P. Hellekalek
Gerhard Larcher
On functions with bounded remainder

<http://www.numdam.org/item?id=AIF_1989__39_1_17_0>
ON FUNCTIONS WITH BOUNDED REMAINDER

by P. HELLEKALEK & G. LARCHER

0. Introduction.

Let λ denote normalized Haar measure on the one-dimensional torus \mathbb{R}/\mathbb{Z}. The following two classes of λ-preserving measurable transformations on \mathbb{R}/\mathbb{Z} are important in ergodic theory as well as in the theory of uniform distribution modulo one.

Let α be an irrational number and $T : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, $Tx := \{x + \alpha\}$, $\{\cdot\}$ the fractional part. T is called an "irrational rotation" on \mathbb{R}/\mathbb{Z}.

Let $q \geq 2$ be an integer and $T : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, $Tx := x - (1 - q^{-k}) + q^{-(k+1)}$, whenever $x \in [1 - q^{-k}, 1 - q^{-(k+1)}]$, $k = 0, 1, \ldots$. T is called a "q-adic von Neumann-Kakutani adding machine transformation" on \mathbb{R}/\mathbb{Z}. In the following, T will be called a "q-adic transformation".

Let $\varphi : [0, 1] \to \mathbb{R}$ be a Riemann-integrable function with $\int_0^1 \varphi(t) \, dt = 0$ and let T be either an irrational rotation or a q-adic transformation on \mathbb{R}/\mathbb{Z}. Define

$$\varphi_n(x) := \sum_{k=0}^{n-1} \varphi(T^k x),$$

where $x \in \mathbb{R}/\mathbb{Z}$ and $n \in \mathbb{N}$ (we shall always identify \mathbb{R}/\mathbb{Z} with $[0, 1]$).

Key-words : Skew products – Adding machine transformation – Ergodicity.
A.M.S. Classification : 28D05, 11K38.
The following two questions are of importance in ergodic theory – for the study of skew products – as well as for the study of irregularities in the distribution of sequences in \(\mathbb{R}/\mathbb{Z}\):

1. Under which conditions (on \(\varphi\) and \(x\)) one has \(\sup_n |\varphi_n(x)| < +\infty\)?

2. What can be said about limit points of \((\varphi_n(x))_{n\geq 1}\)?

The classical example. — Let \(\varphi(x) = 1_{[0,\beta]}(x) - \beta\), \(0 < \beta \leq 1\).

In this now “classical” example, the first question leads to the study of irregularities in the distribution of the sequence \((T^k x)_{k\geq 0}\), \(\varphi_n(x)\) being the so-called discrepancy function. For \(x = 0\) one gets well-known sequences: in the first case \(\{k\alpha\}_{k\geq 0}\), in the second case the Van-der-Corput-sequence to the base \(q\).

For this example, the first question has been solved completely by elementary and by ergodic methods (for the first type of \(T\) see Kesten [8] and Petersen [11], for the second type Faure [2] and Hellekalek [4]). The numbers \(\beta\) with \(\sup_n |\varphi_n(0)| < +\infty\), respectively \(\sup_n |\varphi_n(x)| < +\infty\), are all known.

The second question is closely related to ergodicity of the skew product (cylinder flow) \(T_\varphi : T_\varphi(x,y) = (Tx, y + \varphi(x))\) on the cylinder \(\mathbb{R}/\mathbb{Z} \times \mathbb{R}\) (see Oren [10] and Hellekalek [5]). In exactly this context Oren has solved the problem.

In this paper we shall be interested in question 1,2 and ergodicity of the cylinder flow \(T_\varphi\) on \(\mathbb{R}/\mathbb{Z} \times \mathbb{R}\) in the case of a \(q\)-adic transformation \(T\) and \(\varphi \in C^1([0,1])\).

1. Results.

Throughout this paper we shall assume \(q \geq 2\) to be an integer and \(T\) to be a \(q\)-adic transformation on \(\mathbb{R}/\mathbb{Z}\).

Theorem 1. — Let \(\varphi \in C^1([0,1])\), let \(\int_0^1 \varphi(t)\, dt = 0\) and \(\varphi(1) \neq \varphi(0)\). Then every number \(c\) such that \(|c| \leq |\varphi(1) - \varphi(0)|/2\) is a limit point of the sequence \((\varphi_{n^k}(x))_{k\geq 0}\) for almost all \(x \in \mathbb{R}/\mathbb{Z}\), in particular for any \(x\) normal to base \(q\).

Theorem 2. — Let \(\varphi \in C^1([0,1])\), let \(\int_0^1 \varphi(t)\, dt = 0\) and let \(\varphi'\) be Lipschitz continuous on \([0,1]\). Then
FUNCTIONS WITH BOUNDED REMAINDER

(1) \(\varphi(0) = \varphi(1) \Rightarrow \sup_n |\varphi_n(x)| < \infty \) for all \(x \in \mathbb{R}/\mathbb{Z} \);

(2) \(\sup_n |\varphi_n(x)| < \infty \) for some \(x \in \mathbb{R}/\mathbb{Z} \) \(\Rightarrow \varphi(0) = \varphi(1) \);

(3) \(\varphi(1) < \varphi(0) \Rightarrow -\infty < \liminf_{n \to \infty} \varphi_n(0) \) and \(\limsup_{n \to \infty} \varphi_n(0) = +\infty \);

(4) \(\varphi(1) > \varphi(0) \Rightarrow -\infty = \liminf_{n \to \infty} \varphi_n(0) \) and \(\limsup_{n \to \infty} \varphi_n(0) < +\infty \);

\((\text{if } \omega(\delta) := \sup \{|\varphi'(x) - \varphi'(y)| : |x - y| < \delta, 0 \leq x, y \leq 1\}, \delta > 0, \text{denotes the modulus of continuity of } \varphi' \), then \(\varphi' \) called Lipschitz-continuous if \(\omega(\delta) \leq L \cdot \delta \), \(\forall \delta > 0 \), \(L \) a positive constant).

The reader might want to compare theorem 2 (1) with theorem 7.8 in [7], and theorem 2 (3) and (4) with results on the one-sided boundedness of the discrepancy function (see [1]).

Theorem 3. — Let \(\varphi \in C^1([0,1]) \) and let \(f \varphi(t) dt = 0 \). Then \(\varphi(1) \neq \varphi(0) \Rightarrow \forall \bar{z} \in \mathbb{R}/\mathbb{Z} \) normal to base \(q \) : \((\varphi_n(x))_{n \geq 1} \) is dense in \(\mathbb{R} \).

In particular, if \(\varphi(1) \neq \varphi(0) \) and if \(x \) is normal to base \(q \), then \(\liminf_{n \to \infty} \varphi_n(x) = -\infty \) and \(\limsup_{n \to \infty} \varphi_n(x) = +\infty \).

The reader might want to compare theorem 3 with corollary \(C \) in [10].

Theorem 4. — Let \(\varphi \) be as in theorem 3 and let \(T_\varphi : \mathbb{R}/\mathbb{Z} \times \mathbb{R} \to \mathbb{R}/\mathbb{Z} \times \mathbb{R} \), \(T_\varphi(x,y) = (Tx, y + \varphi(x)) \). Then

(1) \(\varphi(1) \neq \varphi(0) \Rightarrow T_\varphi \) ergodic;

(2) let \(\varphi' \) be Lipschitz-continuous on \([0,1]\). Then \(T_\varphi \) is ergodic if and only if \(\varphi(1) \neq \varphi(0) \).

2. The proofs.

Let \(A(g) = \left\{ \sum_{i=0}^{\infty} z_i q^i : z_i \in \{0,1,\ldots,q-1\} \right\} \) denote the compact Abelian group of \(q \)-adic integers with the metric

\[\rho(z,z') := q^{-\min\{i:z_i \neq z'_i\}} \]

for \(z = \sum_{i=0}^{\infty} z_i q^i \neq z' = \sum_{i=0}^{\infty} z'_i q^i \) and \(\rho(z,z) := 0 \).
The homeomorphism $S : A(q) \to A(q)$, $Sz = z + 1$ ($z \in A(q)$, $1 := 1 \cdot q^0 + 0 \cdot q^1 + 0 \cdot q^2 + \cdots$) has a unique invariant Borel probability measure on $A(q)$: the normalized Haar measure. The dynamical system $(A(q), S)$ is minimal (see [4]).

The map $\Phi : A(q) \to \mathbb{R}/\mathbb{Z}$, $\Phi\left(\sum_{i=0}^{\infty} z_i q^i\right) := \sum_{i=0}^{\infty} z_i q^{-(i+1)} \mod 1$, is measure preserving, continuous and surjective.

The q-adic representation of an element x of \mathbb{R}/\mathbb{Z}, $x = \sum_{i=0}^{\infty} x_i q^{-(i+1)}$ with digits $x_i \in \{0, 1, \ldots, q-1\}$, is unique under the condition $x_i \neq q-1$ for infinitely many i. From now on we shall assume this uniqueness condition to hold for all x. Numbers x with $x_i \neq 0$ for infinitely many i will be called non-q-adic. In the following $z = z(x)$ will denote the element $z = z(x) := \sum_{i=0}^{\infty} x_i q^i$ of $A(q)$ associated with x. One has

$$Tx = \Phi(z + 1)$$

and it is elementary to see:

- $T \circ \Phi(z) = \Phi \circ S(z)$, $\forall z \in A(q)$
- $x \in [aq^{-k}, (a + 1)q^{-k}]$, $0 \leq a < q^k$, $k = 1, 2, \ldots \Rightarrow T^k x \in [aq^{-k}, (a + 1)q^{-k}]$ and therefore $|T^k x - x| < q^{-k}$.
- T permutes the open elementary q-adic intervals $[aq^{-k}, (a + 1)q^{-k}]$, $0 \leq a < q^k$, of length q^{-k}, $k = 1, 2, \ldots$.

Proposition 1. Let φ be continuously differentiable on the closed interval $[0, 1]$ and let $\int_0^1 \varphi(t) dt = 0$. If ω denotes the modulus of continuity of φ', then for all $k \in \mathbb{N}$ and for all $x \in \mathbb{R}/\mathbb{Z}$

$$\varphi(q^k x) = (\varphi(1) - \varphi(0))\left((\rho_k + \sigma_k - 1/2) + O(\omega(q^{-k})) + O(\rho_k \cdot \omega(c(q) \cdot (q^k - z(k)))^{-1}\log(q^k - z(k))))
+ O(\rho_k \cdot \omega(c(q) \cdot z(k))^{-1}\log z(k))\right),$$

where

$$x = \sum_{i=0}^{\infty} x_i q^{-(i+1)}$$

$$z = z(x) := \sum_{i=0}^{\infty} x_i q^i$$
FUNCTIONS WITH BOUNDED REMAINDER

\[z(k) := \sum_{i=0}^{k-1} x_i q^i \quad k = 1, 2, \ldots \]
\[\rho_k := (q^k - z(k)) \cdot \Phi(z - z(k)) \]
\[\sigma_k := z(k) \cdot \Phi(z - z(k) + q^k) \]

and \(c(q) \) is a constant that depends only on \(q \). The \(O \)-constants that appear in identity (1) are all bounded from above by a constant that depends only on \(q \) and \(\varphi \).

Proof. — It is easy to prove

\[\varphi q_k(x) = \sum_{i=0}^{q^k-1} \varphi(a_i q^{-k}) + \sum_{i=0}^{q^k-1} \varphi'(a_i q^{-k})(T^i x - a_i q^{-k}) + O(\omega(q^{-k})) , \]

where \(a_i \) is the uniquely determined integer with \(0 \leq a_i < q^k \) and \(T^i x \in [a_i q^{-k}, (a_i + 1) q^{-k}] \). From proposition 1 in [6] it follows that

\[\sum_{i=0}^{q^k-1} \varphi(a_i q^{-k}) = - (\varphi(1) - \varphi(0))/2 + O(\omega(q^{-k})) . \]

Further

\[T^i x - a_i q^{-k} = \begin{cases} \Phi(z - z(k)) & 0 \leq i < q^k - z(k) \\ \Phi(z - z(k) + q^k) & q^k - z(k) \leq i < q^k . \end{cases} \]

By theorem 5.4, chapter 2 of [9]

\[(q^k - z(k))^{-1} \sum_{i=0}^{q^k-z(k)-1} \varphi'(a_i q^{-k}) = \varphi(1) - \varphi(0) + O(\omega(D_{q^k-z(k)})) , \]

where \(D_{q^k-z(k)} \) denotes the discrepancy of \((a_i q^{-k})_{i=0}^{q^k-z(k)-1}\). As \(a_i q^{-k} = \Phi(z(k) + i) \), this is a string in the Van-der-Corput-sequence to base \(q \), and therefore the following discrepancy estimate holds (see [9] chapter 2, theorem 3.5 for the idea of the proof):

\[D_{q^k-z(k)} \leq c(q)(q^k - z(k))^{-1} \log(q^k - z(k)) , \quad k = 1, 2, \ldots, \]

\(c(q) \) a constant that depends only on \(q \).

With the same arguments one proves

\[z(k)^{-1} \sum_{i=q^k-z(k)}^{q^k-1} \varphi'(a_i q^{-k}) = \varphi(1) - \varphi(0) + O(\omega(c(q)z(k)^{-1} \log z(k))) . \]
COROLLARY 1. — Let \(n \in \mathbb{N} \), \(n = \sum_{i=0}^{s} n_i q^i \), with \(n_i \in \{0,1,\ldots, q-1\} \), \(0 \leq i \leq s \), \(n_s \neq 0 \), and let \(n(k) := \sum_{i=0}^{k-1} n_i q^i \) if \(k = 1, \ldots, s + 1 \),
\(n(0) := 0 \).

If \(\sum_{k=0}^{s} \) denotes \(\sum_{k=0 \atop k \neq k_0}^{s} \) then
\[
\varphi_n(x) = \sum_{k=0}^{s} \sum_{\ell=0}^{n_k-1} \varphi(T^{n(k)}+\ell q^k+jx).
\]

Let
\[
T^{n(k)+\ell q^k} x := x^{k, \ell} = \sum_{i=0}^{\infty} x_i^{k, \ell} q^{-i(i+1)}
\]
\[
z^{k, \ell} := \sum_{i=0}^{\infty} x_i^{k, \ell} q^i
\]
\[
z^{k, \ell}(m) := \sum_{i=0}^{m-1} x_i^{k, \ell} q^i \quad (m = 1, 2, \ldots)
\]
\[
\rho_{k, \ell} := (q^k - z^{k, \ell}(k)) \cdot \Phi(z^{k, \ell} - z^{k, \ell}(k))
\]
\[
\sigma_{k, \ell} := z^{k, \ell}(k) \cdot \Phi(z^{k, \ell} - z^{k, \ell}(k) + q^k).
\]

Then proposition 1 implies:
\[
\varphi_n(x) = (\varphi(1) - \varphi(0)) \sum_{k=0}^{s} \sum_{\ell=0}^{n_k-1} (\rho_{k, \ell} + \sigma_{k, \ell} - 1/2)
\]
\[
(2) \quad + O \left(\sum_{k=0}^{s} n_k \omega(q^{-k}) \right)
\]
\[
+ O \left(\sum_{k=0}^{s} \sum_{\ell=0}^{n_k-1} (\rho_{k, \ell} \omega(c(q)(q^k - z^{k, \ell}(k))^{-1} \log(q^k - z^{k, \ell}(k)))
\]
\[
+ \sigma_{k, \ell} \omega(c(q)z^{k, \ell}(k))^{-1} \log z^{k, \ell}(k)) \right).
\]

The \(O \)-constants in identity (2) are bounded from above by a constant that depends only on \(q \) and \(\varphi \).

Proof of theorem 1. — Let \(x \) be normal to base \(q \) and let \(d = 0, d_0 d_1 d_2 \ldots \) be an arbitrary number in \([0,1[\). For any index \(k \) such that
FUNCTIONS WITH BOUNDED REMAINDER

\[x_k < q - 1 \] we have

\[\rho_k + \sigma_k = (q^k - z(k)) \sum_{i \geq k} x_{i}q^{-i-1} + z(k) \left(\sum_{i \geq k} x_{i}q^{-i-1} + q^{-k-1} \right) \]

\[= \sum_{i \geq 0} x_{i}q^{-|i-k|-1}. \]

Let \(\varepsilon > 0 \) be arbitrary. Choose \(m \) such that \(q^{-m} < \varepsilon \). As \(x \) is normal there are infinitely many \(k \) such that \(x_k < q - 1 \)

\[|\rho_k + \sigma_k - d| = |0, x_k x_{k+1} x_{k+2} \cdots + 0, 0x_{k-1} x_{k-2} \cdots x_0 - d| < q^{-m} \]

(this imposes a condition on the digits \(x_k, x_{k\pm 1}, \ldots, x_{k\pm m-1} \))

\[x_{k-m} = q - 1, \quad x_{k-m-1} = 0. \]

Then

\[z(k) \geq q^{k-m}, \quad q^k - z(k) \geq q^{k-m-1} \]

and, if we choose \(k \) sufficiently large,

\[\omega(q^{-k}) < \varepsilon \quad \text{and} \quad \omega(c(q)q^{-k+m+1} \log q^k) < \varepsilon. \]

If we put \(c := (\varphi(1) - \varphi(0))(d - 1/2) \), then it follows directly that

\[|\varphi_{q^k}(x) - c| = O(\varepsilon). \]

\[\Box \]

Proof of theorem 2. — (1): Let \(\varphi(1) = \varphi(0) \). It is \(\Phi(z - z(k)) < q^{-k} \) and \(\Phi(z - z(k) + q^k) < q^{-k}, \quad k = 1, 2, \ldots. \) Hence for the third term in identity (2) we get the estimate

\[\sum_{k=0}^{\infty} q^{-k} \log q^k < +\infty. \]

Thus the first part of the theorem is proved.

(2): Let \(\sup |\varphi_n(x)| < +\infty \) for some \(x \in \mathbb{R}/\mathbb{Z} \) and let \(z := z(x) \). The map \(\varphi \circ \Phi : \mathbb{A}(q) \to \mathbb{R} \) is continuous and \((\mathbb{A}(q), S) \) is a minimal (topological) dynamical system. We have

\[\sup_n |\varphi_n(x)| = \sup_n \sum_{k=0}^{n-1} \varphi \circ \Phi(S^kz) < +\infty. \]

By theorem 14.11 of [3] there is a continuous function \(g : \mathbb{A}(q) \to \mathbb{R} \) such that \(\varphi \circ \Phi(z) = g(z) - g(Sz) \), \(\forall z \in \mathbb{A}(q) \). Hence

\[-(\varphi(1) - \varphi(0))/2 = \lim_{k \to \infty} \varphi_{q^k}(0) = \lim_{k \to \infty} \sum_{i=0}^{q^k-1} \varphi \circ \Phi(S^i0) \]

\[= \lim_{k \to \infty} (g(0) - g(q^k)) = 0; \]
(here we use proposition 1 in [6] to prove the first equality).

(3) : We shall prove $-\infty < \liminf_{n \to \infty} \varphi_n(0)$, then part (2) will imply the remaining statement. Because of identity (2) and inequality (3) it is enough to show, for $x = 0$,

$$
\Sigma_n := \sum_{k=0}^{s} \sum_{\ell=0}^{n_k-1} (\rho_{k,\ell} + \sigma_{k,\ell} - 1/2) \leq K, \quad \forall n \in \mathbb{N}
$$

with some constant K. If $x = 0$ then $z^{k,\ell} = n(k) + \ell q^k$ and $z^{k,\ell}(k) = n(k)$. Hence $\rho_{k,\ell} = (q^k - n(k))\ell q^{-(k+1)}$ and $\sigma_{k,\ell} = n(k)(\ell + 1)q^{-(k+1)}$. Thus

$$
\Sigma_n = \sum_{k=0}^{s} n_k((n_k - 1)/(2q) + n(k)q^{-(k+1)} - 1/2).
$$

The statement then follows because $(n_k - 1)/(2q) + n(k)q^{-(k+1)} - 1/2 < 0$.

(4) : The idea of the proof is the same as in (3).

Remark. — In theorem 2 (1), (3) and (4) one can weaken the condition on the modulus of continuity of φ' to $\omega(\delta) = O(|\log \delta|^{-1-\varepsilon})$ with some $\varepsilon > 0$.

Proof of theorem 3. — The idea of the proof is as follows. Let $(k_m)_{m \geq 1}$ be a strictly increasing sequence of positive integers. If $n = q^{k_1} + \cdots + q^{k_s}$ then

$$
\varphi_n(x) = (\varphi(1) - \varphi(0)) \sum_{m=1}^{s} (\rho_{k_m} + \sigma_{k_m} - 1/2) + O\left(\sum_{m=1}^{s} \omega(q^{-k_m})\right)
$$

$$
+ O\left(\sum_{m=1}^{s} \rho_{k_m} \omega(c(q)(q^{k_m} - z^{k_m}(k_m)))^{-1} \log(q^{k_m} - z^{k_m}(k_m))\right)
$$

$$
+ \sigma_{k_m} \omega(c(q)(z^{k_m}(k_m))^{-1} \log z^{k_m}(k_m))
$$

with $x = 0, x_0 x_1 x_2 \cdots$, $z = z(x) = \sum_{i=0}^{\infty} x_i q^i, z^{k_m} = z + q^{k_1} + \cdots + q^{k_{m-1}}$ and, if $x_{k_m} \leq q - 2$,

$$
\rho_{k_m} + \sigma_{k_m} = 0, \quad x_{k_m} x_{k_m+1} \cdots + 0, \quad 0 x_{k_m-1} x_{k_m-2} \cdots x_0.
$$

Now, let $d \in \mathbb{R}, \varepsilon > 0$ and $x \in [0,1]$ normal to base q be given. We shall prove that there is a positive integer m_0 and a strictly increasing sequence $(k_m)_{m \geq m_0}$ such that

$$
|\varphi_n(x) - d| < \varepsilon \quad \text{for all} \quad n = q^{k_{m_0}} + \cdots + q^{k_s} \text{ sufficiently large.}
$$
Let m_0 be such that $\sum_{m \geq m_0} q^{-m} < \varepsilon$. Let $(a_m)_{m \geq m_0}$ be a sequence in $[0,1]$ such that

$$d = (\varphi(1) - \varphi(0)) \sum_{m \geq m_0} (a_m - 1/2).$$

The number x is normal to base q. Hence there are infinitely many $k = k(m)$ such that

1. $x_k \leq q - 2$
2. $x_{k-2m} = 1$
 \[x_{k-2m-1} = x_{k+2m} = x_{k+2m+1} = 0\]
3. $|\rho_k + \sigma_k - a_m| < q^{-m}(\varphi(1) - \varphi(0))^{-1}$, $\forall m \geq m_0$; (this condition defines a string of digits $x_{k-2m+1}, \ldots, x_{k+2m-1}$). Hence we may choose a strictly increasing sequence $(k_m)_{m \geq m_0}$ such that these three conditions hold for every k_m and such that

4. $k_m + 2m + 1 < k_{m+1}$
5. $\sum_{m \geq m_0} \omega(q^{-k_m}) < \varepsilon$
6. $\sum_{m \geq m_0} \omega(c(q)q^{-k_m+2m+1} \log q^{k_m}) < \varepsilon$.

Then if $n = q^{k_{m_0}} + \cdots + q^{k_s}$ ($s \geq m_0$),

$$|\varphi_n(x) - d| = o(\varepsilon),$$

and therefore the sequence $(\varphi_n(x))_{n \geq 1}$ is dense in \mathbb{R}.

Remark. — Theorem 3 gives an alternative to the proof of theorem 2 (2), this time without a condition on the modulus of continuity of φ':

If $\sup |\varphi_n(x)| < \infty$ for some $x \in [0,1]$, then this holds for all x by the theorem of Gottschalk and Hedlund. Hence $\varphi(1) = \varphi(0)$, otherwise a contradiction to theorem 3 would arise for any x normal to base q.

Proof of theorem 4.

(1) is proved in the very same way as the theorem of [6].

(2) : Let L_2 stand for $L_2(\mathbb{R}/\mathbb{Z}, \lambda)$. Then $\varphi(1) = \varphi(0)$ implies $\sup \|\varphi_n\|_{L_2} < +\infty$. By Lemma 2.2 in [4] there exists an element g of L_2 such that $\varphi = g - g \circ T$ (mod λ). This implies that $(x,y) \mapsto$
(Tx, y + \varphi(x) \mod 1) is not ergodic on \(\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z} \) and therefore \(T_\varphi \) cannot be ergodic on \(\mathbb{R}/\mathbb{Z} \times \mathbb{R} \) (see [5], part. I : remarks).

\[\square \]

BIBLIOGRAPHIE

P. HELLEKALEK & G. LARCHER,
Institut für Mathematik
Universität Salzburg
Hellbrunnerstraße 34
A-5020 Salzburg (Austria).