NURIA VILA

Polynomials over Q solving an embedding problem

<http://www.numdam.org/item?id=AIF_1985__35_2_79_0>
In 1980 we have constructed infinitely many polynomials with coefficients in \(\mathbb{Q} \) having absolute Galois group the alternating group \(A_n \) (cf. [2]). Recently, J.-P. Serre (cf. [4]) has described the obstruction to a certain embedding problem as the Hasse-Witt invariant of an associated quadratic form.

In this note, using Serre's result, we see that the fields defined by the equations of [2], Th. 2.1, can be embedded in a Galois extension with Galois group \(\tilde{A}_n \), the representation group of \(A_n \), if and only if \(n \equiv 0 \) (mod. 8) or \(n \equiv 2 \) (mod. 8) and \(n \) sum of two squares. Then, for these values of \(n \), every central extension of \(A_n \) occurs as Galois group over \(\mathbb{Q} \).

I would like to thank Professor J.-P. Serre for communicating to me the results of [2] and for pointing out to me the case \(n \equiv 0 \) (mod. 8).

Let \(K \) be a number field and \(R \) its ring of integers. Let

\[
F(X) = X^n + aX^2 + bX + c, \quad ac \neq 0,
\]

be a polynomial of \(R[X] \) satisfying the following conditions:

(i) \(F(X) \) is irreducible and primitive.
(ii) \(b^2(n-1)^2 = 4acn(n-2) \).
(iii) \((-1)^{n/2}c \) is a square.
(iv) If \(u = -b(n-1)/2(n-2)a \), there exists a prime ideal \(p \) of \(R \) such that

\[
c(n-1) \notin p, \quad f(u) \in p \quad \text{and} \quad 3 \nmid v_p(f(u)).
\]

In [2], Th. 1.1, we have proved that if \(n \) is an even integer, \(n > 2 \), the Galois group of \(F(X) \) over \(K \) is isomorphic to the alternating group \(A_n \).

Key-words: Algebraic Number theory - Field theory and polynomials - Inverse problem of Galois theorem.
The main result of this note is

Theorem. — Suppose that \(n \) is an even integer, \(n > 6 \). Let \(N \) be the splitting field of the polynomial \(F(X) \). The extension \(N/K \) can be embedded in a Galois extension with Galois group a given central extension of \(A_n \) if and only if

\[
\begin{align*}
&n \equiv 0 \pmod{8}, \quad \text{or} \\
&n \equiv 2 \pmod{8} \quad \text{and} \quad n \text{ is a sum of two squares}.
\end{align*}
\]

Since for \(n \) even, we have constructed infinitely many polynomials with coefficients in \(\mathbb{Q} \) satisfying the condition (i), (ii), (iii), (iv) (cf. [2], Th. 2.1), we have:

Corollary. — Every central extension of \(A_n \) appears as Galois group over \(\mathbb{Q} \) if

\[
\begin{align*}
&n \equiv 0 \pmod{8}, \quad \text{or} \\
&n \equiv 2 \pmod{8} \quad \text{and} \quad n \text{ is a sum of two squares}.
\end{align*}
\]

Other values of \(n \) are considered in [5].

First of all, we prove the following

Lemma. — Let \(f(X) = X^n + aX^2 + bX + c \in \mathbb{R}[X] \) be an irreducible polynomial such that \(b^2(n-1)^2 = 4acn(n-2) \). Let \(E = K(\theta) \), where \(\theta \) is a root of \(f(X) \). The quadratic form \(\text{Tr}_{E/K}(X^2) \) diagonalizes as follows:

\[
\text{Tr}_{E/K}(X^2) \sim \begin{cases}
\frac{nX_1^2}{2} - (n-2)aX_2^2 + X_3X_4 + \cdots + X_{n-1}X_n, & \text{if } n \text{ is even,} \\
\frac{nX_1^2}{2} + X_2X_3 + \cdots + X_{n-1}X_n, & \text{if } n \text{ is odd.}
\end{cases}
\]

Proof. — Easy computations give:

\[
\begin{align*}
\text{Tr}(1) &= n, & \text{Tr}(\theta^i) &= 0, & 1 \leq i \leq n-3, \\
\text{Tr}(\theta^{n-2}) &= - (n-2)a, & \text{Tr}(\theta^{n-1}) &= - (n-1)b.
\end{align*}
\]

Suppose that \(n \) is even; let \(m = n/2 \). Clearly \(1, \theta, \ldots, \theta^{m-1} \) are pairwise orthogonal vectors of \(E \) and \(\theta, \ldots, \theta^{m-2} \) are isotropic vectors of \(E \). Then the quadratic space \(E \) splits:

\[
E \sim \langle 1 \rangle \perp \langle \theta^{m-1} \rangle \perp (m-2)H \perp E',
\]

where \(H \) is a hyperbolic plane and \(E' \) is a quadratic plane.
Since \(b^2(n-1)^2 = 4ac(n-2) \), the polynomial
\[
g(X) = af(X) - Xf'(X)
\]
has a double root \(u \). Hence the discriminant of \(f(X) \) is
\[
d = (-1)^{n(n-1)/2}R(f,f')
\]
\[
= (-1)^{n(n-1)/2}R(g,f')/n
\]
\[
= (-1)^{n(n-1)/2}(n-2)n^{-1}b^{n-1}f'(u)^2/n,
\]
where \(R(f,f') \) is the resultant of \(f \) and \(f' \).

Consequently, the discriminant of \(E' \) in \(K^*/K^{*2} \) is \(-1\). Thus, \(E' \) is a hyperbolic plane.

The proof in the case \(n \) odd runs in an analogous way.

Proof of the Theorem. — Let \(\tilde{A}_n \) be the representation group (Darstellungsgruppe) of \(A_n \) (cf. [1]). The group \(\tilde{A}_n \) is the only non-trivial extension of \(A_n \) with kernel \(Z/2 \) (cf. [3]).

Let \(0 \not= a_n \in H^2(A_n, Z/2) \) be the cohomological class associated to \(\tilde{A}_n \). It is easy to see (cf. [5], Th. 1.1) that our embedding problem is reduced to embed \(N/K \) in a Galois extension with Galois group \(\tilde{A}_n \). As it is well-known, the obstruction to this embedding problem is \(\inf(a_n) \), where
\[
\inf: H^2(A_n, Z/2) \rightarrow H^2(G_K, Z/2)
\]
is the homomorphism associated to the epimorphism \(p : G_K \rightarrow A_n \). Let \(\theta \) be a root of \(F(X) \) and \(L = Q(\theta) \). By [4], Th. 1,
\[
\inf(a_n) = w(L/K),
\]
where \(w(L/K) \) denote the Hasse-Witt invariant of the quadratic form \(\text{Tr}_{L/K}(X^2) \). By the Lemma, we have
\[
w(L/K) = (n, (-1)^{n/2}) \otimes (-1, (-1)^{n(n-2)/8}).
\]
Therefore, \(w(L/K) = 1 \) if and only if \(n \equiv 0 \) (mod. 8), or \(n \equiv 2 \) (mod. 8) and \(n \) is a sum of two squares.

Remark. — If \(n \) is an odd square and \(f(X) \in R[X] \) is a polynomial satisfying the conditions (i), (ii) and (iv), the Galois group of \(f(X) \) is also isomorphic to \(A_n \) (cf. [2], Th. 1.6). Then, we can proceed as in the
Theorem to prove that, in this case, the splitting field of $f(X)$ can be embedded in a Galois extension with Galois group any central extension of A_n.

BIBLIOGRAPHY

Manuscrit reçu le 26 avril 1984.

Núria VILA,
Departament d'Algebra i Fonaments
Facultat de Matemàtiques
Universitat de Barcelona
Gran Via, 585
08007 Barcelona (Espanya).