GENEVIÈVE POURCIN

Deformations of coherent foliations on a compact normal space

<http://www.numdam.org/item?id=AIF_1987__37_2_33_0>
DEFORMATIONS OF COHERENT FOLIATIONS
ON A COMPACT NORMAL SPACE

by Geneviève POURCIN

Introduction.

Let X be a normal reduced compact analytic space with countable
topology. Let Ω^1_X be the coherent sheaf of holomorphic 1-forms on X and
$\Theta_X = \text{Hom}_{\mathcal{O}_X}(\Omega^1_X, \mathcal{O}_X)$ its dual sheaf. The bracket of holomorphic vector
fields on the smooth part of X induces a \mathbb{C}-bilinear morphism
$m : \Theta_X \times \Theta_X \to \Theta_X$ (section 1); therefore, for any open subset U of X, m
defines a map $m_U : \Theta_X(U) \times \Theta_X(U) \to \Theta_X(U)$ which is continuous for the
usual topology on $\Theta_X(U)$.

We shall study coherent foliations on X (section 1 definition 2), using
the definition given in [2], this notion generalizes the notion of analytic
foliations on manifolds introduced by P. Baum ([1]) (see also [8]). A
coherent foliation on X defines a quotient \mathcal{O}_X-module of Θ_X by a m-stable
submodule (condition (i) of definition 2), this quotient being a non zero
locally free \mathcal{O}_X-module outside a rare analytic subset of X (condition (ii) of
definition (ii)).

Then the set of the coherent foliations on X is a subset of the universal
space \mathcal{H} of all the quotient \mathcal{O}_X-modules of Θ_X; the analytic structure of \mathcal{H}
has been constructed by A. Douady in [4].

The aim of this paper is to prove that the set of the quotient \mathcal{O}_X-modules
of Θ_X which satisfy conditions (i) and (ii) of definition 2 is an analytic
subspace \mathcal{H} of an open set of \mathcal{H} and that \mathcal{H} satisfies a universal property
(Theorem 2). Any coherent foliation gives a point of \mathcal{H}, any point of \mathcal{H}
defines a coherent foliation but two different points of \mathcal{H} can define the
same foliation (cf. section 1, remark 3).

Key-words: Singular holomorphic foliations - Deformations.
In section 2 one proves that, in the local situation, m-stability is an analytic condition on a suitable Banach analytic space (of infinite dimension).

In section 3 we follow the construction of the universal space of A. Douady and we get the analytic structure of \mathcal{H}.

Notations:

- For any analytic space Y and any analytic space not necessarily of finite dimension Z let us denote $p_Z : Z \times Y \to Y$ the projection.

- For any $\mathcal{O}_{Z,Y}$-module \mathcal{F} and any $z \in Z$ let us denote $\mathcal{F}(z)$ the \mathcal{O}_Y-module which is the restriction to $\{z\} \times Y$ of \mathcal{F}, by definition we have for any $y \in Y$

$$\mathcal{F}(z)_y = \mathcal{F}(z,y) \otimes_{\mathcal{O}_{Z,z}} \mathcal{O}_{Z,z}/m_z.$$

1. Coherent foliations.

Let X be a reduced connected normal analytic space with countable topology; let Ω^1_X be the coherent sheaf of holomorphic differential 1-forms on X and

$$(*) \quad \Theta_X = \operatorname{Hom}_{\mathcal{O}_X}(\Omega^1_X, \mathcal{O}_X)$$

Θ_X is called the tangent sheaf on X. Let S be the singular locus of X, then S is at least of codimension two and the restriction of Θ_X to $X - S$ is the sheaf of holomorphic vector fields on the manifold $X - S$.

Bracket of two sections of Θ_X.

The bracket of two holomorphic vector fields on the manifold $X - S$ is well-defined; recall that, if $z = (z_1, \ldots, z_p)$ denotes the coordinates on \mathbb{C}^p, if U is an open set in \mathbb{C}^p and if a and b are two holomorphic vector fields on U, with

$$a = \sum_{i=1}^p a_i(z) \frac{\partial}{\partial z_i}, \quad b = \sum_{i=1}^p b_i(z) \frac{\partial}{\partial z_i},$$

then we have $[a, b] = c$ with

$$c = \sum_{i=1}^p c_i \frac{\partial}{\partial z_i} \text{ where } c_i = \sum_{j=1}^p \left(a_j \frac{\partial b_i}{\partial z_j} - b_j \frac{\partial a_i}{\partial z_j} \right).$$
Let $m_U : \mathcal{O}(U)^p \times \mathcal{O}(U)^p \to \mathcal{O}(U)^p$ be the \mathbb{C}-bilinear map which sends $(a_1, \ldots, a_p), (b_1, \ldots, b_p)$ onto (c_1, \ldots, c_p); the Cauchy majorations imply the continuity of m_u for the Frechet topology of uniform convergence on compacts of U.

Proposition 1. — For every open subset U of X the restriction homomorphism

$$\rho : H^0(U, \Theta_X) \to H^0(U - U \cap S, \Theta_X)$$

is an isomorphism of Frechet spaces.

Proof. — One knows that ρ is continuous; by the open mapping theorem it is sufficient to prove that ρ is bijective.

Now we may suppose that X is an analytic subspace of an open set V in \mathbb{C}^n; let I be the coherent ideal sheaf defining X in V; one has an exact sequence

$$0 \to \mathcal{O}_X \to \mathcal{O}_X^e \to \text{Hom}_{\mathcal{O}_U}(I/I^2, \mathcal{O}_X)$$

where the map α is defined by

$$\alpha(a_1, \ldots, a_n)(f) = \sum_{i=1}^n a_i \frac{\partial f}{\partial z_i}|_X$$

z_1, \ldots, z_n being the coordinates in \mathbb{C}^n.

Because the complex space X is reduced and normal it follows from the second removable singularities theorem two isomorphisms

$$O_X(V) \cong O_X(V - S) \quad I(V) \cong I(V - S).$$

Then the proposition 1 follows from (1) and (2). As an immediate consequence of proposition 1 we obtain the following corollary:

Corollary and definition. — It exists a unique homomorphism of sheaves of \mathbb{C}-vector spaces

$$m : \Theta_X \times \Theta_X \to \Theta_X$$

extending the bracket defined on $X - S$. Therefore, for every open subset U
of X, the induced map

$$m_U : H^0(U, \Theta_X) \times H^0(U, \Theta_X) \to H^0(U, \Theta_X)$$

is C-bilinear and continuous for the Frechet topology on $H^0(U, \Theta_X)$. We call bracket-map the sheaf morphism $m : \Theta_X \times \Theta_X \to \Theta_X$.

Coherent foliations.

Definition 1. — A coherent \mathcal{O}_X-submodule T of Θ_X is said to be maximal if for any open $U \subset X$, any section $s \in \Theta_X(U)$ and any nowhere dense analytic set A in U

$$s \in T(U-A) \Rightarrow s \in T(U)$$

holds.

Because X is reduced and normal, then locally irreducible, T is maximal if and only if Θ_X/T has no \mathcal{O}_X-torsion.

Definition 2 [2]. — A coherent foliation on X is a coherent \mathcal{O}_X-submodule T of Θ_X such that:

- (i) Θ_X/T is non zero locally free outside a nowhere dense analytic subset of X;
- (ii) T is a subsheaf of Θ_X stable by the bracket-map;
- (iii) T is maximal.

Remarks. — 1) A coherent foliation induces a classical smooth holomorphic foliation outside a nowhere dense analytic subset of $X - S$.

2) If T is maximal the stability of T by the bracket-map on X is equivalent to the stability of T on $X - A$, for any rare analytic subset A.

3) A coherent foliation on a connected reduced normal complex space X is characterized by a quotient module F of Θ_X, without \mathcal{O}_X-torsion, such that $\text{ker} [\Theta_X \to F]$ is stable by the bracket-map and which is a non zero locally free \mathcal{O}_X-module outside a rare analytic subset of X.

4) Let T be a coherent \mathcal{O}_X-submodule of Θ_X satisfying conditions (i) and (ii) of definition 2; then T is included in a maximal coherent sheaf \hat{T} which is equal to T outside a rare analytic subset of X ([7] 2.7); the conditions (i) and (ii) are also fulfilled for \hat{T}, hence one can associate to T a maximal foliation on X. But two different T for which (i) and (ii) hold may give the same maximal sheaf \hat{T}.
We suppose X compact.

The purpose of this paper is to put an analytic structure on the set of all subsheaves of Θ_x satisfying conditions (i) and (ii) of Definition 2 (Theorem 2 below), that gives a versal family of holomorphic singular foliations for which a coherent extension exists.

First we have the following proposition:

Proposition 2. — Let X be an irreducible complex space; let Z be a complex space and F a coherent $O_{Z \times X}$-module. Let F be Z-flat.

Let Z_1 be the set of points $z \in Z$ such that $F(z)$ is a non-zero locally free O_x-module outside a rare analytic subset of X.

Then Z_1 is an open subset of Z.

Proof. — For every $z \in Z$ let σ_z be the analytic subset of points $x \in X$ where $F(z)$ is not locally free ([3]). Put $z_0 \in Z_1$. The irreducibility of X implies that G_{z_0} is nowhere dense; fix $x_0 \in X - S \cap \sigma_{z_0}$ and denote $r > 0$ the rank of the O_{X, x_0}-module $F(z_0)$. The Z-flatness of F implies that F is $O_{Z \times X}$-free of rank r in an open neighborhood V of (z_0, x_0). Let U be the projection of V on Z. For any point z of the open set U the Z-flatness of F implies that $F(z)_{x_0}$ is O_{X, x_0}-free of rank r; then the support of the sheaf $F(z)$ contains a neighborhood of x_0; hence the irreducibility of X implies

$$\text{support } F(z) = X$$

and the proposition.

For any analytic space $S m_S : p^*_S O_X \times p^*_S O_X \to p^*_S O_X$ denotes the pull back of m by the projection $p_S : S \times X \to X$ (i.e. the bracket map in the direction of the fibers of the projection $S \times X \to S$). Our aim is the proof of the following theorem:

Theorem 1. — Let X be a compact connected normal space. There exist an analytic space \tilde{A} and a coherent $O_{\tilde{A} \times X}$-submodule \tilde{T} of $p^{\tilde{A}} O_X$ such that:

(i) $p^{\tilde{A}} O_X / \tilde{T}$ is \tilde{A}-flat;

(ii) \tilde{T} is a $m_{\tilde{A}}$-stable submodule of $p^{\tilde{A}} O_X$;

(iii) (\tilde{A}, \tilde{T}) is universal for properties (i) and (ii).

As a corollary of proposition 2 and theorem 1 we obtain:
THEOREM 2. — Let X be a compact connected normal space and r a positive integer. There exist an analytic space \mathcal{H} and a coherent $\mathcal{O}_{X \times X}$-submodule \mathcal{E} of $p_X^*\Theta_X$ such that:

(i) $p_X^*\Theta_X/\mathcal{E}$ is \mathcal{H}-flat;

(ii) \mathcal{E} is $m_\mathcal{H}$-stable and for any $h \in \mathcal{H}\Theta_X/\mathcal{E}(h)$ is a locally free \mathcal{O}_X-module of rank r outside a rare analytic subset of X;

(iii) $(\mathcal{H}, \mathcal{E})$ is universal, i.e. for any analytic space S and any coherent $\mathcal{O}_{S \times X}$-submodule \mathcal{F} of $p_S^*\Theta_X$ such that

- $p_S^*\Theta_X/\mathcal{F}$ is S-flat;
- \mathcal{F} is m_S-stable and for any $s \in S\Theta_X/\mathcal{F}(s)$ is a locally free \mathcal{O}_X-module of rank r outside a rare analytic subset of X then it exists a unique morphism $f : S \to \mathcal{H}$ satisfying

$$(f \times 1_X)^* (p_X^*\Theta_X/\mathcal{E}) = p_S^*\Theta_X/\mathcal{F}.$$

We shall use the following theorem and Douady ([4]):

THEOREM. — Let X be a compact analytic space and \mathcal{E} a coherent \mathcal{O}_X-module; there exist an analytic space \mathcal{H} and a quotient \mathcal{O}_H-module \mathcal{R} of $p_H^*\mathcal{E}$ such that:

(i) \mathcal{R} is \mathcal{H}-flat;

(ii) for any analytic space S and any quotient $\mathcal{O}_{S \times H}$-module \mathcal{F} of $p_S^*\mathcal{E}$ which is S-flat, it exists a unique morphism $f : S \to \mathcal{H}$ satisfying

$$(f \times 1_X)^* \mathcal{R} = \mathcal{F}.$$

2. Local deformations.

One uses notations and results of [4]; the notions of infinite dimensional analytic spaces, called Banach analytic spaces, and of anaflatness are defined respectively in ([4] § 3) and in ([4] § 8).

In this section we fix an open subset U of \mathbb{C}^n, two compact polycylinders of non-empty interior K and K' satisfying

$$K' \subseteq \bar{K} \subseteq K \subseteq U$$

and a reduced normal analytic subspace X of U. Let $B(K)$ be the Banach algebra of those continuous functions on K which are analytic on the interior \bar{K} of K; one defines $B(K')$ in an analogous way.
For every coherent sheaf \mathcal{F} on U, one knows that it exists finite free resolutions of \mathcal{F} in a neighborhood of K; for such a resolution

$$(L.) \quad 0 \rightarrow L_n \rightarrow L_{n-1} \rightarrow \cdots \rightarrow L_0$$

let us consider the complex of Banach spaces

$$B(K,L.) = B(K) \otimes_{O(K)} H^0(K,L.)$$

and the vector space

$$B(K,\mathcal{F}) = \text{coker} \ [B(K;L_1) \rightarrow B(K,L_0)].$$

Definition 1 ([4] §7, [5]). — K is \mathcal{F}-privileged if and only if it exists a finite free resolution $L.$ of \mathcal{F} on a neighborhood of K such that the complex $B(K,L.)$ is direct exact.

Then this is true for every finite free resolution; therefore $B(K,\mathcal{F})$ is a Banach space which does not depend of the resolution; \mathcal{F}-privileged polycylinders give fundamental systems of neighborhoods at every point of U. For a more geometric definition of privilege, the reader can refer to ([6]).

In the following, we always suppose that the two polycylinders K and K' are Θ_x-privileged, Θ_x being the tangent sheaf defined by $1 - (\ast)$.

Let G_K be the Banach analytic space of those $B(K)$-submodules Y of $B(K,\Theta_x)$ (or equivalently of quotient modules) for which it exists an exact sequence of $B(K)$-modules

$$0 \rightarrow B(K)^\ast \rightarrow \cdots \rightarrow B(K)^0 \rightarrow B(K,\Theta_x) \rightarrow B(K,\Theta_x)/Y \rightarrow 0$$

which is a direct sequence of Banach vector spaces.

A universal sheaf R_X on $G_X \times \mathring{K}$ is constructed in [4]; R_K satisfies the following proposition:

Proposition 1 ([4] § 8 n° 5). — (i) R_K is G_K-anaflat.

(ii) For every Banach analytic space Z and for every Z-anaflat quotient \mathcal{F} of $p^*\Theta_x$ it exists a natural morphism $\varphi : Z \rightarrow G_K$ such that

$$(\varphi \times I_K)^*R_K = \mathcal{F}_{s \times \mathring{K}}.$$

Recall that the Z-anaflatness generalizes to the infinite dimensional space Z the notion of flatness; pull back preserves anaflatness.
Let $G_{K,K'}$ be the set of the $B(K)$-submodules E of $B(K,\Theta_X)$, element of G_K, such that $E \otimes_{B(K)} B(K')$ gives an element of G_K.

Proposition 2. — (i) $G_{K,K'}$ is an open subset of G_K.

(ii) Let \mathcal{R} be the pull back of R_K by the inclusion $G_{K,K'} \hookrightarrow G_K$. Then the map from $G_{K,K'}$ to G_K, which maps every $B(K)$-module E element of $G_{K,K'}$ onto the $B(K')$-module $E \otimes_{B(K)} B(K')$ is given by a unique morphism

$$\rho_{K,K'} : G_{K,K'} \to G_K,$$

satisfying

$$\rho_{K,K'}^* R_K = \mathcal{R}.$$

Proof. — Proposition 2 follows from ([4] 14 prop. 4).

Let $\rho_1 : B(K,\Theta_X) \times B(K,\Theta_X) \to \Theta_X(\hat{K}) \times \Theta_X(\hat{K})$ and

$$\rho_2 : \Theta_X(\hat{K}) \to B(K',\Theta_X)$$

be the restriction homomorphisms and

$m : \Theta_X(\hat{K}) \times \Theta_X(\hat{K}) \to \Theta_X(\hat{K})$

the bracket map.

Let

$$m_{K,K'} : B(K,\Theta_X) \times B(K,\Theta_X) \to B(K',\Theta_X)$$

be the continuous C-bilinear map defined by

$$m_{K,K'} = \rho_2 \circ m \circ \rho_1.$$

Definition 2. — A $B(K)$-submodule Y of $B(K,\Theta_X)$ is said to be $m_{K,K'}$-stable if it verifies:

(i) Y is an element of $G_{K,K'}$,

(ii) for every f and g in Y one has

$$m_{K,K'}(f,g) \in \rho_{K,K'}(Y).$$

Then, if \mathfrak{S} is a m-stable Ω_X-submodule of Θ_X such that K and K' are \mathfrak{S}-privileged, $B(K,\mathfrak{S})$ is $m_{K,K'}$-stable; the converse is not necessarily true; however we have the following proposition:
PROPOSITION 3. — Let Y be a $m_{K,K}$-stable $B(K)$-submodule of $B(K,\Theta_X)$; then Y defines in a natural way a coherent O_X-submodule of Θ_X on \hat{K}, the restriction to \hat{K}' of which is m-stable (i.e. stable by the bracket-map).

Proof. — Let B_Y be the privileged B_K-module given by Y ([6]); the restriction to \hat{K} of B_Y is a coherent sheaf; therefore one has ([6] th. 2.3 (ii) and prop. 2.11)

$$Y = \hat{H}(K,B_Y)$$

and the restriction homomorphism

$$i: Y = H^0(K,B_Y) \to H^0(\hat{K},B_Y)$$

is injective and has dense image; therefore the restriction $B_Y|_K$ is a submodule of Θ_X ([4] § 8 lemme 1 (b)), hence $H^0(\hat{K}',B_Y)$ is a closed subspace of the Frechet space $H^0(\hat{K}',\Theta_X)$.

Let us show that $m_{K,K}$ induces a C-bilinear continuous map

$$\hat{m}: H^0(\hat{K},B_Y) \times H^0(\hat{K},B_Y) \to H^0(\hat{K}',B_Y).$$

Take t_1, t_2 two elements of $H^0(\hat{K},B_Y)$ and (t^n_1) and (t^n_2) two sequences of elements of Y with

$$\lim_{n \to \infty} t^n_i = t_i, \quad i = 1, 2.$$

Because the bracket-map $m: H^0(\hat{K},\Theta_X) \times H^0(\hat{K},\Theta_X) \to H^0(\hat{K},\Theta_X)$ is continuous one has

$$\lim_{n \to \infty} m(t^n_{1|K}, t^n_{2|K}) = m(t_1, t_2) \in H^0(\hat{K},\Theta_X).$$

Therefore the $m_{K,K}$-stability of Y implies for every m

$$m_{K,K}(t^n_1, t^n_2) \in B(K',B_Y) \subset H^0(\hat{K}',B_Y)$$

then $m(t_1, t_2)|_K \in H^0(\hat{K}',B_Y)$ follows.

In order to prove the proposition it is sufficient to remark that, for every polycylinder $K'' \subset \hat{K}'$, the restriction homomorphism

$$H^0(\hat{K}',B_Y) \to H^0(\hat{K}'',B_Y)$$

has a dense image. Q.E.D.
Recall some properties of infinite dimensional spaces: let V be an open subset of a Banach \mathbb{C}-vector space; let F be a Banach vector space and $f: V \to F$ an analytic map. Let \mathcal{X} the Banach analytic space defined by the equation $f = 0$; \mathcal{X} is a local model of general Banach analytic space; the morphisms from \mathcal{X} into a Banach vector space G extend locally in analytic maps on open subsets of V; for such a morphism $\varphi: \mathcal{X} \to G$ the equation $\varphi = 0$ defines in a natural way a Banach analytic subspace of \mathcal{X}; the morphisms from a Banach analytic space \mathcal{Y} into \mathcal{X} are exactly the morphisms $\psi: \mathcal{Y} \to V$ such that $f \circ \psi = 0$.

Proposition 4. — Let $S_{K,K'}$ be the subset of elements of $G_{K,K'}$ which are $m_{K,K'}$-stable. Then $S_{K,K'}$ is a Banach analytic subspace of $G_{K,K'}$.

Proof. — Let $Y_0 \in S_{K,K'}$ and $Y_0' = \rho_{K,K}(Y_0)$; let G_0 (resp. G_0') a closed \mathbb{C}-vector subspace of $B(K,\Theta_X)$ (resp. $B(K',\Theta_X)$) which is a topological supplementary of Y_0 (resp. Y_0'). Let U_0 (resp. U_0') the set of closed \mathbb{C}-vector subspaces of $B(K,\Theta_X)$ (resp. $B(K',\Theta_X)$) which are topological supplementaries of G_0 (resp. G_0'); we identify U_0 and $L(Y_0, G_0)$, hence $U_0 \cap G_K$ is a Banach analytic subspace of $U_0([4] \S 4)$.

For every Y in U_0 one denotes $p_Y: B(K,\Theta_Y) = Y \oplus G_0 \to G_0$ the projection and $j_Y: Y_0 \to Y \subset B(K,\Theta_Y)$ the reciprocal map of the restriction to Y of the projection $B(K,\Theta_X) = Y_0 \oplus G_0 \to Y_0$.

Then the two maps

\[
p^K: G_K \to L(B(K,\Theta_X), G_0)
\]
\[
j^K: G_K \to L(Y_0, B(K,\Theta_X))
\]

defined by $p^K(Y) = p_Y$ and $j^K(Y) = j_Y$ are induced by morphisms ([4] § 4, n° 1); associated to the polycylinder K' we have in the same way morphisms $p^{K'}$ and $j^{K'}$. Put $W_0 = G_{K,K'} \cap U_0 \cap \rho_{K,K}^{-1}(U_0)$; W_0 is an open subset of $G_{K,K'}$. Let be

\[
\varphi_1 = p^{K'} \circ \rho_{K,K}: W_0 \to L(B(K',\Theta_X), G_0)
\]

and $\Delta: G_K \to L(Y_0 \otimes Y_{0}, B(K',\Theta_X))$ the morphism defined by

\[
\Delta(Y) = m_{K,K'} \circ (j_Y \times j_Y).
\]

Let be $\varphi_2 = \Delta \circ j^K: W_0 \to L(Y_0 \otimes Y_{0}, B(K',\Theta_X))$; φ_1 and φ_2 are
morphisms; let

\[\varphi : W_0 \rightarrow L(Y_0 \otimes Y_0, G_0) \]

be the morphism defined by

\[\varphi(Y) = \varphi_2(Y) \circ \varphi_1(Y). \]

We have \(W_0 \cap S_{K,K'} = \varphi^{-1}(0) \), hence \(S_{K,K'} \cap W_0 \) is a Banach analytic subspace of \(W_0 \); following ([4] § 4, n° 1 (i) and (ii)) one easily proves that the analytic structures obtained in the different charts of \(G_K \) and \(G_{K'} \) patch together in an analytic structure on \(S_{K,K'} \); that proves proposition 4.

Remark 1. — With the previous notations the morphisms of Banach analytic spaces \(g : Z \rightarrow S_{K,K'} \cap W_0 \) are the morphisms \(g : Z \rightarrow W_0 \) satisfying \(\varphi \circ g = 0 \).

Let \(i : S_{K,K'} \rightarrow G_K \) be the inclusion and \(R_{K,K'} \) the pullback of \(R_K \) by \(i \); \(R_{K,K'} \) is \(S_{K,K'} \)-anaflat; by construction \(R_{K,K'} \) is a quotient of \(p^*_{S_{K,K'}} \Theta_X \), then put

\[R_{K,K'} = p^*_{S_{K,K'}} \Theta_X / T_{K,K'}. \]

By anaflatness one obtains for every \(s \in S_{K,K'} \) an exact sequence of coherent sheaves on \(K' \):

\[0 \rightarrow T_{K,K'}(s) \rightarrow \Theta_X \rightarrow R_{K,K'}(s) \rightarrow 0. \]

From the definition of the analytic structure of \(S_{K,K'} \) and from proposition 3 one deduces the following theorem:

THEOREM 3. — (i) For every \(s \in S_{K,K'} \) the restriction to \(K' \) of the coherent subsheaf \(T_{K,K'}(s) \) of \(\Theta_X \) is stable by the bracket-map.

(ii) For every Banach analytic space \(Z \) and every quotient \(\mathcal{F} = p^*_Z \Theta_X / T \) of \(p^*_Z \Theta_X \) by a \(O_{Z \times X} \)-submodule \(T \) such that

- \(\mathcal{F} \) is \(Z \)-anaflat.
- \(T \) is \(m_Z \)-stable and for any \(z \in Z \) the poly cylinders \(K \) et \(K' \) are \(\mathcal{F}(z) \)-privileged;

then the unique morphism \(g : Z \rightarrow G_K \) satisfying

\[(g \times 1_K)^* R_K = \mathcal{F} \]

factorizes through \(S_{K,K'} \) (i.e. it exists a unique morphism \(f : Z \rightarrow S_{K,K'} \) with \(r \circ f = g \)).
Remark 2. — We don’t know if the restriction of R^*,K to $S^*,K \times \hat{K}'$ is $m_{S,K,K}$-stable; but if S is a finite dimensional analytic space then the pull back of R^*,K by any morphism $S \to S^*,K$ is m_S-stable.

In this section X denotes a compact reduced normal space and Θ_X its tangent sheaf. Let H be the universal space of quotient O_X-modules of Θ_X and \mathcal{R} the H-flat universal sheaf on $H \times X$ ([4]). Put $\mathcal{R} = p_H^*\Theta_X/\mathcal{E}$, \mathcal{E} being a coherent submodule of $p_H^*\Theta_X$; for any $h \in H$, $\mathcal{E}(h)$ is a coherent submodule of Θ_X. We shall construct the space \mathcal{H} as an analytic subspace of an open subset of H.

1. Refining of a privileged « cuirasse ».

Let M be a Θ_X-privileged « cuirasse » ([4] § 9, no 2); M is given by,

(i) a finite family $(\varphi_i)_{i \in I}$ of charts of X, i.e. for every $i \in I$, φ_i is an isomorphism from an open set $X_i \subset X$ onto a closed analytic subspace of an open set U_i in \mathbb{C}^n,

(ii) for every $i \in I$ a Θ_X-privileged polycylinder $K_i \subset U_i$ (i.e. a $\varphi_{i*}\Theta_X$-privileged polycylinder) and an open set $V_i \subset X_i$ satisfying

\[V_i = \varphi_i^{-1}(\hat{K}_i) \subset X_i \]

\[X = \bigcup_{i \in I} V_i \]

(iii) for every $(i,j) \in I \times J$ a chart φ_{ij} defined on $X_i \cap X_j$ with values in an open $U_{ij} \subset \mathbb{C}^n$ and a finite family (K_{ij}) of Θ_X-privileged polycylinders in U_{ij} such that conditions

\[V_i \cap V_j \subset \bigcup_{a} \psi_{ij}^{-1}(K_{ij}) \]

\[\varphi_{ij}^{-1}(K_{ij}) \subset \varphi_i^{-1}(\hat{K}_i) \cap \varphi_j^{-1}(\hat{K}_j) \]

are fulfilled.

As in ([4]) let us denote H_M the open subset of the elements F of H for which M is F-privileged (i.e. all the polycylinders K_i, K_{ij} are F-privileged); we shall construct \mathcal{H} as union of open subsets $\mathcal{H} \cap H_M$.

For any Θ_X-privileged polycylinder K let us denote G_K (§ 2) the Banach analytic space of quotients of $B(K, \Theta_X)$ with finite direct resolution.
For every $i \in I$ let G_i be the open subset of G_{K_i} on which, for any α, the restriction homomorphisms $B(K_i) \to B(K_{ij})$ induce morphisms $G_i \to G_{K_{ij}}$. The Douady construction of H_M gives a natural injective morphism

$$i : H_M \to \prod_{i \in I} G_i.$$

Definition 5. — A refining of the « cuirasse » M is given by a family $(K_i)_{i \in I}$ of polycylinders satisfying:

(i) for every i, $\varphi_i(V_i) \subset \hat{K}_i \subset K'_i \subset \hat{K}_i$,

(ii) for every i, j, α, $\varphi_{ij}^{-1}(K_{ij}) \subset \varphi_i^{-1}(\hat{K}_i) \cap \varphi_j^{-1}(\hat{K}_j)$,

(iii) for every i, K_i is Θ_X-privileged.

We denote by $M((K_i))$ such a refining; for any coherent sheaf \mathcal{F} on X we shall say that $M((K_i))$ is \mathcal{F}-privileged if M is \mathcal{F}-privileged and if, for every i, K_i is \mathcal{F}-privileged.

Lemma 1. — (i) Let \mathcal{F} be a coherent sheaf such that M is \mathcal{F}-privileged; then it exists a \mathcal{F}-privileged refining of M.

(ii) Let $M((K_i))$ a refining of M; then the set of quotient \mathcal{F} of Θ_X such that $M((K_i))$ is \mathcal{F}-privileged is open in H_M.

Proof. — (i) follows from ([4] § 7, n° 3 corollary of prop. 6) and (ii) is an immediate consequence of flatness and privilege.

2. Now we fix a Θ_X-privileged « cuirasse » $M = M(I,(K_i),(V_i),(K_{ij}))$ and a Θ_X-privileged refining $M((K_i))$ of M.

Lemma 2. — Let H'_M be the subset of H_M the points of which are quotients Θ_X/T satisfying:

(i) $M((K_i))$ is Θ_K/T-privileged,

(ii) T is a subsheaf of Θ_X stable by the bracket-map.

Then H'_M is an analytic subspace of an open subset of H_M.

Proof. — Using notations of section 2 one puts for every $i \in I$

$$G'_i = G_{K_i,K_i} \cap G_i$$

G'_i is an open subset of G_i and G_{K_i}; put $S_i = S_{K_i,K_i} \cap G'_i$.
One knows that the category of Banach analytic spaces has finite products, kernel of double arrows and hence fiber products (for all this notions the reader can refer to ([4] § 3, n° 3). Then \(\prod_{i \in I} S_i \) is a Banach analytic subspace of \(\prod_{i \in I} G_i \); since \(\prod_{i \in I} G_i \) is an open subset of \(\prod_{i \in I} G_i \) it follows from (§ II Theorem 3)

\[
H_M = H_M \times \prod_{i \in I} G_i \times \prod_{i \in I} S_i
\]

and the lemma is proved.

Now let \(R_M' \) (resp. \(T_M' \)) be the pull back of \(R \) (resp. \(T \)) by the inclusion morphism \(H'_M \times X \to H \times X \); \(R_M \) is the quotient of \(p_{H_M}^* \Theta_X \) by \(T_M \) (the sheaves \(T_M \) and \(\ker [p_{H_M}^* \Theta_X \to R_M] \) are \(H_M \)-flat and equal on the fibers \(\{ h \} \times X \).

Lemma 3. — \(T_M' \) is a \(m_{H_M}' \)-stable submodule of \(p_{H_M}^* \Theta_X \).

The proof follows immediately of the remark 2 of paragraph 2 and of

\[
X = \bigcup_{i \in I} V_i = \bigcup_{i \in I} \varphi_i^{-1}(K_i).
\]

Using the universal property of \(H_M \), Theorem 3 § 2 and the commutative diagram

\[
\begin{array}{ccc}
H'_M \times X & \to & H_M \times X \\
\downarrow & & \downarrow \\
\left(\prod_{i \in I} G_i \right) \times X & \to & \left(\prod_{i \in I} G_i \right) \times X
\end{array}
\]

we obtain the following proposition:

Proposition 1. — Let \(Z \) be an analytic space and \(T_Z \) a coherent subsheaf of \(p_Z^* \Theta_X \) satisfying :

(i) \(p_Z^* \Theta_X / T_Z \) is \(Z \)-flat.

(ii) For every \(z \in Z \) the cuirasse \(M((K_i)) \) is \(\Theta_X / T_Z(z) \)-privileged.

(iii) \(T_Z \) is a \(m_Z \)-stable submodule of \(p_Z^* \Theta_X \).
Then the unique morphism $g : Z \to H$ such that
\[(g \times I_X)^* \mathcal{R} = p^*_Z \Theta_X/T_Z\]
factorizes through H^*_M and verifies
\[(g \times I_X)^* T^*_M = T_Z.\]

3. End of the proof of Theorem 1.

Notations are those of the previous proposition; the unicity of g implies
the unicity of its factorization through the subspace H^*_M of H. Hence, when
the refinings of a given M are varying, one obtains analytic spaces H^*_M
which patch together in an analytic subspace of an open subset of H_M.

When the « cuirasse » M varies in the family of all the Θ_X-privileged
« cuirasse » the spaces H_M form an open covering of H; then the universal
property of the H_M's implies that $\tilde{H} = \bigcup_M H^*_M$ is an analytic subspace of an
open subset of H. Theorem 4 is proved.

Remark. — More generally if X is not compact, let Θ be a coherent
sheaf on X and $m : \Theta \times \Theta \to \Theta$ a sheaf morphism inducing for each open
set U a continuous C-bilinear map $m_U : \Theta(U) \times \Theta(U) \to \Theta(U)$; let H
be the Douady space of the coherent quotients of Θ with compact support
([4]). We get a universal analytic structure on the subset of those quotients
which are m-stable.

BIBLIOGRAPHY

[5] B. MALGRANGE, Frobenius avec singularités-codimension 1, Pub I.H.E.S.,
ético 46 (1976).

Manuscrit reçu le 12 mars 1986.

Geneviève POURCIN,
Département de Mathématiques
Faculté des Sciences
2 Bd Lavoisier
49045 Angers Cedex (France).