ROBERT BROOKS

On the angles between certain arithmetically defined subspaces of C^n

<http://www.numdam.org/item?id=AIF_1987__37_1_175_0>
ON THE ANGLES BETWEEN CERTAIN ARITHMETICALLY DEFINED SUBSPACES OF C^n

by Robert BROOKS(*)

In this note, we consider the following problem: Let \(\{v_i\} \) and \(\{w_j\} \) be two sets of unitary bases for \(\mathbb{C}^n \). The bases \(\{v_i\} \) and \(\{w_j\} \) are about as "independent as possible" if, for all \(i \) and \(j \), \(|\langle v_i, w_j \rangle|\) is on the order of \(\frac{1}{\sqrt{n}} \). For \(\theta \) some fixed number, for instance \(\frac{1}{5} \), we consider linear spaces \(V^\theta \) (resp. \(W^\theta \)) spanned by \([\theta \cdot n] \) of the vectors in the set \(\{v_i\} \) (resp. \(\{w_j\} \)), where \([] \) denotes the greatest integer function. What can one say about the angle between \(V^\theta \) and \(W^\theta \), as \(n \) tends to infinity?

In view of the paper [5], we may view such a question as relating to the prediction theory of such subspaces, although we do not see a direct connection between the methods of [5] and the present paper.

Let us consider the following special cases: In the first case, let \(\{v_i\} \) be the standard basis for \(\mathbb{C}^n \), and let \(\{w_j\} \) be the "Fourier transform" of this basis

\[
w_j = \frac{1}{\sqrt{n}} (\xi^j, \xi^{2j}, \ldots, \xi^{nj})
\]

(*) Partially supported by NSF grant DMS-83-15522 ; Alfred P. Sloan fellow.

Key-words: Angles — \(\lambda_1 \) — Eigenvalues — Kloosterman sum.
where \(\zeta = e^{2\pi i/n} \) is a primitive \(n\)-th root of 1. Then clearly
\[
|\langle v_i, w_j \rangle| = \frac{1}{\sqrt{n}} \quad \text{for all } i,j.
\]

For a number \(\alpha \), let us denote by \(\lfloor \alpha \rfloor \) the distance from \(\alpha \) to the nearest integer
\[
\lfloor \alpha \rfloor = \inf_{n \in \mathbb{Z}} |\alpha - n|.
\]

Let \(V^\theta \) and \(W^\theta \) denote the spaces spanned by
\[
\left\{ v_i: \left[\frac{i}{n} \right] < \theta \right\} \quad \text{and} \quad \left\{ w_j: \left[\frac{j}{n} \right] < \theta \right\}
\]
respectively. For \(\sigma_n \), a permutation of the integers \((\text{mod } n)\), let
\(W^\theta_{\sigma_n} \) be the space spanned by
\[
\left\{ w_j: \left[\frac{\sigma_n(j)}{n} \right] < \theta \right\}.
\]
Then we will show :

Theorem 1. (a) For any \(\theta \), the angle between \(V^\theta \) and \(W^\theta \)
tends to 0 as \(n \) tends to \(\infty \).

(b) If the permutations \(\sigma_n \) are "sufficiently mixing", then the
angle between \(V^\theta \) and \(W^\theta_{\sigma_n} \) stays bounded away from 0 as \(n \)
tends to \(\infty \).

By "sufficiently mixing", we mean that, for all \(i \), we do not
have both \(\left[\frac{\sigma_n(i)}{n} \right] < \theta \) and \(\left[\frac{\sigma_n(i+1)}{n} \right] < \theta \). Clearly,
weaker hypotheses on the \(\sigma_n \) would also allow us to conclude (b),
but we will not explore this question here.

Now let us consider the following different example: for a prime \(p \), let \(\chi \) denote an even multiplicative character \((\text{mod } p)\). Then
set \(\{ v_i \}, \{ w_j \} \) to be the following bases for \(\mathbb{C}^{p+1} \):

\[
v_j = \frac{1}{\sqrt{p}} (1, \zeta^j, \ldots, \zeta^{(n-1)j}, 0) \quad j = 0, \ldots, p-1
\]

\[
v_p = (0, \ldots, 0, 1)
\]

\[
w_k = \frac{1}{\sqrt{p}} (0, \chi(1) \zeta^{-k}, \chi(2) \zeta^{-2k}, \ldots, \chi(n-1) \zeta^{-(n-1)k}, 1)
\]

\[k = 0, \ldots, p-1 \]
where \(\bar{m} \) denotes the reciprocal of \(m \) (mod \(p \)). Note that

\[
\langle v_j, w_k \rangle = \frac{1}{p} \sum_{x=1}^{p-1} \chi(k) \xi^{jx+kx} = \frac{1}{p} S_\chi(j, k, p)
\]

where \(S_\chi(j, k, p) \) is a Kloosterman sum. The fact that the bases \(\{v_k\}, \{w_k\} \) are about as "independent as possible" is a deep result of A. Weil \([7]\) that \(|S_\chi(j, k, p)| < 2\sqrt{p} \).

Denoting by \(V_\theta \) and \(W_\theta \) the vectors spanned by

\(\{v_j: \lceil i/p \rceil < \theta\} \) and \(\{w_j: \lfloor j/p \rfloor < \theta\} \)

respectively, our second result is:

Theorem 2. For \(\theta \) sufficiently small, the angle between \(V_\chi \) and \(W_\chi \) stays bounded away from 0 as \(p \) tends to \(\infty \), uniformly with respect to \(\chi \).

Our proof of Theorem 2 relies on the deep theorem of Selberg \([6]\) that, when \(\Gamma_n \) is a congruence subgroup of \(\text{PSL}(2, \mathbb{Z}) \), then the first eigenvalue \(\lambda_1(H^2/\Gamma_n) \) of the spectrum of the Laplacian satisfies

\[
\lambda_1(H^2/\Gamma_n) \geq \frac{3}{16}.
\]

Another important ingredient in Theorem 2 is our recent work \([3]\) on the behavior of \(\lambda_1 \) in a tower of coverings. Indeed it is not difficult to find an extension of Theorem 2 which is actually equivalent, given \([3]\), to Selberg's theorem, at least after replacing "\(\frac{3}{16} \)" by "some positive constant".

The main number-theoretic input into Selberg's theorem is the Weil estimate. Theorem 1 shows that, by contrast, the conclusion of Theorem 2 cannot be achieved directly by appealing to the Weil estimate, and suggests an interpretation of Selberg's theorem in terms of the random distribution of Kloosterman sums.

The proof of Theorem 1 is completely elementary.

We would like to thank Peter Sarnak for useful discussions, and Alice Chang for showing us the paper \([5]\) and for her suggestions.
1. A Lemma.

In this section, we give a simple lemma in linear algebra which is the key to proving Theorems 1 and 2.

Suppose U and T are unitary matrices acting on \mathbb{C}^n. For a given value δ, let U^δ (resp. T^δ) be the subspace spanned by the eigenvectors of U (resp. T) whose eigenvalues λ satisfy $|\lambda - 1| < \delta$. Let U^\perp_1 and V^\perp_1 denote the perpendicular subspaces.

Denote by $k(U, T)$ the expression

$$k(U, T) = \inf_{\|x\|=1} \max (\|U(x) - x\|, \|T(x) - x\|).$$

Let $\alpha(\delta)$ denote the cosine of the angle between U^δ and T^δ:

$$\alpha(\delta) = \sup_{x \in U^\delta, y \in V^\delta} \frac{|\langle x, y \rangle|}{\|x\| \|y\|}.$$

The main result of this section is:

Lemma. $-\delta \sqrt{\frac{1 - \alpha^2}{2}} \leq k(U, T) \leq \delta \alpha^2 + 4(1 - \alpha^2)$.

Proof. To show the right-hand inequality, let X be a unit-length vector in U^δ such that its orthogonal projection Y onto T^δ is of maximum length $\alpha(\delta)$.

Since $X \in U^\delta$, we have $\|U(X) - X\| \leq \delta$. Writing

$$X = Y + Y^\perp, Y^\perp \in T^\perp_1,$$

we see that

$$\|T(X) - X\|^2 = \|T(Y) - Y\|^2 + \|T(Y^\perp) - Y^\perp\|^2 \leq \delta^2 \cdot \alpha^2 + 4(1 - \alpha^2).$$

So $k(U, T) \leq \max (\delta, \sqrt{\delta^2 \alpha^2 + 4(1 - \alpha^2)})$. When $\delta < 2$, the second term on the right is $\geq \delta$. When $\delta \geq 2$, then $\alpha = 1$ and again the second term is $\geq \delta$.

To get the left-hand inequality, let X be a vector of length 1 minimizing $\sup (\|U(X) - X\|, \|T(X) - X\|)$. Write

$$X = X_U + X_T + X_L$$

where $X_U \in U^\delta$, $X_T \in T^\delta$, and $X_L \in U_1^\delta \cap T_1^\delta$. Then

$$\|U(X) - X\|^2 \geq \delta^2 \left[(1 - \alpha^2) \|X_T\|^2 + \|X_L\|^2\right]$$

$$\|T(X) - X\|^2 \geq \delta^2 \left[(1 - \alpha^2) \|X_U\|^2 + \|X_L\|^2\right]$$

and so

$$\delta^2 (1 - \alpha^2) \|X\|^2 \leq \|U(X) - X\|^2 + \|T(X) - X\|^2 \leq 2 k^2 (U, T)$$

and so $k(U, T) \geq \delta \sqrt{\frac{1 - \alpha^2}{2}}$.

From the left-hand estimate, we see that for δ fixed, and hence for δ arbitrarily small, a lower bound for $1 - \alpha^2$ gives a lower bound for $k(U, T)$. From the right-hand side, we see that a lower bound for $k(U, T)$ gives, for $\delta \ll k(U, T)$, a lower bound for $1 - \alpha^2$.

2. Proof of Theorem 1.

Let $v_i = (0, 0, \ldots, 1, 0, \ldots, 0)$ be the standard basis for C^n and let

$$w_j = \frac{1}{\sqrt{n}} (\xi^j, \xi^{2j}, \ldots, \xi^{nj}).$$

Let V be the unitary transformation whose eigenvectors are the v_i's, with $V(v_i) = \xi^i v_i$. Of course, the matrix for V is simply the diagonal matrix

$$V = \begin{pmatrix}
\xi^1 & 0 \\
0 & \xi^2 \\
0 & \xi^n
\end{pmatrix}.$$

Similarly, let W be the unitary transformation whose eigenvectors are the w_i's, with $W(w_i) = \xi^i \cdot w_i$. We compute:
Lemma. \(W = \begin{pmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ 1 & 0 & 0 & \ldots & 0 \end{pmatrix} \)

Proof. \(W = E V E^{-1} \), where \(E = (e_{ij}) \) is given by
\[
e_{ij} = \frac{1}{\sqrt{n}} i^j.
\]
The lemma now follows by routine calculation.

To prove Theorem 1\((a)\) it suffices, from the lemma of \(\S 1 \), to show that \(k(V, W) \) tends to 0 as \(n \) tends to infinity.

But \(V - I \) has the matrix expression
\[
\begin{pmatrix}
\xi - 1 & 0 \\
0 & \xi^2 - 1 \\
0 & \ldots & \xi^n - 1
\end{pmatrix}
\]
so that any element in \(V^\theta \) satisfies
\[
\| (V - I) (\nu) \| \leq 2 \sin \left(\frac{\theta}{2} \right) \| \nu \|.
\]

Now consider the vector \(\nu_n \) whose \(j \)th coordinate is 1 for \(\lfloor j/n \rfloor \leq \theta \), and is 0 otherwise. Then we have that \(\nu_n \in V^\theta \), so that, by (*) we have
\[
\| (V - I) (\nu_n) \| \leq 2 \sin \left(\frac{\theta}{2} \right) \| \nu_n \|.
\]

On the other hand, from the lemma, we compute easily that
\[
\| (W - I) (\nu_n) \| = \sqrt{2}.
\]
Since \(\| \nu_n \| = \sqrt{2 \lfloor n \cdot \theta \rfloor + 1} \), where \(\lfloor \cdot \rfloor \) denotes the greatest integer function, we have that
\[
k(V, W) \leq \sup \left(2 \sin \left(\frac{\theta}{2} \right), \frac{1}{\sqrt{n \cdot \theta + 1}} \right).
\]

It is then evident that as \(n \to \infty \), we may choose \(\theta \to 0 \) such that the right-hand side \(\to 0 \), establishing Theorem 1\((a)\).
To establish 1 (b), we first notice from the computation of the lemma that whenever σ_n is sufficiently mixing,
\[\| (W \sigma_n - I) v \| = (\sqrt{2}) \| v \| \]
for $v \in V^\theta$. Fixing θ, for $v \in V^\theta$, let us write
\[v = w + w^1, w \in W^\theta_{\sigma_n}, w^1 \in (W^\theta_{\sigma_n})^1. \]

\[2 \| v \|^2 = \| W_{\sigma_n} (v) - v \|^2 = \| W_{\sigma_n} (w) - w \|^2 + \| W_{\sigma_n} (w^1) - w^1 \|^2 \]
\[\leq 4 \sin^2 (\pi \theta) \cdot \| w \|^2 + 4 \| w^1 \|^2 = 4 \sin^2 (\pi \theta) \cdot \| w \|^2 \]
\[+ 4 (\| v \|^2 - \| w \|^2) \]
from which we see that
\[4 (1 - \sin^2 (\pi \theta)) \| w \|^2 \leq 2 \| v \|^2 \]
so that \[\frac{\| w \|}{\| v \|} \leq \frac{1}{(\sqrt{2})} \cos (\pi \theta), \]
\[\alpha \leq \left(\frac{1}{\sqrt{2}} \right) \cos (\pi \theta). \]
Choosing θ smaller that $\frac{1}{4}$ then establishes Theorem 1 (b).

3. Proof of Theorem 2.

We begin this section with a quick review of the result of [3]. For M a compact manifold, and $M^{(i)}$ a family of finite covering spaces of M, we seek conditions of a combinatorial nature on $\pi^i (M)$ which govern the asymptotic behavior of $\lambda_1 (M^{(i)})$ as i tends to infinity.

To state the main result of [3], let us assume that the $M^{(i)}$'s are normal coverings of M, so that the group $\pi^i = \pi_1 (M)/\pi_1 (M^{(i)})$ are defined. Let us also fix generators g_1, \ldots, g_k for $\pi (M)$ — note that g_1, \ldots, g_k also generate all the π^i's.

Let H_f denote orthogonal complement to the constant function in $L^2 (\pi^i)$, which carries an obvious unitary structure preserved by the action of π^i.

If H is any space on which π acts unitarily, denote by $k (H)$
the "Kazhdan distance" from H to the trivial representation defined by
\[k(H) = \inf \sup \|g_i(X) - X\|. \]
\[\|X\| = 1 \quad i = 1, \ldots, k \]
Then we have:

Theorem ([3]). — The following two conditions are equivalent:

a) There exists $c > 0$ such that $\lambda_1(M^{(i)}) > c$ for all i.

b) There exists $k > 0$ such that $k(H_i) > k$ for all i.

We may now extend this result in the following way: we observe that each non-trivial representation of π^i occurs as an orthogonal direct summand in H_i, and furthermore that
\[k\left(\bigoplus_{i=1}^n H_i \right) = \inf k(H_i). \]
Hence we may rephrase the Theorem as follows:

Corollary. — The following two conditions are equivalent:

a) There exists $c > 0$ such that $\lambda_1(M^{(i)}) > c$ for all i.

b) There exist $k > 0$ such that for all i and for every non-trivial irreducible unitary representation H of π^i, $k(H) > k$.

We now observe that, using the technique of [1] and [2], we may weaken the hypothesis that M be compact. To explain this briefly, let us assume that M has finite volume, and let F be a fundamental domain for M in \tilde{M}.

Recall from [1] that M satisfies an "isoperimetric condition at infinity" if there is a compact subset K of F such that $h(F - K) > 0$ where h denote the Cheeger isoperimetric constant, with Dirichlet conditions on ∂K and Neumann conditions on $\partial F - \partial K$.

When M is a Riemann surface with finite area and a complete metric of constant negative curvature, then it is easily seen that M satisfies an isoperimetric condition at infinity.

The technique of [1] and [2] then applies directly to show how to adapt the arguments of the compact case to the case when M satisfies an isoperimetric condition at infinity.
We now apply these considerations to the manifolds
\[M^{(n)} = H^2 / \Gamma_n , \text{ where } \Gamma_n \subset PSL(2, \mathbb{Z}) \]
is the congruence subgroup
\[\Gamma_n = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{n} \}. \]

According to the theorem of Selberg [6] mentioned above,
\[\lambda_1 (H^2 / \Gamma_n) > \frac{3}{16}. \]

Let us fix generators
\[V = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad W = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \]
for PSL(2, \mathbb{Z}), and observe that H^2 / \Gamma_n is a finite area Riemann
surface covering H^2 / PSL(2, \mathbb{Z}), with covering group
\[\pi^n = PSL(2, \mathbb{Z}/n). \]

It follows from the corollary that there is a constant \(k > 0 \) such that,
for \(H \) any non-trivial irreducible representation of PSL(2, \mathbb{Z}/n),
we have \(k(H) > k \).

We now let \(n \) be a prime \(p \), and fix a Dirichlet character \(\chi \pmod{p} \). We will assume that \(\chi(-1) = 1 \). We now consider the
following representation \(H_\chi \), which is the representation associated
to \(\chi \) in the continuous series of representations of PSL(2, \mathbb{Z}/n):
The representation of \(H_\chi \) is the set of all functions \(f \) on
\[\mathbb{Z}/p \times \mathbb{Z}/p - \{0\} \]
which transform according to the rule
\[f(tx, ty) = \chi(t)f(x, y), \quad t \in (\mathbb{Z}/p)^* \quad (*) \]
and where PSL(2, \mathbb{Z}/p) acts on \(f \) by the rule
\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} f(x, y) = f(ax + cy, bx + dy). \]

We may take as a basis for \(H_\chi \) the functions
\[f_a(x, 1) = 1 \text{ if } x = a \]
\[= 0 \text{ otherwise} \]
\[f_a(1, 0) = 0 \]
for \(a = 0, \ldots, p - 1 \) and
\[f_\infty(x, 1) = 0 \text{ for } x = 0, \ldots, p - 1 \]
\[f_\infty(1, 0) = 1 \]
using (*) to extend the \(f_a \)'s to all values of \(x, y \).

Then an orthonormal basis of eigenvectors of \(V \) is given by
\[
v_b = \frac{1}{\sqrt{p}} \left(\sum_{x=0}^{p-1} \xi^{bx} \cdot f_x \right)
V(v^b) = \xi^b v_b
\]
\[v_\infty = f_0 \quad V(v_\infty) = v_\infty. \]
and an orthonormal basis of eigenvectors of \(W \) is given by
\[
w_b = \frac{1}{\sqrt{p}} \left(\sum_{x=0}^{p-1} \xi^{-bx} \chi(x) f_{\bar{x}} \right)
W(w^b) = \xi^b w_b
\]
\[w_\infty = f_0 \quad W(w_\infty) = w_\infty. \]
where \(\bar{x} \) is the multiplicative inverse of \(x \) (mod \(p \)), and \(\bar{0} = \infty \).

When \(\chi \) is the trivial character, the vector
\[
\sqrt{\frac{p}{p+1}} v_0 + \frac{1}{\sqrt{p+1}} v_\infty = \sqrt{\frac{p}{p+1}} w_0 + \frac{1}{\sqrt{p+1}} w_\infty
\]
splits off as a trivial representation, but for all other characters \(\chi, H_\chi \) is irreducible [4].

Theorem 2 is now an immediate consequence of the corollary above, the lemma of § 1, and Selberg's theorem.
BIBLIOGRAPHIE

Manuscrit reçu le 9 juillet 1985
révisé le 14 mai 1986.

Robert BROOKS,
Dept. of Mathematics
University of Southern California
Los Angeles, CA 90089-1113 (USA).