Baruch Z. Moroz

On the distribution of integral and prime divisors with equal norms

<http://www.numdam.org/item?id=AIF_1984__34_4_1_0>
ON THE DISTRIBUTION OF INTEGRAL AND PRIME DIVISORS WITH EQUAL NORMS

by B. Z. MOROZ (*)

This is an exposition of the material presented in my lectures given at Orsay in March 1983.

1.

Consider \(r \) finite extensions \(k_1, \ldots, k_r \) of an algebraic number field \(k \), a finite extension of \(\mathbb{Q} \), and fix an ideal class \(A_j \) in \(k_j \), \(1 \leq j \leq r \). Let

\[
V(A) = \{a | a_j \in A_j, N_{k_j/k}a_1 = \cdots = N_{k_r/k}a_r\}
\]

be the set of \(r \)-tuples of divisors having equal norms. Following E. Hecke, [1], one associates to a divisor of a number field a point in Minkowski space, the real vector space corresponding to this field; we study the distribution of integral and prime divisors in \(V(A) \) regarded as points of a real manifold, in the spirit of [1]. For technical reasons we consider here only the case \(k = \mathbb{Q} \) (compare [2] and the appendix to this paper).

We use the following notations: \(|S| \), denotes the cardinality of a finite set \(S \). Let \(L \) be an algebraic number field of degree \(n \) over \(\mathbb{Q} \):

- \(\mathfrak{O} \) is the ring of integers of \(L \),
- \(\mathfrak{O}^* \) is its group of units,
- \(\mathfrak{I} \) is the group of fractional divisors of \(L \),
- \(\mathfrak{I}_0 \) is the monoid of integral divisors,

(*) Supported in part by a French Government visiting grant.
\mathcal{P} is the set of prime divisors,
S_2 and S_1 are the sets of complex and real places of L,
$S = S_1 \cup S_2$, $|S_j| = r_j$ ($j=1,2$), $n = r_1 + 2r_2$,
$L_w = \begin{cases} \mathbb{R}, \ & w \in S_1 \\ \mathbb{C}, \ & w \in S_2 \end{cases}$ denotes the completion of L at $w \in S$,
$||x|| = \begin{cases} |x|, \ & w \in S_1 \\ |x|^2, \ & w \in S_2 \end{cases}$ for $x \in L_w$.

Let us introduce the algebra $X = \prod_{w \in S} L_w$ of dimension n over \mathbb{R}, referred to as Minkowski space associated with L. Let $\psi : L \to X$ be the componentwise embedding of L in X. The group \mathfrak{o}^* of units acts freely as a discrete group of transformations on the multiplicative group $X^* = \prod_{w \in S} L_w^*$ of non-zero elements of X; let $Y = X^*/\psi(\mathfrak{o}^*)$ be the group of its orbits. E. Hecke, [1], introduces « ideal numbers » (compare also, [3]-[6]) and defines Grobrencharaktere to be able to study the distribution of integral and prime divisors among the areas of Y. We recall this construction, as well as the results of [3]-[5] to be generalized here. Let $N : X \to \mathbb{R}_+$ and $N^{-1} : \mathbb{R}_+ \to X$ denote the norm map $N : x \to \prod_{w \in S} ||x_w||$ and its right inverse $N^{-1} : t \to (t^{1/n}, \ldots, t^{1/n})$. Since N is trivial on $\psi(\mathfrak{o}^*)$, one obtains $Y = \mathbb{R}_+ \times Y_0$, where

$Y_0 : = X_0/\psi(\mathfrak{o}^*), \ \ X_0 : = \{x \mid x \in X, N(x) = 1\}$.

Let \hat{Y}_0 be the group of characters of Y_0 and $\lambda \in \hat{Y}_0$; one can regard λ as a character of X^* trivial on $\psi(\mathfrak{o}^*)$ and on $N^{-1} \mathbb{R}_+$. Thus

$$(1) \quad \lambda(x) = \prod_{w \in S} ||x_w||^{a_w} \left(\frac{x_w}{||x||}\right)^{a_w},$$

where $a_w \in \mathbb{Z}$, $t_w \in \mathbb{R}$, x_w denotes the projection of x on L_w, and, moreover, $\lambda(\varepsilon x) = \lambda(x)$ for $\varepsilon \in \psi(\mathfrak{o}^*)$,

$$\sum_{w \in S_1} t_w + 2 \sum_{w \in S_2} t_w = 0, \quad a_w \in \{0,1\} \ \text{for} \ w \in S_1.$$

It follows from the Dirichlet theorem on units (compare [1], [6]) that $Y = \mathbb{R}_+ \times \mathfrak{I}_L \times (\mathbb{Z}/2\mathbb{Z})^0$, where \mathfrak{I}_L is a torus of dimension $n - 1$, and $r_0 \leq r_1$. Therefore, $\hat{Y}_0 \cong \mathbb{Z}^{n-1} \times (\mathbb{Z}/2\mathbb{Z})^0$, and there exist characters $\lambda_1, \ldots, \lambda_{n-1}$ multiplicatively independent over \mathbb{Z} and such
that any \(\lambda \in \mathcal{Y}_0 \) has the form

\[
\lambda = \prod_{v=1}^{n-1} \lambda_v^{m_v} \lambda', \quad m_v \in \mathbb{Z},
\]

where \(\lambda'(x) = \prod_{w \in S_1} \left(\frac{x_w}{|x_w|} \right)^{a_w}, \quad a_w \in \{0,1\}. \) The map \(\psi \) induces an embedding

\[
\varphi : L^*/\mathfrak{o}^* \to Y
\]

of the group of principal divisors \(L^*/\mathfrak{o}^* \) of \(L \) in \(Y \). Composing \(\varphi \) with the projection of \(Y \) on \(\mathbb{R}^+ \times \mathcal{I}_L \) one obtains an embedding

\[
\varphi_0 : L^*/\mathfrak{o}^* \to \mathbb{R}^+ \times \mathcal{I}_L.
\]

Since the group \(H = I/L^* \) of ideal classes is finite, one can define an embedding

\[
f : I \to \mathbb{R}^+ \times \mathcal{I}_L
\]

which coincides with \(\varphi_0 \) on \(L^*/\mathfrak{o}^* \). It follows from the work cited above (see, in particular, [1] and [3]-[5]) that both integral and prime divisors are asymptotically equidistributed when identified by means of (3) with points of the real manifold \(\mathbb{R}^+ \times \mathcal{I}_L \). To be more precise, let us introduce a parametrisation of \(\mathcal{I}_L \) induced by the basic characters

\[
\lambda_j(x) = \exp (2\pi i \varphi_j(x)), \quad 1 \leq j \leq n - 1, \quad 0 \leq \varphi_j(x) < 1,
\]

and identify a point \(x \in \mathcal{I}_L \) with its image \((\lambda_1(x), \ldots, \lambda_{n-1}(x)) \in T^{n-1}, \) where \(T \) denotes the unit circle in \(\mathbb{C}^* \). We call a subset

\[
\tau = \{x | \lambda_j(x) < \lambda_j + \delta_j, \quad 1 \leq j \leq n-1\}
\]

of \(\mathcal{I}_L \) elementary whenever \(0 \leq \lambda_j < \lambda_j + \delta_j \leq 1 \). A set \(\tau \subseteq \mathcal{I}_L \) is called smooth if there exists a constant \(C(\tau) > 0 \) such that for every \(\Delta > 0 \) one can find a system \(t = \{\tau_v\} \) of elementary sets with the following properties: card \((t) < \Delta^{-(n-1)}, \)

\[
\tau_v \cap \tau_{v'} = \emptyset \quad \text{for} \quad v \neq v', \quad \tau \subseteq \bigcup_{\tau_v \in t} \tau_v, \quad \text{mes} \left(\bigcup_{\tau_v \in t} \tau_v \right) < C(\tau) \Delta,
\]

where mes is the normalized Haar measure on \(\mathcal{I}_L \) (so that \(\text{mes} (\mathcal{I}_L) = 1 \)) and \(\partial \tau \) denotes the boundary of \(\tau \). The following theorem has been proved by J. P. Kubilius, [4], and, a few years later, by T. Mitsui, [5].
THEOREM 1. — For any smooth set $\tau \subseteq \mathfrak{I}_L$ and any ideal class $A \in H$

card \{a | a \in I_0, f(a) \in (0,x) \times \tau, a \in A\} = \frac{\omega_L \mes(\tau)}{h} x + O(x^{1-c})

card \{p | p \in \mathcal{P}, f(p) \in (0,x) \times \tau, p \in A\}
\quad = \frac{\mes(\tau)}{h} \int_2^x \frac{dx}{\log x} + O(\exp (-c_2 \sqrt{\log x}) x),

where the constants $c_1, c_2 > 0$ depend on L, but not on $x \to \infty$, and ω_L denotes the residue of the zeta-function of L at $s = 1$, $h := |H|$ is the class number of L.

The characters $\mu_j = \lambda_j \circ f$ are called basic Größencharaktere; the group

$$\hat{\mathbb{H}} = \left\{ \mu | \mu = \chi \prod_{j=1}^{n-1} \mu_j^{m_j}, m_j \in \mathbb{Z}, \chi \in \hat{H} \right\},$$

where \hat{H} is the group of ideal class characters, can be identified (see, e.g., [6]) with the set of unramified idele-class characters trivial on \mathbb{R}^+. The map

$$(3')
\quad g': I \to \mathbb{R}^+ \times \mathbb{T}^{n-1}

$$

given by

$$g': a \mapsto (N_{L/Q} a, \mu_1(a), \ldots, \mu_{n-1}(a))$$

is compatible with (3) under the above identification of \mathfrak{I}_L and \mathbb{T}^{n-1}. Theorem 1 may be viewed as a multidimensional equidistribution principle, in the spirit of the classic memoir of Hecke’s, [1]. We should like to refer to [8], [9], [10] for some applications of this principle. One can improve the error term in the second formula using the method of trigonometric sums (see, [3], chapter 2, and [7]). About thirty years ago Yu. V. Linnik suggested (and communicated to his colleagues and students, [11]) that one could generalize Theorem 1 to treat the integral and prime divisors in $\mathcal{V}(A)$. As an example of this programme (compare [2] and references therein), we prove here the following result. Let I_0^j, \mathcal{P}_j, \mathfrak{I}_j and h_j denote the monoid of integral divisors, the set of prime divisors, the torus \mathfrak{I}_{k_j} and the class number of k_j respectively; let $h = \prod_{j=1}^{r} h_j$ and $\mathfrak{I} = \mathfrak{I}_1 \times \cdots \times \mathfrak{I}_r$, moreover, let $\mathcal{P} = \{p | p_j \in \mathcal{P}_j\}$ and $I_0 = \{a | a_j \in I_0^j\}$ be the sets of r-tuples of prime and integral divisors.
respectively; let $K = k_1 \ldots k_r$ be the composite of the fields k_1, \ldots, k_r, let n_j and D_j be the degree $[k_j: \mathbb{Q}]$ and the discriminant of k_j and n be the degree $[K: \mathbb{Q}]$ of K. Consider the map

$$g_j: \mathcal{I}_0^j \to \mathcal{X}_j$$

induced by the embedding (3'), so that, when \mathcal{X}_j is identified with \mathbb{T}^{n-1},

$$g_j: a_j \mapsto (\mu_{j1}(a_j), \ldots, \mu_{jn_j-1}(a_j)), \quad a_j \in \mathcal{I}_0^j,$$

where $\{\mu_{j\ell}|1 \leq \ell \leq n_j-1\}$ is the set of basic Größencharaktere of k_j, $j = 1, \ldots, r$, and introduce a zeta-function

$$Z(k_1, \ldots, k_r; s) = \sum_{m=1}^{\infty} a_m^{(1)} \ldots a_m^{(r)} m^{-s},$$

where $a_m = \text{card} \{a_j|a_j \in \mathcal{I}_0^j, N_{k_j/\mathbb{Q}} a_j = m\}$ is the number of integral divisors of k_j whose norm is equal to m. One can show (see [12], [13]) that if $n = \prod_{j=1}^r n_j$, then

$$Z(k_1, \ldots, k_r; s) = \frac{Z_K(s)}{L(s, \Phi)},$$

where $L(s, \Phi) = \prod_p \Phi(p^{-s})^{-1}$, $\Phi(p)(t)$ is a rational function of t, p varies over rational primes, and, moreover, $\Phi(p)(p^{-s}) \neq 0$, ∞ for $\Re s > \frac{1}{2}$; for almost all p the function $\Phi(p)(t)$ is a polynomial of degree not larger than $n - 1$ and such that $\Phi(p)(0) = 1$, $\frac{d}{dt} \Phi(p)|_{t=0} = 0$. In particular, the Euler product

$$L(s, \Phi) = \prod_p \Phi(p)(p^{-s})^{-1}$$

converges absolutely for $\Re s > \frac{1}{2}$.

Theorem 2. — If k_j is Galois over \mathbb{Q} for every j, $n = \prod_{j=1}^r n_j$ and $(D_j, D_\ell) = 1$ for $j \neq \ell$ (the discriminants are pairwise coprime), then for
any smooth set \(\tau \subseteq \mathcal{I} \) one has

\[
\text{card} \{ a | a \in V(A) \cap I_0, |a| < x, g(a) \in \tau \} = \frac{\omega_k \mes(\tau)}{hL(1, \Phi)} x + O(x^{1-\epsilon}),
\]

\[
\text{card} \{ p | p \in V(A) \cap \mathcal{P}, |p| = x, g(p) \in \tau \}
= \frac{\mes(\tau)}{h} \operatorname{li}(x) + O(x \exp(-c_2\sqrt{\log x}))
\]

for some \(c_1, c_2 > 0 \) depending on \(k_1, \ldots, k_r \), but not on \(x \to \infty \), where

\[
|a| = \left(\sum_{j=1}^{r} N_{k_j/Q} a_j \right)^{1/r} \quad \text{for } a = \{a_1, \ldots, a_r | a_j \in I_0^j \},
\]

and

\[
\operatorname{li}(x) = \int_{2}^{x} \frac{du}{\log u}; \quad g = (g_1, \ldots, g_r).
\]

One can view Theorem 2 as a statement about statistical independence of the fields \(k_1, \ldots, k_r \). To be more precise, let

\[
\tau = \tau_1 \times \cdots \times \tau_r, \quad \tau_j \subseteq \mathcal{I}_j,
\]

then (under the above assumptions) the probability to find \(a \in V(A) \) with \(g(a) \in \tau \) is equal to the product of the probabilities that \(a_j \in A_j \) and \(g_j(a_j) \in \tau_j \), \(j = 1, \ldots, r \). Thus the condition

\[
\text{(6)} \quad N_{k_1/Q} a_1 = \cdots = N_{k_r/Q} a_r
\]

affects the probability of the event:

\[
\ll a_1 \in A_1, \ldots, a_r \in A_r, g_1(a_1) \in \tau_1, \ldots, g_r(a_r) \in \tau_r \rr
\]

neither for \(r \)-tuples of integral, nor of prime divisors. On the other hand, Theorem 2 may be regarded as an assertion on representation of integers by decomposable forms. As a special case of this theorem \((n_1 = \cdots = n_r = 2) \), one obtains the following result.

Proposition 3. — Let \(f_1, \ldots, f_r \) be binary positive definite primitive quadratic forms with pairwise co-prime fundamental discriminants. Then the number of integral solutions

\[
(x_1, x_2, \ldots, x_{2r-1}, x_{2r})
\]
of the system of equations
\[f_1(x_1, x_2) = \cdots = f_r(x_{2r-1}, x_{2r}) \]
subject to the condition \(f_1(x_1, x_2) \leq N \) is equal to
\[AN + O(N^{1\epsilon}) \]
for some \(A > 0, \ c > 0 \) independent on \(N \).

It turns out that for two quadratic fields \((n_1 = n_2 = r = 2) \)
\[L(s, \Phi) = L(2s, \chi_0), \]
where \(\chi_0(n) = \left(\frac{D_1 D_2}{n} \right) \) (see, e.g., [13], §5). Therefore we obtain the following result.

Proposition 4. Let \(k_j = \mathbb{Q}(\sqrt{D_j}), \ j = 1, 2, (D_1, D_2) = 1. \) Then
\[\text{card} \{ a \mid a \in V(A) \cap I_0, |a| < x, g(a) \in \tau \} = \frac{\omega_k \text{mes} (\tau)}{hL(2, \chi_0)} x + O(x^{1\epsilon}) \]
with \(c_1 > 0 \) independent on \(x \).

We remark finally that the \(O \)-constants depend on \(\tau \) only through the «constant of smoothness» \(\text{C}(\tau) \), as can be readily observed from the proof of Theorem 2 given below.

2.

Further on we write \(I_0(K), \ \mathcal{P}(K), \ H(K), \ \mu(K) \) for the monoid of the integral divisors, set of prime divisors, class group and the set of basic Größencharaktere of \(K \). Theorem 2 will be deduced from the following four lemmas.

Lemma 1. Let \(\varphi_1, \ \varphi_2, \ \varepsilon \) satisfy the inequalities
\[0 \leq \varphi_1 - \varepsilon < \varphi_1 < \varphi_2 < \varphi_2 + \varepsilon \leq 1. \]
There exists a real valued function \(f \in C^\infty[0,1] \) such that \(0 \leq f(t) \leq 1 \) for \(t \in [0,1], \ f(t) = 1 \) for \(t \in [\varphi_1, \varphi_2], \ f(t) = 0 \) for \(t \notin [\varphi_1 - \varepsilon, \varphi_2 + \varepsilon], \)
This is a well-known lemma of elementary calculus; we choose one of such functions to be denoted by $f(\varphi_1, \varphi_2, \varepsilon)$.

Let C_j, C_K be the idele class groups of k_j, K, and χ_j be an idele class character of k_j trivial on \mathbb{R}_+; we define an idele class character

$$\chi := \prod_{j=1}^r \chi_j \circ N_{k_j/K}$$

in K, and an L-function

$$L(\chi_1, \ldots, \chi_r; s) := \sum_{a \in V} \chi_1(a_1) \cdots \chi_r(a_r) |a|^{-s},$$

where $V = \{ a | a_j \in I_j, N_{k_j/K} a_1 = \cdots = N_{k_j/K} a_r \}$.

Lemma 2. If $n = \prod_{j=1}^r n_j$, then $L(\chi_1, \ldots, \chi_r; s) = L(s, \chi)L(s, \Phi)^{-1}$, where $L(s, \chi) = \sum_{a \in I_0(K)} \chi(a) N_{k_j/K} a^{-s}$ for $\Re s > 1$, and $L(s, \Phi)$ as defined in (5) with $\Phi(p)$ depending on χ_1, \ldots, χ_r and having the properties similar to those of the polynomials in (5).

This follows from the results cited before, [12] (or [13]).

Lemma 3. Let $n = \prod_{j=1}^r n_j$, then

$$\sum_{a \in V, |a| < x} \chi_1(a_1) \cdots \chi_r(a_r) = g(\chi) \frac{\omega_k x}{L(1, \Phi)} + O(a(\chi)^{\frac{3n+1}{2}} x^{1-c}),$$

$$\sum_{a \in V \cap \mathbb{R}, |a| < x} \chi_1(a_1) \cdots \chi_r(a_r) = g(\chi) \int_2^x \frac{dx}{\log x} + O \left(x \exp \left(- c_2 \frac{\log x}{\log a(\chi) + \sqrt{\log x}} \right) \right)$$
where $c_1, c_2 > 0$, $g(\chi) = \begin{cases} 0, & \chi \neq 1 \\ 1, & \chi = 1 \end{cases}$, the 0-constants and c_1, c_2
depend on k_1, \ldots, k_r, but not on χ_1, \ldots, χ_r unless $\chi^2 = 1$, nor on x;
\[\sum_{w \in S} (|a_w| + |b_w|) = : a(\chi), \text{ when } \chi \text{ is given by} \]

\[(10) \quad \chi(\alpha) = \prod_{w \in S} \left(\frac{\alpha_w}{|\alpha_w|} \right)^{a_w} \cdot |\alpha_w|^{ib_w} \]

for $\alpha \equiv 1 \pmod{\varphi(\chi)}$, $\alpha \in \overline{\mathbb{Q}}^*$, $a_w \in \mathbb{Z}$, $b_w \in \mathbb{R}$; α_w denotes the image of α in K_w for $w \in S$ and $\varphi(\chi)$ is the conductor of χ.

Proof. – To prove (9) one remarks (see, e.g., [14], Lemma 1) that for
any $\alpha \in \mathbb{V} \cap \mathcal{P}$ satisfying the condition $|a| = q$ is a rational prime
there exists one and only one prime $p \in \mathcal{P}(K)$ such that $N_{\mathbb{K}/\mathbb{Q}}(p) = a_j$.
Therefore,
\[
\sum_{\alpha \in \mathbb{V} \cap \mathcal{P}}, |a| < x \chi_1(a_1) \ldots \chi_r(a_r) = \sum_{\alpha \in \mathbb{V} \cap \mathcal{P}, |a| = q} \chi_1(a_1) \ldots \chi_r(a_r) + O(x^{1/2})
\]
\[= \sum_{p \in \mathcal{P}(K), N_{\mathbb{K}/\mathbb{Q}}(p) < x} \chi(p) + O(x^{1/2}) \]

and (9) follows from estimates obtained in the work cited above (see [4], ch. I, § 8, lemma 4, or [5], § 2, lemma 6) (*). By a standard argument one obtains (see, e.g., [15], lemma 3.12)
\[
A(x) := \sum_{\alpha \in \mathbb{V}, |a| < x} \chi_1(a_1) \ldots \chi_r(a_r) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{x^s}{s} L(\chi_1, \ldots, \chi_r; s) \, ds + O\left(\frac{x^{1+\epsilon}}{T}\right),
\]
where $c = 1 + (\log x)^{-1}$, $T > 0$. It follows from lemma 2 that
\[
A(x) = \frac{1}{2\pi i} \int_{1/2+\epsilon-iT}^{1/2+\epsilon+iT} \frac{x^s}{s} L(s,\chi)L(s,\Phi)^{-1} \, ds + g(\chi) \frac{\alpha_0 x}{L(1,\Phi)}
\]
\[+ O\left(\frac{x^{1+\epsilon}}{T}\right) + O\left(\int_{1/2+\epsilon}^c (|L(\sigma+iT,\chi)| + |L(\sigma-it,\chi)|) \frac{x^\sigma}{T} \, d\sigma\right) \]

because $L(s,\Phi)^{-1} = O(1)$ for $\Re s > \frac{1}{2} + \epsilon$.

(*) Alternatively one can deduce (9) from lemma 2.
By a Phragmén-Lindelöf type of argument (compare, [6], pp. 92-93 and [5], pp. 14-15) one deduces from the functional equation for \(L(s,\chi) \) and Stirling’s formula for the \(\Gamma \)-function an estimate

\[
L(\sigma + it, \chi) = O_e \left((1 + |t|^{3n})^{(1-\sigma + \epsilon)} a(\chi)^{\frac{3n}{2} + \epsilon} \right)
\]

in the region \(0 \leq \sigma \leq c \). Substitution of (11) into the estimate for \(A(x) \) we have just written out leads to (8).

Lemma 4. — Let \(k_j \) be Galois over \(\mathbb{Q} \) for each \(j \), \(n = \prod_{j=1}^{r} n_j \), \((D_j, D_r) = 1 \) for \(j \neq \ell \), \(\chi = 1 \), and \(\chi_j \) be unramified for each \(j \). Then \(\chi_j = 1 \) for every \(j \).

Proof. — Let us assume first that \(\chi_j \) is of finite order for every \(j \); then, being unramified, it is an ideal class character. One can deduce from class field theory, [17], that (under the above conditions)

\[
\{(N_{K/k_1}A, \ldots, N_{K/k_r}A) | A \in H_k\} = H_1 \times \cdots \times H_r,
\]

where \(H_j \) is the ideal class group of \(k_j \); in particular, for any \(A_j \in H_j \) there exists \(A \in H_k \) such that \(N_{K/k_j}A = A_j \); \(N_{K/k_j}A = 1 \) for \(\ell \neq j \). If \(\chi = 1 \), then

\[
1 = \prod_{\ell=1}^{r} (\chi_{\ell} \circ N_{K/k_{\ell}})(A) = \chi_j(A_j);
\]

and we see that \(\chi_j = 1 \). Assuming \(\chi = 1 \) we deduce now that \(\chi_j \) is of finite order for any \(j \). Let \(G_j \) be the Galois group of \(k_j \) and \(G \) be the Galois group of \(K \); since \(n = \prod_{j=1}^{r} n_j \), we have \(G \cong G_1 \times \cdots \times G_r \).

The character

\[
(\chi_j \circ N_{K/k_1})^{-1} = \prod_{\ell \neq j} \chi_{\ell} \circ N_{K/k_\ell}
\]

is, therefore, \(G_f \)-invariant; since \([C_j : N_{k_j/k_1}C_k] = d_j \) is finite, we see that \(\chi_j^{d_j} \) is \(G_j \)-invariant. Take \(p \in \mathfrak{P}_j \); since \(\chi_j^{d_j}(p) = \chi_j^{d_j}(p') \) for \(\gamma \in G_j \), we see that \((\chi_j(p))^{d_j} = (\chi_j(p))^{d_j} \), where \(N_{k_j/k_1}p = p^{d_j} \). But any idèle class character in \(\mathbb{Q} \) is of finite order, and it follows, therefore, that \(\chi_j^{d_j} = 1 \) for some \(\ell \).
Theorem 2 can be deduced from lemma 3 and lemma 4 on purely formal lines. It is an easy consequence of these lemmas and the following form of the Weyl's equidistribution principle (compare [1], p. 37, and [18], Satz 3). To state it we appeal to lemma 1 and write

\[f(\varphi_1, \varphi_2, \varepsilon; t) = \sum_{n=-\infty}^{\infty} c_n \exp(2\pi i nt), \]

so that

\[c_0 = (\varphi_2 - \varphi_1) + O(\varepsilon), \quad c_n = O\left(\frac{1}{|n|^k |\varepsilon|^{k-1}} \right) \]

for any fixed integral \(k \geq 1 \).

Proposition 5. — Let

\[\mathcal{I} = \{ \exp(2\pi i \varphi_1), \ldots, \exp(2\pi i \varphi_m) \mid 0 \leq \varphi_j < 1, j = 1, \ldots, m \} \]

be a torus of dimension \(m \); \(\tau \) be a smooth subset of \(\mathcal{I} \), \(G \) be a finite Abelian group with the group of characters \(\hat{G} \) and

\[\hat{\mathcal{I}} = \{ \lambda_1 \ldots \lambda_m \mid \ell_j \in \mathbb{Z}, \lambda_j : x_i \mapsto x_j \} \]

be the group of characters of \(\mathcal{I} \), \(x = (\ldots, \exp(2\pi i \varphi_j) = x_j, \ldots) \in \mathcal{I} \). Consider a set \(\mathcal{W} \) and three maps:

\[g_1 : \mathcal{W} \to \mathcal{I}, \quad g_2 : \mathcal{W} \to G, \quad N : \mathcal{W} \to \mathbb{R}_+; \]

we denote by \(\hat{\mathcal{W}} \) the set of functions on \(\mathcal{W} \) defined by

\[\hat{\mathcal{W}} = \{ \mu \mid \mu(a) = (\lambda \circ g_1)(a)(\lambda' \circ g_2)(a), \lambda \in \hat{\mathcal{I}}, \lambda' \in \hat{G} \}, \]

where \(a \) varies over the elements of \(\mathcal{W} \). If

\[\sum_{\mu \in \hat{\mathcal{W}}} \chi(a) = g(\chi)A(x) + O(xB(x,a(\chi))^{-1}) \]

for \(\chi \in \hat{\mathcal{W}} \), where

\[g(\chi) = \begin{cases} 1, & \lambda = 1 \text{ and } \lambda' = 1; \\ 0, & \text{otherwise} \end{cases} \quad A(x) = O(x), \quad a(\chi) := \sum_{j=1}^{m} |\ell_j| \]
for
\[\chi = (\lambda \circ g_1)(\lambda' \circ g_2), \quad \lambda', \lambda \in \hat{G}, \quad \lambda = \prod_{j=1}^{m} \lambda_j, \]

then for any smooth subset \(\tau \) of \(\mathfrak{X} \) and any \(\gamma \in G \) we have

\[\text{card} \{ a \mid a \in \mathcal{W}, g_2(a) = \gamma, g_1(a) \in \tau, Na < x \} = A(x) \frac{\text{mes} (\tau)}{|G|} + O \left(\frac{x}{b(x)} \right), \]

where \(b(x) \) can be chosen to be equal to \(b_1(x)^v \) with \(v > 0 \), and \(b_1(x) \) is determined by

\[\sum_{\ell_1, \ldots, \ell_m = -\infty}^{\infty} \frac{1}{B(x, a(\ell))} \alpha(\ell) = b_1(x)^{-1}, \quad a(\ell) = \sum_{j=1}^{m} |\ell_j| \]

with \(\alpha(\ell) = \prod_{j=1}^{m} \alpha_j(\ell_j) \), \(\alpha_j(\ell_j) = \begin{cases} 1, & \ell_j = 0 \\ \ell_j^{-k}, & \ell_j \neq 0 \end{cases} \), \(k \) can be chosen to be any positive integer.

\textbf{Proof.} – We deduce (14) from (13) for rectangular \(\tau \) by means of lemma 1 and then prove (14) for any smooth \(\tau \subseteq \mathfrak{X} \). Let

\[\tau = \{ \varphi \mid \psi_j < \varphi_j < \psi_j + \delta_j, j = 1, \ldots, m \}. \]

Choose \(\varepsilon > 0 \) and set (using notations of lemma 1)

\[f_j^+(\varphi_j) = f(\psi_j, \psi_j + \delta_j, \varepsilon; \varphi_j), \quad f_j^-(\varphi_j) = f(\psi_j - \varepsilon, \psi_j - \varepsilon + \delta_j, \varepsilon; \varphi_j), \]

\[F^\pm = \prod_{j=1}^{m} f_j^\pm. \]

Let \(\mathcal{N} \) denote the left hand side in (14). Obviously,

\[\sum_{Na < x, g_2(a) = \gamma} F^-(g_1(a)) \leq \mathcal{N} \leq \sum_{Na < x, g_2(a) = \gamma} F^+(g_1(a)). \]

On the other hand,

\[\sum_{Na < x, g_2(a) = \gamma} F^\pm(g_1(a)) = \frac{1}{|G|} \sum_{Na < x} \sum_{\gamma \in G} \overline{\chi(\gamma)} F^\pm(g_1(a))\chi(g_2(a)). \]
Write \(f_j^\pm(t) = \sum_{n=-\infty}^\infty c_{nj}^\pm \exp(2\pi i nt) \) and denote the left hand side in (16) by \(\mathcal{N}^\pm \). It follows from (16) that

\[
\mathcal{N}^\pm = \sum_{\mu \in \mathbb{W}} c^\pm(\mu) \sum_{\nu < x} \mu(\nu),
\]

where

\[
c^\pm(\mu) = \frac{1}{|G|} \chi(\gamma) \prod_{j=1}^m c_{j}^\pm \quad \text{for} \quad \mu = (\lambda_1^j \ldots \lambda_m^j) \circ g_1(\chi \circ g_2).
\]

Equation (13) and estimate (12) give

\[
\mathcal{N}^\pm = \frac{1}{|G|} \left(\prod_{j=1}^m \delta_j \right) A(x) + O(x\varepsilon) + \sum_{\mu \in \mathbb{W}} |c^\pm(\mu)| \left| \sum_{\nu < x} \mu(\nu) \right|
\]

\[
= A(x) \frac{\text{mes}(\tau)}{|G|} + O(x\varepsilon) + O\left(\sum_{\mu \in \mathbb{W}} |c^\pm(\mu)| B(x,a(\mu)^{-1} x) \right).
\]

Thus

\[
\mathcal{N}^\pm = A(x) \frac{\text{mes}(\tau)}{|G|} + O(x\varepsilon) + O(e^{-kmx}b_1(x)^{-1}).
\]

By choosing \(e^{km+1} = b_1(x)^{-1} \) one obtains (14) with \(b(x) = b_1(x)^{1/km+1} \).

Now let \(\tau \subseteq \mathcal{X} \) be a smooth set and \(t = \{\tau_v\} \) a system of elementary sets with the properties

\[
\text{card}(t) < \Delta^{-m}, \quad \tau_v \cap \tau_v = \emptyset \quad \text{for} \quad v \neq v',
\]

\[
\tau \subseteq \bigcup_{\tau_v \in t} \tau_v, \quad \text{mes} \left(\bigcup_{\tau_v \neq \emptyset} \tau_v \right) < C(\tau) \Delta
\]

for some \(\Delta > 0 \). Applying (14) to every \(\tau_v \in t \) one obtains

\[
\mathcal{N} = A(x) \frac{\text{mes}(\tau)}{|G|} + O(C(\tau) \Delta x) + O\left(\frac{x}{\Delta^n b(x)} \right),
\]

and it is enough to choose \(\Delta^{m+1} = \frac{1}{b(x)} \) to finish the proof.
To deduce Theorem 2 from Proposition 5 we take

\[G = H_1 \times \cdots \times H_r, \]

where \(H_j \) denotes the ideal class group of \(k_j \),
and define \(W \) to be either \(V(A) \cap I_0 \), or \(V(A) \cap \mathcal{P} \). By lemma 3, one can take

\[
A(x) = \frac{\omega_k}{L(1,\Phi)} x, \quad B(x, a(\chi)) = \frac{x^{\frac{3n+1}{2}}}{a(\chi)}
\]

in the former case, and

\[
A(x) = \int_{2}^{x} \frac{dx}{\log x}, \quad B(x, a(\chi)) = \exp\left(\frac{c_2 \log x}{\log a(\chi) + \sqrt{\log x}} \right)
\]

in the latter case. Lemma 4 assures that \(g(\chi) = 0 \) for a non-trivial character \((\chi_1, \ldots, \chi_r)\) of \(H \); it can be checked easily that

\[a(\chi) \leq c_3 \sum_{j=1}^{r} a(\chi_j) \]

for some constant \(c_3 \) depending only on the fields \(k_1, \ldots, k_r \), and that in both cases \(b(x) \) has the required form to assure the right error terms in theorem 2.

4.

The condition \((D_j, D_\ell) = 1\) for \(j \neq \ell \) in theorem 2 and in lemma 4 can be replaced by a weaker one: for every rational prime \(p \) one has \((e_j(p), e_\ell(p)) = 1\) for \(j \neq i \), where \(e_j(p) \) denotes the ramification degree of \(p \) in \(k_j \) (compare [17]). Following the interpretation given to the scalar product of \(L \)-functions in [19] one may try to interpret theorem 2 as a statement about distribution of integral points on algebraic tori. Finally we should like to refer to [20]-[24], where the problem discussed here or similar questions were studied.

Acknowledgement. — We are grateful to Professor P. Deligne and Professor M. Gromov for several conversations related to this work, to Dr. R. Sczech for the reference [6], and to the referee for numerous remarks and comments.

Appendix.

Following [2] we discuss here the general situation making no a priori assumptions on \(k_j, 1 \leq j \leq r \), and \(k \). As before, \(K \) denotes the
composite field of \(k_1, \ldots, k_r \). Given any idele-class character \(\chi_j : \mathbb{C} \to \mathbb{C}^* \) normalized by the conditions \(\chi_j \circ N^{-1} = 1 \) and \(|\chi_j(\alpha)| = 1 \), put
\[
b_n(\chi_j) = \sum_{N_{k_j/k} = n} \chi_j(\alpha),
\]
and define
\[
L(s; \chi_1, \ldots, \chi_r) = \sum_n b_n(\chi_1) \cdots b_n(\chi_r) |n|^{-s},
\]
where \(n, \alpha \) vary over integral divisors of \(k, k_j \). It follows then from the results cited above (see [12], [13]) that

\[\tag{A.0}
L(s; \chi_1, \ldots, \chi_r) = \prod_{j=1}^r L(s, \psi_j) L(s, \Phi)^{-1},
\]
where \(L(s, \psi_j) \) are Hecke L-functions,

\[\tag{A.1}
L(s, \Phi) = \prod_p \Phi^{(p)}(|p|^{-s})^{-1},
\]
\(\Phi^{(p)}(t) \) is a rational function such that \(\Phi^{(p)}(t) = 1 + t^2 g^{(p)}(t) \), \(g^{(p)} \in \mathbb{C}[t] \) for almost all \(p \) (here \(p \) varies over the prime divisors of \(k \)). Moreover, both \(\psi_1, \ldots, \psi_r \) and \(\Phi^{(p)} \) are exactly computable as soon as \(\chi_1, \ldots, \chi_r \) are given. In particular, the product (A.1) converges absolutely for \(\Re s > \frac{1}{2} \) and

\[L(s, \Phi) \neq 0, \infty \]
in this half-plane. If \(k_1, \ldots, k_r \) are linearly disjoint over \(k \), then \(v = 1 \) and \(\psi_1 = \prod_{j=1}^r \chi_j \circ N_{k_j/k_j} \) is an idele-class character in \(K \); if \(r = 2 \) and \(k_1, k_2 \) are quadratic extensions of \(k \) with co-prime discriminants, then \(L(s, \Phi) = L(2s, \chi_0) \) for some idele class character \(\chi_0 \) of \(k \) (depending on \(\chi_1, \chi_2 \)). We now apply these results to obtain estimates for the sums

\[
S = \sum_{\substack{\alpha \in \mathcal{V}_0 \\ |\alpha| < x}} \chi_1(\alpha) \cdots \chi_r(\alpha),
\]
\[
S_{pr} = \sum_{\substack{p \in \mathcal{V}_{pr} \\ |p| < x}} \chi_1(p) \cdots \chi_r(p),
\]
where \(V_0 = \{ a | N_{k_1} a_1 = \cdots = N_{k_r} a_r, a_j \in \mathbb{I}_0 \} \),
\[V_p = \{ p | p \in V_0, p_j \in \mathcal{P} \}. \]

The implied constants in \(O \)-symbols depend on \(\chi_1, \ldots, \chi_r \); this dependence can be expressed in terms of \(a(\chi_1), \ldots, a(\chi_r) \) but we shall not do it here. Let \(v_0 \) be the number of trivial \(\psi_j \):

\[v_0 = |\{ j | \psi_j = 1 \}|, \]

then

\[(A.2) \quad S = \sum_{k=1}^{v_0} (\log x)^{k-1} c_k x + O(x^{1-\gamma}), \]
\[(A.3) \quad S_p = \psi_0 \int_{x/2}^{x} \frac{dx}{\log x} + O(x \exp (-\gamma' \sqrt{\log x})) \]

for some exactly computable constants \(c_1, \ldots, c_{\psi_0} \) and \(\gamma > 0, \gamma' > 0 \).

The estimates (A.2) and (A.3) follow from the properties of the L-functions (A.0) and (A.1) along the same lines as the corresponding estimates in the text.

BIBLIOGRAPHY

Manuscrit reçu le 27 avril 1983
révisé le 16 novembre 1983.

Dr. B. Z. Moroz,
Mathématicque, Bât. 425
Université de Paris-Sud
Centre d'Orsay
91405 Orsay Cedex, France.