 \leq n \leq N - k : x_{n+1} \ldots x_{n+k} = a_1 \ldots a_k \} = r) = p_A^{(r)}(N) = \left[z^N \right] \Phi_A^{(r)}(z) = \frac{1}{2\pi i} \int_C \Phi_A^{(r)}(z) \frac{dz}{z^{N+1}}.
\]

In order to be able to estimate the integral we need information on the the zeros of the polynomial \((1-z)P(z) + z^k\).

Lemma 1. — The zero of smallest modulus \(z_0\) of \((1-z)P(z) + z^k\) is real and positive and satisfies the estimate

\[
z_0 > 1 + C\mu_k(A)
\]

for a positive constant \(C\) only depending on \(p\).

Proof. — As \(F_A(pz, qz)\) is a p.g.f. and \((1-z)P(z) + z^k\) is the denominator of this rational function the zero of smallest modulus has to be positive and \(\geq 1\). Investigation of the derivative shows the existence of the constant \(C\).

Let now

\[
k(n) = l_p n - l_p l_p n - l_p \psi(n),
\]

where \(\psi(n) \to \infty\). We need estimates for the probability that the number of occurrences \(Z_N(A)\) of a block \(A\) deviates too far from the mean value:

\[
(3.2) \quad L_N(\delta_A) = \mu_\infty (Z_N(A) < N\mu_k(A)(1 - \delta_A)) \quad \text{and} \quad U_N(\delta_A) = \mu_\infty (Z_N(A) > N\mu_k(A)(1 + \delta_A)).
\]
These probabilities are sums of the \(p^{(r)}_A(N) \) defined in (3.1):

\[
L_N(\delta_A) = \sum_{r < N\mu_k(A)(1 - \delta_A)} p^{(r)}_A(N) \quad \text{and} \quad U_N(\delta_A) = \sum_{r > N\mu_k(A)(1 + \delta_A)} p^{(r)}_A(N).
\]

(3.3)

We will use the integral representation (3.1) to estimate these quantities.

For convenience we now introduce some notations

\[
Q(z) = (1 - z)P(z) + z^k
\]

(3.4)

\[
a(z) = \frac{z^k}{Q(z)^2}, \quad b(z) = 1 + \frac{z - 1}{\mu_k(A)Q(z)}.
\]

This gives

\[
\Phi^{(r)}_A(z) = \frac{1}{\mu_k(A)}a(z)b(z)^{r-1}
\]

for \(r \geq 1 \). Observe further that

\[
a(1 \pm \epsilon) = 1 + O \left(\frac{\epsilon}{\mu_k(A)} \right)
\]

(3.5)

\[
b(1 \pm \epsilon) = 1 \pm \frac{\epsilon}{\mu_k(A)} + O \left(\frac{\epsilon^2}{\mu_k(A)^2} \right)
\]

\[
b^j(1 \pm \epsilon) = \exp \left(\pm \frac{j\epsilon}{\mu_k(A)} + O \left(\frac{\epsilon^2 j}{\mu_k(A)^2} \right) \right)
\]

\[
(1 \pm \epsilon)^{-N} = \exp \left(\mp n\epsilon + O(n\epsilon^2) \right).
\]

We can now write

\[
U_N(\delta_A) = \frac{1}{2\pi i} \oint_C \frac{1}{\mu_k(A)}a(z)b^j(z)\frac{dz}{1 - b(z)z^{N+1}},
\]

where \(j = [N\mu_k(A)(1 + \delta_A)] \). As all the power series involved have positive coefficients and because of Lemma 1 we can estimate

\[
U_N(\delta_A) \leq \frac{1}{\mu_k(A)}a(1 - \epsilon)\frac{b^j(1 - \epsilon)}{1 - b(1 - \epsilon)}(1 - \epsilon)^{-N}
\]

for every positive \(\epsilon < C\mu_k(A) \). Using (3.5) yields

\[
U_N(\delta_A) \leq \frac{1 + O \left(\frac{\epsilon}{\mu_k(A)} \right)}{1 + O \left(\frac{\epsilon}{\mu_k(A)} \right)}\exp \left(\left(N - \frac{j}{\mu_k(A)} \right)\epsilon + O \left(\frac{\epsilon^2 j}{\mu_k(A)^2} \right) + O(N\epsilon^2) \right).
\]

Inserting \(\epsilon = \left(\frac{\mu_k(A)}{N} \right)^{\frac{1}{2}} \) into the above inequality yields

\[
U_N(\delta_A) \leq \exp(-\delta_A(N\mu_k(A) \log N)^{\frac{1}{2}} + C_1 \log N).
\]

(3.6)
In the same way we treat the lower tail. Let now \(j = [N\mu_k(A)(1 - \delta_A)] \).

Thus we obtain
\[
L_N(\delta_A) = \frac{1}{2\pi i} \oint_C \left(\frac{P(z)}{Q(z)} + \frac{a(z)}{\mu_k(A)} \frac{b^j(z) - 1}{b(z) - 1} \right) \frac{dz}{z^{N+1}}.
\]

We can now estimate
\[
L_N(\delta_A) \leq \frac{P(1 + \varepsilon)}{Q(1 + \varepsilon)}(1 + \varepsilon)^{-N} + \frac{1}{\mu_k(A)} j b^j(1 + \varepsilon)a(1 + \varepsilon)(1 + \varepsilon)^{-N}.
\]

Using the same value for \(\varepsilon \) as above yields

\[
(3.7) \quad L_N(\delta_A) \leq \exp \left(-\delta_A (N\mu_k(A) \log N)^\frac{1}{2} + C_2 \log N \right).
\]

Combining this with (3.6) yields

\[
(3.8) \quad \mu_\infty \left(\frac{Z_N(A)}{N} - \mu_k(A) \right) > \delta_A \mu_k(A) \leq \exp(-\delta_A (N\mu_k(A) \log N)^\frac{1}{2} + C_3 \log N).
\]

Let now \(\delta_A = \delta \left(\frac{p^k}{\mu_k(A)} \right)^\frac{1}{2} \) and observe that \(p^k = \frac{\log N}{N} - \psi(N) \).

Therefore we have

\[
(3.9) \quad \mu_\infty(D_N^{k(N)}(\omega) > \delta) \leq 2^{k(N)} \exp(-\delta \psi(N)^\frac{1}{2} \log N + C_3 \log N)
\]

\[
\leq \exp(-\delta \psi(N)^\frac{1}{2} \log N + C' \log N).
\]

We now choose \(\delta \) as a function of \(N \)
\[
\delta = \psi(N)^{-\frac{1}{2}}
\]

and observe that
\[
\sum_{N=1}^{\infty} \exp(-\psi(N)^{\frac{1}{2}} \log N + C' \log N) < \infty.
\]

Thus by the Borel-Cantelli lemma (cf. [Fe]), we obtain the first part of our Theorem.

We now have to prove that almost no series are \(k(N) \)-distributed if \(\log n - \log \log n - k(n) \neq \infty \) (we confine ourselves to the case \(p < \frac{1}{2} \), because the case \(p = \frac{1}{2} \) has been treated by Grill [Gr]). We introduce a set \(A \) of strings of length \(k \), which have only trivial autocorrelation and do not overlap each other:

\[
A = \left\{ \begin{array}{c}
0 \ldots 0 \\
\begin{array}{c}
A \\
l+d(k)-2
\end{array} \\
1 \ldots 1
\end{array} \right\}
\]
where \(l = \left\{ \frac{k}{3} \right\} + 1 \) and \(d(k) = k \mod 3 \). We need the p.g.f. \(\varphi(z) \) of all strings not containing an element of \(\mathcal{A} \). This function satisfies the equations

\[
\varphi(z) + \varphi_A(z) + \ldots + \varphi_{A_m}(z) = z\varphi(z) + 1
\]

\[
\varphi_A(z) = z^k \mu_k(A) \varphi(z)
\]

\[
\varphi_{A_m}(z) = z^k \mu_k(A_m) \varphi(z),
\]

where \(A_1, \ldots, A_m \) are the elements of \(\mathcal{A} \) and \(\phi_{A_l}(z)(l = 1, \ldots, m) \) is the p.g.f. of the blocks ending with \(A_l \) but containing no further occurrence of any element of \(\mathcal{A} \). Solving these equations yields

\[
(3.10) \quad \varphi(z) = \frac{1}{1 - z + \mu_k(\mathcal{A})z^k}.
\]

Note that the simplicity of these equations comes from the trivial overlap structure of the elements of \(\mathcal{A} \).

Because of this simple overlap structure it is easy to see that

\[
(3.11) \quad \phi_{j_1 \ldots j_m}(z) = \frac{(j_1 + \ldots + j_m)!}{j_1! \cdots j_m!} \mu_k(A_1)^{j_1} \cdots \mu_k(A_m)^{j_m} z^{j_1 + \ldots + j_m + 1}
\]

is the p.g.f. of all blocks containing \(A_l \) exactly \(j_l \) times \((l = 1, \ldots, m) \). As in the first part of the proof we use

\[
M_N(\delta) = \mu_\infty \left(|Z_N(A_l) - N\mu_k(A_l)| \leq N\mu_k(A_l)\delta_{A_l}, l = 1, \ldots, m \right)
\]

\[
(3.12) \quad = \frac{1}{2\pi i} \int_C \sum_{l=1, \ldots, m} \Phi_{j_1 \ldots j_m}(z) \frac{dz}{z^{N+1}},
\]

where \(\delta_{A_l} = \delta \left(\frac{p^k}{\mu_k(A_l)} \right) \).

We want to treat (3.12) exactly like the corresponding expressions in the first part of the proof. For this purpose we need information on the zeros of the polynomial \(1 - z + \mu_k(\mathcal{A})z^k \).

LEMMA 2. — The zero of smallest modulus \(z_0 \) of \(1 - z + \mu_k(\mathcal{A})z^k \) is real and satisfies

\[
z_0 > 1 + \mu_k(\mathcal{A}).
\]

Proof. — The proof of the first statement is as in the proof of Lemma 1. For the proof of the inequality insert \(z = 1 + \mu_k(\mathcal{A}) \) into the polynomial.
Observe now that
\[
\frac{1}{2\pi i} \oint_C \varphi(z)^{J+1} \frac{dz}{z^{N-kJ+1}} \leq \varphi(1+\varepsilon)^{J+1}(1+\varepsilon)^{kJ-N}
\]
for \(\varepsilon \leq \mu_k(A)\). Inserting \(\varepsilon = \mu_k(A) - \frac{J}{N}\) and performing similar calculations as in the first part of the proof yields
\begin{equation}
(3.13)
\end{equation}
\[
\frac{1}{2\pi i} \oint_C \varphi(z)^{J+1} \frac{dz}{z^{N-kJ+1}}
\leq \frac{1}{\mu_k(A)^{J+1}} \exp \left(-\frac{(J - N\mu_k(A))^2}{2N\mu_k(A)} + O(k\mu_k(A)^2N) \right).
\]

Let now \(n = N\mu_k(A)\), \(J = j_1 + \cdots + j_m\) and \(p_l = \frac{\mu_k(A_l)}{\mu_k(A)}\) and insert (3.13) into (3.12) to obtain
\begin{equation}
(3.14)
M_N(\delta)
\end{equation}
\[
\leq \frac{1}{\mu_k(A)} \sum_{|j_1 - np_1| \leq np_1 \delta A_l} \frac{J!}{j_1! \cdots j_m!} \prod_{l=1}^{m} p_l^{j_l} \exp \left(-\frac{(J - n)^2}{2n} + O(k\mu_k(A)n) \right),
\]
where \(\sum_{l=1}^{m} p_l = 1\). Thus we have arrived at an expression that we can treat by the normal approximation of the multinomial distribution.

Assume that \(N\) runs through a subsequence of \(\mathbb{N}\) such that
\[
lp N - \lp lp N - k(N) \to \lim\sup_{N \to \infty} (lp N - \lp lp N - k(N)) = \lp C < \infty.
\]
It will suffice to prove our theorem for the case that \(\lim\sup_{N \to \infty} (lp N - \lp N - k(N)) > -\infty\), such that \(0 < C < \infty\). Observe now that \(N\mu_k(A_l)\delta_{A_l} = \delta \sqrt{C N \mu_k(A_l)} \lp N\) and use Stirling's formula
\[
\left(\frac{n}{e}\right)^n \sqrt{2\pi n} \leq n! \leq \frac{11}{10} \left(\frac{n}{e}\right)^n \sqrt{2\pi n}
\]
to obtain (3.15)

$$M_N(\delta) \leq \frac{11}{10} \frac{\exp(O(k\mu_k(A)n))}{\mu_k(A)\sqrt{2\pi}^{m-1}} \frac{\sqrt{J}}{\sqrt{j_1 \cdots j_m}} \sum_{|j_i-np_i| \leq \delta \sqrt{CN\mu_k(A)}} \prod_{l=1}^{m} p_l^{|j_i|} \exp \left(-\frac{(J-n)^2}{2n} \right)$$

$$= \frac{11}{10} \frac{n^{m-1} \mu_k(A)(2\pi)^{m-1}}{\sqrt{1+\eta}} \frac{\sqrt{1+\eta}}{\sqrt{(1+x_1) \cdots (1+x_m)}} \exp \left(-\frac{n}{2} \sum_{i=1}^{m} p_i x_i^2 + O(n\eta^3) + O \left(n \sum_{i=1}^{m} p_i x_i^3 \right) \right),$$

where $j_i = np_i(1+x_i)$ and $J = n(1+\eta)$. The terms in the last exponential come from $(1+x)^{1+x} = \exp \left(x + \frac{x^2}{2} + O(x^3) \right)$ for $x \to 0$ and the observation that $j_1 + \cdots + j_m = J$ transforms to $\sum p_i x_i = \eta$. In the following we will use $p < \frac{1}{2}$ which yields $\delta_{A_i} \to 0$ for our choice of A (in the case $p = \frac{1}{2}$ we have $\delta_{A_i} = \delta$ and the following arguments cannot be used).

Inserting the definition of δ_{A_i} yields the estimate (3.16)

$$\left| n \sum_{l=1}^{m} p_l x_i^3 \right| \leq \frac{(\log N)^{\frac{3}{2}}}{\sqrt{n}} \sum_{l=1}^{m} \frac{1}{\sqrt{p_l}}$$

$$= O(N^{-\frac{1}{2}+\frac{\log q}{\log p} + \frac{1}{3} \log \frac{1}{\sqrt{p}} + \frac{1}{3} \log \frac{1}{\sqrt{q}}}) \left(\log N \right)^{\frac{3}{2} - \frac{1}{3} \log q - \frac{1}{3} \log \frac{1}{\sqrt{p}} + \frac{1}{3} \log \frac{1}{\sqrt{q}} \right)$$

and a similar estimate holds for nr_j. Using an exponential estimate yields

$$\frac{\sqrt{1+\eta}}{\sqrt{(1+x_1) \cdots (1+x_m)}}$$

$$= \exp(O(N^{-\frac{1}{2}+\frac{1}{3} \log \frac{1}{\sqrt{p}} + \frac{1}{3} \log \frac{1}{\sqrt{q}}}) \left(\log N \right)^{\frac{3}{2} - \frac{1}{3} \log q - \frac{1}{3} \log \frac{1}{\sqrt{p}} + \frac{1}{3} \log \frac{1}{\sqrt{q}} \right)).$$

Inserting these inequalities into (3.15) and setting $\alpha = \frac{1}{6} \log q + \frac{1}{3} \log \left(\frac{1}{\sqrt{p}} + \frac{1}{\sqrt{q}} \right)$ yields

$$M_N(\delta) \leq \exp(O(N^{-\frac{1}{2}+\alpha} \left(\log N \right)^{\frac{3}{2} - \alpha})) n^{m+1} \sqrt{p_1 \cdots p_m}$$

$$\times \prod_{l=1}^{m} p_l(2\pi)^{m-1} \sum_{|x_i| \leq \delta_{A_i}} \exp \left(-\frac{n}{2} \sum_{i=1}^{m} p_i x_i^2 \right) \left(\frac{1}{np_1} \cdots \frac{1}{np_m} \right).$$
The sum in the last line can be interpreted as a lower Riemann sum for the integral
\[
\int_{\|x_l\| \leq \delta_{A_l}} \exp \left(-\frac{n}{2} \sum_{l=1}^{m} p_l x_l^2 \right) dx_1 \cdots dx_m
\]
using the lattice
\[\left\{ (x_1, \ldots, x_m) \mid x_l = \frac{j_l}{n p_l} - 1, \ |x_l| \leq \delta_{A_l}, \ l = 1, \ldots, m \right\}.
\]
Thus we obtain
(3.17)
\[M_N(\delta) \leq \exp(O(N^{-\frac{1}{2} + \alpha} (\log N)^{\frac{\alpha}{2} - \alpha}) + O(\log N))(\Phi(\sqrt{C_{lp} N}))^m,
\]
where
\[\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-x}^{x} e^{-\frac{t^2}{2}} dt \sim 1 - \sqrt{\frac{2}{\pi}} x e^{-\frac{x^2}{2}}
\]
for \(x \to \infty\). Therefore we can estimate
(3.18)
\[M_N(\delta) \leq \exp \left(-\sqrt{\frac{2}{\pi}} \delta^{C_{lp} N} e^{\frac{1}{2} \delta^2 C_{lp} N} + O(N^{-\frac{1}{2} + \alpha} (\log N)^{\frac{\alpha}{2} - \alpha}) + O(\log N) \right).
\]
Observe now
\[m \asymp \left(\frac{N}{\log N} \right)^{\frac{1}{2} \text{lp}^2}
\]
(3.19)
\[\mu_k(A) \asymp \left(\frac{\log N}{N} \right)^{-\frac{1}{3} \text{lp} \text{pq}}
\]
\[n \asymp N^{1 + \frac{1}{3} \text{lp} \text{pq} (\log N)^{-\frac{1}{3} \text{lp} \text{pq}}.
\]
Inserting these estimates into (3.18) yields
\[M_N(\delta) \leq \exp \left(-D \frac{N^{\frac{1}{3} \text{lp}^2 - \frac{1}{2} \delta^2 C_{lp} e}}{\delta (\log N)^{\frac{1}{2} + \frac{1}{3} \text{lp}^2} + O(N^{-\frac{1}{2} + \alpha} (\log N)^{\frac{\alpha}{2} - \alpha}) + O(\log N) \right),
\]
where \(D > 0\) is a constant implied by (3.19). The right hand side tends to 0 for sufficiently small \(\delta > 0\), because \(\frac{1}{3} \text{lp}^2 > -\frac{1}{3} + \alpha\) holds for \(p < \frac{1}{2}\).

Note that
\[\mu_\infty(D_N^k(N)(\omega) < \delta) \leq M_N(\delta).
\]
Thus the proof is complete.
Remark 2. — Modifying (1.1) one can also investigate discrepancies
\[D_{N}^{k,\phi}(\omega) \]
\[= \max_{A \in \{0,1\}^k} \sqrt{\frac{\phi(k)}{\mu_k(A)}} \left| \frac{\# \{ 1 \leq n \leq N - k : x_n x_{n+1} \ldots x_{n+k} = A \}}{N} - \mu_k(A) \right|, \]
where \(\phi \) is a monotonically increasing function. Then the same calculations as above yield
\[\mu_\infty \left(\lim_{N \to \infty} D_{N}^{k(N),\phi}(\omega) = 0 \right) = \begin{cases} 1 & \text{if } \lim_{N \to \infty} \frac{N\phi(k(N))}{\log N} = \infty \\ 0 & \text{otherwise}. \end{cases} \]

This answers a question posed by Flajolet, Kirschenhofer and Tichy [FKT], Remark 2.

BIBLIOGRAPHY

