JEAN BOURGAIN

Translation invariant forms on $L^p(G)(1 < p < \infty)$

<http://www.numdam.org/item?id=AIF_1986__36_1_97_0>
TRANSLATION INVARIANT FORMS
ON $L^p(G)$ ($1 < p < \infty$)

by Jean BOURGAIN

1. Introduction.

It was proved by G.H. Meisters and W.M. Schmidt in [4] that
translation invariant linear forms on the complex Lebesgue space
$L^2(G)$, G a compact Abelian group with a finite number of compo-
nents, are necessarily continuous and consequently scalar multiples
of the Haar measure. Their result was generalized by B. Johnson (see
[2]) to the case of Abelian groups G such that G/C is polythetic,
where C is the connected component of the identity. We will not
consider such group theoretical refinements here and restrict ourselves
essentially to the circle group case. It should be mentioned however
that for instance the Hilbert space $L^2(D)$, $D = \{1, -1\}^\mathbb{N}$ the Cantor
discontinuum, does admit discontinuous translation invariant
linear forms (see [4]). In both [2], [4] the space $L^2(G)$ is identified
with the square summable Fourier transforms. The fact that the
Hausdorff-Young inequalities for $p \neq 1$ are only in one direction,
makes the proof of an $L^p(G)$ analogue (obtained here) more delicate.
Our basic result states that any mean zero element f of $L^p(G)$,

$$1 < p < \infty,$$

has a representation $f = \sum_{j=1}^{J} (f_j - \tau(a_j)f_j)$ with f_j in

$L^p(G)$ and a_j in $G(1 \leq j \leq J)$. For fixed $a \in G$, $\tau(a)$ in the usual
translation operator defined by $(\tau(a)f)(a') = f(a + a')$. Moreover,
one may fix $J = \max([p], [p']) + 1$, $[]$ standing for the integer
part and $p' = \frac{p}{p-1}$. This result solves a problem raised by A. Connes

Key-words: Translation invariant form – Hausdorff-Young inequalities – Interpol-
ation space
For $1 < p < 3$, the value for J can not be lowered. It seems more difficult to decide the sharpness of our theorem in case $3 \leq p$. We adopt in our presentation the general situation of a translation invariant function lattice on G, solving partially the broader problem suggested in [4].

2. Proof of main result.

Denote λ the normalized Haar-measure of G and Γ its (discrete Abelian) dual. Assume X a translation invariant Banach lattice of complex-valued functions on the group G, thus $\|f\|_X = \|f\| = \|\tau(a)f\|$ whenever $f \in X$ and $a \in G$, and X generated by Γ. We suppose that X is p-convex and p'-concave for some $1 < p \leq 2$ with constants $M(p)(X) = M(p')(X) = 1$ (see [3] for definitions and basic theory). In this setting, we may formulate the main theorem obtained in [5] and characterizing X as a certain interpolation space.

Proposition 1 (cf [5], p. 268). Define $X_1 = L^2(G)$ and X_0 as the set of those complex valued f in $L^0(G)$ such that $|f|^1 - \theta \in X$ whenever $g \in X_1$ and $\|f\|_{X_0} < \infty$ where θ is defined by $\frac{1}{p} = \frac{\theta}{2} + \frac{1 - \theta}{1}$ and

$$\|f\|_{X_0} = \sup \{| |f|^1 - \theta \| |g|^\theta \|_{X}^{1/1 - \theta}; \|g\|_{X}^{1} \leq 1\}.$$

Then the space X_0 equipped with $\| \cdot \|_{X_0}$ is a translation invariant Banach lattice on G and X identifies with the complex interpolation space $[X_0, X_1]_\theta$.

Next fact which we recall is a consequence of the essential uniqueness of the Haar measure for compact Abelian groups and the connectedness assumption on G (see [4], p. 413 for the details).

Proposition 2. Let $\chi \neq 0$ in Γ and J a fixed positive integer. Consider the homomorphism from $G^J = G \oplus \ldots \oplus G$ on π^J ($\pi = \text{circle group}$) defined by

$$h(a_1, \ldots, a_j) = (\chi(a_1), \ldots, \chi(a_j)).$$
If then f is any integrable complex valued function on π^1, we have the equality

$$\int_{\pi} f(\theta) \, d\theta = \int_{G^J} (fh) (\bar{a}) \, d\bar{a} \quad \bar{a} = (a_1, \ldots, a_J).$$

Consider first a polynomial f on G, i.e. f has a finite support, such that $\hat{f}(0) = \int_G f(a) \lambda(da) = 0$. For $i = 1, \ldots, J$ and $\bar{a} = (a_1 \ldots a_J)$ in G^J, we define

$$f_j[\bar{a}] = \sum_{\chi \neq 0} \hat{f}(\chi) \frac{1 - \chi(a_i)}{|1 - \chi(a_1)|^2 + \ldots + |1 - \chi(a_J)|^2} \chi$$

which, as a consequence of Prop. 2, makes sense for almost all \bar{a} in G^J. Moreover, by construction, we have the identity

$$f = \sum_{j=1}^{J} \{ f_j[\bar{a}] - \tau(a_j) f_j[\bar{a}] \}. \quad (2)$$

Proposition 3. - With the notations introduced above and $J > p'$, we have the inequality

$$\int_{G^J} \sum_{j=1}^{J} \| f_j[\bar{a}] \|_X \, d\bar{a} \leq c \| f \|_X \quad (3)$$

where c is a constant not depending on f.

Prop. 3 implies in particular the existence of some $\bar{a} \in G^J$ for which, besides (2), $\sum_{j=1}^{J} \| f_j[\bar{a}] \|_X \leq c \| f \|_X$. Since X is reflexive, a standard approximation and compactness argument enables us then to write each $f \in X$ in the form $f = \sum_{j=1}^{J} \{ f_j - \tau(a_j) f_j \}$ for some $f_j \in X$, $a_j \in G (1 \leq j \leq J)$. A more careful analysis of the preceding shows that $\bar{a} = (a_1, \ldots, a_J)$ may be chosen in a subset (depending on f) of G^J with measure 1.

Clearly a translation invariant linear form on X has each element $f - \tau(a)f$ in its null space and therefore coincides with a multiple of the (continuous) linear functional $f \rightarrow \hat{f}(0)$. The space
$L^q(G)$ for $1 < q < \infty$ is q-convex and q-concave, hence satisfies the p-convexity, p'-concavity hypothesis with $p = \min(q, q')$. As a corollary, the statement appearing in the introduction follows.

Corollary 4. Any f in $L^q(G)$ ($1 < q < \infty$) can be written in the form

$$f = \sum_{j=1}^{J} \{f_j - \tau(a_j)f_j\}$$

where $f_j \in L^q(G)$, $\|f_j\|_q \leq c_q \|f\|_q$, $a_j \in G (1 \leq j \leq J)$ and $J = \max([q], [q']) + 1$.

To show (3), it is of course enough to verify that

$$\int_{G^J} \|f_1[\bar{a}]\|_X \, d\bar{a} = \int_{G^J} \|f*\Omega_{\bar{a}}\|_X \, d\bar{a} \leq C \|f\|_X \tag{4}$$

where for $\bar{a} \in G^J$, $\Omega_{\bar{a}}$ is the distribution defined by

$$\hat{\Omega}_{\bar{a}}(\chi) = \frac{1 - \chi(a_1)}{|1 - \chi(a_1)|^2 + \cdots + |1 - \chi(a_j)|^2}.$$

Thus

$$\hat{\Omega}_{\bar{a}}(\chi) = \frac{1 - \text{Re}\chi(a_1) + i \text{Im}\chi(a_1)}{2|J - \text{Re}\chi(a_1) - \cdots - \text{Re}\chi(a_j)|} = \frac{1}{2J} \sum_{s=0}^\infty [\alpha_s^{\bar{a}}(\chi) + i \beta_s^{\bar{a}}(\chi)]$$

where

$$\alpha_s^{\bar{a}} = \Sigma_{\chi} (1 - \text{Re}\chi(a_1)) \left[\frac{\Sigma \text{Re}\chi(a_j)}{J} \right]^s \chi$$

and

$$\beta_s^{\bar{a}} = \Sigma_{\chi} \text{Im}\chi(a_1) \left[\frac{\Sigma \text{Re}\chi(a_j)}{J} \right]^s \chi.$$

Considers the operators $A_\sigma : X \to L^1_X(G^J)$ (resp. B_σ) defined by $A_\sigma f = f * \alpha_\sigma^{\bar{a}}$ (resp. $B_\sigma f = f * \beta_\sigma^{\bar{a}}$). Since $X = [X_0, X_1]_\theta$ (obtained in Prop. 1) implies also $L^1_X = [L^1_{X_0}, L^1_{X_1}]_\theta$ (see [6], Th. 5.2.1.), we may estimate

$$\|A_\sigma\| \leq (\|A_\sigma\|_{X_0 \to L^1_{X_0}})^{1-\theta} (\|A_\sigma\|_{X_0 \to L^1_{X_1}})^\theta \tag{5}$$
and similarly \(\|B_2\| \). In order to obtain Prop. 3 it will be sufficient to prove the majoration

\[
\sum_{s=0}^{\infty} (\|A_s\| + \|B_s\|) \leq c. \tag{6}
\]

The norms appearing are estimated from (5). We restrict ourselves to \(\|B_s\| \), which behaves worse than \(\|A_s\| \) and determines the condition on \(J \). Clearly, since \(X_0 \) is translation invariant

\[
\|B_s\|_{X_0 \to L^1_{X_0}} \leq \|B_s\|_{X_0 \to L^\infty_{X_0}} \leq \|B_s\|_{M(G)}.
\]

The latter quantity is further dominated by

\[
\| \sin \theta_1 \left[\sum_{j=1}^{J} \frac{\cos \theta_j}{J} \right]^s \|_{A(\Pi^J)} \leq (2J)^{-s} \| \sin \theta_1 \left[2 \cos \theta_1 + \sum_{j=2}^{J} (e^{i\theta_j} + e^{-i\theta_j}) \right]^s \|_{A(\Pi^J)}
\]

and by multi-nomial expansion of the \(s \)-power, can be estimated by

\[
(2J)^{-s} \sum_{k+s_2+t_2+\ldots+s_t+t_t \leq s} \frac{s!}{k! s_2! t_2! \ldots s_t! t_t!} \| \sin \theta (2 \cos \theta)^k \|_{A(\Pi)} \leq (2J)^{-s} \sum_{k=0}^{s} \frac{s!}{k! (s-k)!} (2J - 2)^{s-k} 2^k/k^{1/2} \leq C(J) s^{-1/2}
\]

since

\[
\| \sin \theta (\cos \theta)^k \|_A \leq 2^{-k} \sum_{j=0}^{k-1} \left| \binom{k}{j} - \binom{k}{j+1} \right| \leq c k^{-1/2}.
\]

Thus we proved that

\[
\|B_s\|_{X_0 \to L^1_{X_0}} \leq C(J) s^{-1/2}. \tag{7}
\]
Since $X_1 = L^2(G)$, it follows from Parseval's formula that

$$
\|B_s\|_{X_1 \to L^1_{X_1}} \leq \|B_s\|_{X_1 \to L^2_{X_1}} \leq \sup_{\chi \in \Gamma \setminus \{0\}} \|\text{Im} \chi(a)\|_{L^2(G)} \left(\frac{\sum \text{Re} \chi(a)}{J}\right)^{s},
$$

But, by proposition 2, this expression can be computed on Π^J as

$$
\|\sin \theta_1 \left[\sum_{j=1}^{J} \frac{\cos \theta_j}{J} \right] \|_{L^2(\Pi^J)} = \left\{ \sum_{s_1 + \ldots + s_j = s} \frac{2s!}{2s_1! \ldots 2s_j!} \left(\prod_{j \geq 2} \int \sin^2 \theta \cos^{2s_1} \theta \right) \right\}^{1/2}
$$

$$
\leq C(J) \left(\sum_{s_1 + \ldots + s_j = s} \frac{1}{s_1^{1/2} \ldots s_j^{1/2}} \left(\frac{1}{s_1^{1/2} \ldots s_j^{1/2}} \right) \right)^{1/2}
$$

$$
\leq C(J) J^{-s} s^{1/4} \left(\frac{2s!}{(2s + J + 1)!} \right)^{1/2} \left\{ \sum_{t_1 + \ldots + t_j = 2s + J + 1} \frac{(2s + J + 1)!}{t_1! \ldots t_j!} \right\}^{1/2}
$$

$$
\leq C(J) J^{-s} s^{1/4} s^{-1/2 - 1/2} J^{s + (1 + 1)/2}
$$

from where

$$
\|B_s\|_{X_1 \to L^1_{X_1}} \leq C(J) s^{- (1/4 + 1/2)}.
$$

Applying (5), (7), (8) and the equation $1/p = \theta/2 + (1 - \theta)/1$, we get the majoration

$$
\|B_s\| \leq C(J) s^{-(1 - \theta)/2} s^{- \theta (1/4 + 1/2)} = c(J) s^{-1/2 - 1/2 p}'.
$$

Consequently, the series (6) will converge provided $J > p'$. This concludes the proof.

3. Sharpness of the result.

It is reasonable to ask whether the condition $J > \max([q], [q'])$ stated in Corollary 4 is best possible. We show that this is the case for $1 < q < 2$. As will be clear from what follows, an application of this argument to for instance a Rudin-Shapiro type polynomial shows
that always J has to be at least 3. However, for $q \geq 3$, our method does not seem to determine whether the condition $J > q$ is necessary.

Take $G = \pi$. Fixing an integer N, the function $f(x) = N^{-1/q'} \sum_{|n| \leq N} e^{inx}$ has $\|f\|_q \leq c$. Assume now f represents

as

$$f = \sum_{j=1}^J [f_j - r(\theta_j)f_j]$$

then for $|n| \leq N$, $n \neq 0$

$$N^{-1/q'} \leq \left(\sum_{j=1}^J |\hat{f}_j(n)| \right) \max_j |1 - e^{in\theta_j}|.$$

Suppose we have r integers n_1, n_2, \ldots, n_r. One can then find a set of integers S, $\text{card}(S) > \frac{N}{2r}$ and such that $S - S = \{a - b | a \in S, b \in S\}$ satisfies

$$(S - S) \setminus \{0\} \subseteq \{n \in \mathbb{Z} | |n| \leq N, n \neq 0\} \setminus \{n_1, \ldots, n_r\}.$$

Next, an entropy argument for the group π^J allows to find some n_{r+1} in $S - S$, $n_{r+1} \neq 0$, such that

$$\max_{1 < j < J} |1 - e^{in_{r+1} \theta_j}| \leq c \left(\text{card } S \right)^{-1/J}.$$

Thus $|n_{r+1}| \leq N$, $n_{r+1} \neq n_1, \ldots, n_r$ and

$$\max_j |1 - e^{in_{r+1} \theta_j}| \leq c \left(\frac{N}{r} \right)^{-1/J}.$$

The inequality

$$N^{-1/q'} \leq c \left(\sum_{j=1}^J |\hat{f}_j(n_r)| \right) \left(\frac{N}{r} \right)^{-1/J} \quad (r = 1, 2, \ldots) \quad (9)$$

gives $J \geq q'$. Suppose q' an integer and $J = q'$. Then (9) becomes

$$\sum_{j=1}^J |\hat{f}_j(n_r)| > r^{-1/q'} \quad (r = 1, 2, \ldots).$$
which, by the Hausdorff-Young inequality \((\Sigma |\hat{f}(n)|^q)^{1/q} \leq \|f\|_q\), implies

\[\Sigma_j \|f_j\|_q > c(\log N)^{1/q}. \]

BIBLIOGRAPHY

Manuscrit reçu le 29 juin 1984
révisé le 10 janvier 1985.

Jean BOURGAIN,
Université de Bruxelles
Département de Mathématiques
Pleinlaan 2F7
1050 Bruxelles (Belgique).