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UNFOLDINGS OF FOLIATIONS
WITH MULTIFORM FIRST INTEGRALS

par Tatsuo SUWA(*)

In this note we study unfoldings of codim 1 local foliations
F = (a;) generated by germs cj of the form

^=A. . . /p t \-^-
< = 1 J i

for some germs f^ of holomorphic functions and complex numbers
X,, generalizing the situation considered in [ 10].

For such a foliation F satisfying some side conditions, we
determine the set U(F) of equivalence classes of first order un-
foldings ((1.7) Proposition) and give explicitly a universal unfolding
of F ((1.11) Theorem) as an application of the versality theorem
in [7]. In section 2, it is shown that the unfolding theory for F = (a;),

P ^f
CJ = /i • • • fp ^ \ —' is equivalent to the unfolding theory for

/^i fi \ \
the "multiform function" /= f^ ^ . . . f' p . In section 3, we consider
foliations with holomorphic or meromorphic first integrals. In either
case, it turns out that the given generator a? is of the form considered
in section 1. Thus, under the conditions of (1.11) Theorem, such a
foliation has a universal unfolding (Theorems (3.4) and (3.10)). If
the conditions are not satisfied, then the space U(F) may have obs-
tructed elements ((3.6) Example).

This work was inspired by the extension theory of Cerveau and
Moussu for forms with holomorphic integrating factors [1,4]. An
unfolding is certainly an extension and, by the implicit function

(*) Partially supported by the National Science Foundation.
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theorem, an extension can be thought of as an unfolding. Also a
morphism in the unfolding theory is a morphism in the extension
theory. However, the converse is not true in general. Thus a versal
unfolding is a versal extension but not vice versa. In [1] and [4],
it is proved that a germ <*; of the form in section 1 of this note
(or more. generally, a? with holomorphic integrating factor /,

( co\i.e., d —\ = 0 for some / in 0) has a mini-versal extension.

I would like to thank K . Saito for helpful conversations.

f
1. Unfoldings of oj = /^. . . fp ^ X ^

i=l fi

Let „© (or simply ©) denote the ring of germs of holomorphic
functions at the origin 0 in C" = { ( z ^ , . . . ,z^)} and let ^l (or
simply Sl) denote the ©-module of germs of holomorphic 1-forms
at 0. For an element a? in S2, we denote by S(co) (the germ at
0 of) the set of zeros of a? and call it the singular set of cj .

Let a; be an element in y,^2 of the form

^=A. . . /p i \d-fi'
i = 1 J i

where f^ are germs in 0 and X, are complex numbers. If we set
F, = /i . . . / , • . . . fp (omit ff) for each i = 1, . . . , p , we may

p
write a; = ^ X,F,rf/;.. Note that co is integrable; r f a ? A G ; = = 0 .

< = i
By regrouping the /,.'s, if necessary, we may always assume that

(1.1) X , ^ X , ( ^ 0 ) , i f / ^ / .

In what follows we also assume that codim S(o?) > 2, which implies
that

(1.2) each /^ is reduced, i.e., for any non-unit g in © , // is
not divisible by g2 ,

and that
(1.3) ff and fj are relatively prime, if i =^ / .

Let F be the codim 1 local foliation at 0 in C" generated
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by oj as above ([6] 4, [7] 1 , [8]). The set U(F) of equivalence
classes of first order unfoldings of F is given by ([6] 6, [7]!).

U(F)= K^)/fi \F,a/,),
/ \ ,= i /

where I (a?) is an ideal in (3 defined by

I(o;) = {h € © | hdoj = T? A a; for some 17 G n}

p
and ^ V \ F .̂ 3^ is the ideal generated by

v i^i /

P 3/. p 8f.
,£^4.....£,^

For a ^-tuple of integers ^ , . . . , ? with 1 < i^ < . . . < iq < p ,
let I(z\ , . . . , ? ) denote the ideal in (9 generated by

fiz • • • fiq - • • ^-i • • • 4 • • • ̂  (omit ^-)> . . . , / ; • ! . . . /^_i .
Note that 1(1, . . . , p ) = (F^, . . . , F ) (the ideal generated by
F^ , . . . ,F ). We denote by ht I the height of an ideal I in © .

(1.4) LEMMA. - Suppose ht(ff,f^f^) = 3 if i , / , k are
distinct and f^, f., /^ ar^ non-units. Then we have

1 ( 1 1 ' • • • ' ^ ) = 0 / ^cf, . .^ ' •••• / . - i )1. / l . . . • ,^- lJ • ( =t<l , . . . ,^}

/or <7 > 3 .

Proof — Without loss of generality, we may assume that
(z\ , . . . , / ) = (1, . . . , q) . Obviously, the left hand side in the
above equality is in the right hand side. Take any element h in
the right hand side. We set F- = /^ . . . f^ . . . / • . . . fy (omit ff
and ./.) for each pair of distinct indexes i , j and

^ifk == ft • ' ' fi' ' ' fj - ' - fk • > • fq

for each triple of distinct indexes ;, / , k . Then we may write

(1.5) h= ^ fl,^., a, ,E(£),
i^J

for each / = 1, .. . , q . Now we show that a^ is in the ideal (/,., fj)
for each ;, / with i ^ j , which would imply that h is in 1(1,. . . , q).
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This is obviously true if /,. or f. is a unit. Thus we assume that /,.
and f. are non-units. If fc is an index different from i or /', we
have, from (1.5),

^ifk^ij fk " ^k t j ) = ( Z ^Cfc ^fifc ~ S ^m/^m/) ^ •
'C^^A: w^i,/ '

By our assumption, .̂ and Fj.^ are relatively prime. Hence

^jfk " ^kfj == a^

for some a in ©. Thus a^f^ is in (/,-,^). If /^ is a unit, then
Of- is in (./,-,./•). If /fc is a non-unit, then by our assumption
ht(f,, ̂  , /^) = 3 . Hence a,, is in (/;., fj). Q.E.D.

(1.6) COROLLARY. — Under the assumption of ( 1 . 4 ) Lemma,
( F ^ , . . . , F p ) = H (/,,^.).

i ^ / 7

(1.7) PROPOSITION. — // r/^ assumption of ( 1 . 4 ) Lemma is satis-
fied and if df^ A . . . A dfp ^ 0, r/i^M w^ Aav^ I(a)) = ( F ^ , . . . , Fp),
r/!M^

U ( F ) = ( F , , . . . , F ^ ) / ( f \F,8/,).
/ ^i=l /

Proof - If we set F^. = /i . . . ̂  . . . ̂  . . . /p for z ^ / , we have

d6o= ^ (^.-X,)F,/d/; .A^.
K i < / < p

From this we see easily that

X,F,do? = ^ (X, — Xy) F^d^. A a? ,
'^/

which shows that (F^, . . . , Fp) C I(o)). Conversely, take any element
h in I(o?). Thus

(1.8) Ado? = 17 A cj

for some 77 in S2. Let U be a small neighborhood of 0 on which
the germs /i,. .. , /p, h and 17 have representatives and let S be
the set of zeros of df^ A . . . A dfp in U. By our assumption, the
set S is an analytic set of codim > 1 . As in the proof of [10] (2.1)
Lemma, from (1.8), we may write
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(1.9) T ? = ^ 0,d/,,
i=l

(1.10) ( \ . -X,) /2 =X^0,/,-X,0,./,.

for some holomorphic functions 0i, . . . , 0p on U -- S . Now we
show that 0, can be extended to holomorphic functions on U.
From (1.9) and (1.10), we have

0,o? = X,F,i7 4- h ^ (Xy — X,) F^.<a?/y
7^

for each i == 1, . . . , p . Since the right hand side is holomorphic
in U, this shows that 0, is holomorphic in U — S ( a ? ) . Therefore,
by the assumption that codim S(o?) > 2, 0, can be extended to a
holomorphic function on U. Thus from (1.10) and (1.6) Corollary,
we see that h is in (F^, . . . , F ). Q.E.D.

For an element h in ©, we denote the corresponding element

A p
in 6 ^ \.F,3^.\ by [ h ] . The following result follows from

i^i '/
(1.7) Proposition and the versality theorem in [7] (cf. the proof
of [10] (2.4) Theorem).

(1.11) THEOREM. - Let F = (a?) be a codim 1 local foliation
at 0 in C" generated by a germ cj of the form

"-/,.../,£ \f
1 = 1 •/i

/or 5om^ fi in Q and X, in C. Suppose the conditions ( a ) \ 1=- Xy
(=^0) /or z = ^ / \ ^ codimS(co)>2, ( c ) ht(f^f^ A) = 3
/or ii= j ̂  k^ i such that /,., ^., /^ are non-units, and ( d )
df^ A . . . A dfp ^= 0 are satisfied. If the dimension of the C-vector

space (Pi, . . ., Fp)/( f \F,8./,), F, = ̂  . . . f,.... /^ ^ finite^
I v i = i /

^Ae^ F Aas' a universal unfolding. In fact, if

\ i ^^l. • • • \ i ^^ F,I . ̂ (/) ̂  ®,
u=i J L'=i J

/ p
j5 a C-&^^ o/ (F^, . . . , Fp)/( ^ \F,8/;.) , then the unfolding

I ^1=1 /



104 T. SUWA

^== (u) of F with parameter space C^ = { (^ , . . . , r^)} generated
^ ^ ^ P df. ^

by co = /i . . . fp ^ \ — , w/^6? /;. ^ germs in ^+^0 given by
^'=1 fi

^ w
/;• == fi + ^ ^w ̂  , ^ universal

k=l

(1.12) COROLLARY (Cerveau-Lins Neto [1] Th. Eg , [2] Prop. 6,
see also [9] (3.2) Th.). - // F = (a?) is the codim 1 local foliation at

0 in C" = { ( z ^ , . . . , z^)} generated by CD = z^ . . . z^ V X, J2i'
/?! 2,

/or 5om6? X, in C with X, ̂  X^ 0 ( i ^ j ) , then every unfolding
of F ^ rw^/, m/acr U(F) = 0.

Proof. — We have

( F , , . . . , F , ) = ( § \F ,a^=(z^ . .^ , . .^ ) .
\ / = = i /

Hence U(F) = 0.

(1.13) Remark. - The universal unfolding given in (1.11) Theo-
rem is infinitesimally versal. However, if the conditions in (1.11) are
not satisfied, U(F) may have obstructed elements (see (3.6) Example).

(1.14) Remark. - Let F = (a?) be a codim 1 local foliation
at 0 in C" generated by a germ a? of the form

^^• • • /p f \ ̂  X , ^X , ^=0 0-^7) ,
i= l J i

with codim S(a?) > 2 and let ^ be an unfolding of F with para-
meter space C8 . Then by a result of Cerveau and Moussu ([1] 48

Partie.Th.C4, [4]), we have that
(1.15) ^ has a generator S of the form

S-A...; 1 x,^, /^^(E).
<=1 .̂ I-

Moreover, if cj has no meromorphic first integrals (Sec. 3), then
we may assume that ([1] 2s Partie, Ch. I, Prop. 1.5, [3])

(1.16) ^(z ,0)=. / , (z) , / = ! , . . . , ? .
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The facts (1.15) and (1.16) also follow from (1.11) Theorem in
case the conditions in (1.11) are satisfied.

(1.17) Remark. - If a foliation F is generated by a germ a)
P df.

of the form oj = /\ . . . fp ^ \. — , then F has a generator
i^l J i

of a similar form such that each function germ involved in the ex-
pression is a non-unit.

2. Multiform functions.

A germ of multiform function at 0 in C^ is an expression
/i1 . . . /^ for some germs f^ in ^© and non-zero complex
numbers \. Two multiform functions /i 1 . . . / x p and g^1 .^q

are equal if they are equal as germs of multivalued functions, i.e.,
^.../^r1—^^!- Let /=A ' 1 . . . f^ be a multi-
form function. By regrouping the factors of the f^s, if necessary,
we may always assume that the conditions (1.1), (1.2) and (1.3)
are satisfied. Then the expression f \ l ' ' ' f p p is uniquely deter-
mined up to the order of the f^ \ and units of 0 . The critical set
C(/) of f=f^l...f^p is defined to be the singular set S(cj)

P df.
of the 1-form a? = f^. . . fp ^ \ — . In this section, we consi-

/ = i J i
der only multiform functions / with codim C(/) > 2.

An unfolding of /= /^ . . . f^ is a germ J of multiform
function at 0 in C" x ̂  = { ( z , t)} which can be written as
7= =7^ l . . .7^ for ^ in ^e wi th^(z ,0)=/ ; . (z ) , ; = 1 , . . . ^ .
We call C^ the parameter space of / .

(2.1) DEFINITION. - Let 7= 7^ . . . 7^ and g = g,1. . . g^
be two unfoldings of f = /^ 1 . . . / p with parameter spaces Cw

and C2, respectively. A morphism from g to f consists of germs
of holomorphic maps $ : (C" x C6 ,0) —> (C" x C'" , 0) and
0 : (C8 , 0) —> (C^ , 0) such that
( a ) the diagram

(C" x C8 ,0) ̂  (C" x ̂ , 0)
^ ^

(C6, 0) -^ (C7" , 0)
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is commutative, where the vertical maps are the projections,
(b) $(z,0) = (z,0) and

(c) g = $* 7, i.e.. g^ ...g^ = ($*7i)^ . . .($* 7p)^ .

^^

(2.3) DEFINITION. — An unfolding f of f is versal if for any
unfolding g of /, there is a morphismfrom g to f .

Note that if 7 = 7^ • . . 7^ is an unfolding of f=f^ . . . f^ ,

then ^ = (<3), S = 7i . . . Jp V \ ̂  , is an unfolding of' y fl
F = (a?), a? = /^ . . . fp ^ \ — , with the same parameter space

^ < = i fi
as that of / . For the definition of morphisms for unfoldings of
foliations, see [10] (1.2) Definition.

(2.4) LEMMA. - Let 7 = 7^ .. . 7^ and g = ̂  . . . g^ be
two unfoldings of f = f^1 . . . f^ with parameter spaces ^ and
C8, respectively. A pair ($, 0) of germs of holomorphic maps
^ : (C" x C8 , 0) —> (C" x C^, 0) and 0 : (C^, 0) —> (C^ , 0)
is a morphism from g to f if and only if it is a morphism from

^=(0), e = g , . . . g , i x,^,
i = 1 Sito ^

^=(c3), S=/^ . . .^ f x^® .
i = 1 /,•

^-oo/ - We first note that if / = /^ . . . f^ and

c.=/,.../, i x,^
< = i /;•

d/ 1
we may write d log / = — = ————— a?. Suppose (<& ,0) is a

_ I J i " ' J p
morphism from g to / . Then we have

(2.5) x - 6 = ̂ *S,
<t)* 7 $*7

where \ = ——L———p- . Since the right hand side of (2.5)
§i • • • 8p

is holomorphic and codim S(0) > 2, we see that \ is in ^3(9 .
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Moreover, since J^z , 0) = g,(z , 0) = /;.(z) and $(z , 0) = (z , 0),
we have x(z , 0) = 1 . Hence ($ ,0) is a morphism from ^ to ^.

Conversely, suppose ($ ,0) is a morphism from ^ to ^. Then
there is a germ X in ^^ with x(z , 0) = 1 satisfying x • Q = ^>* S .
XT $* 7 ^>* ^Now we prove that x is equal to — — l ' ' ' J p . Once this is

81. . . gp
done, we^ have d logg = d log $*/ . Since the restrictions of g
and <&*/ to C" x {0} are both equal to /, we get g = $* 7,
which shows that ($,0) is a morphism from g to 7. Let
5 = ( 5 i , . ^ . , 5 g ) be coordinates on C2 . In general, for an
element h in ^ + g © , consider the power series expansion of 7i

in s ; h ( z , s ) = ^ /^(z)^, where v denotes an £-tuple
\v\>0

(^i ? • • • ,^) of non-negative integers, | v\ = ^ + • • • + ^ ,
^ = 5^ . . . ̂ fi and /z^ are germs in „© . If A^ ^ 0,
(0) = (0,. . . , 0), then for each v , there is a germ 0(y) of
meromorphic function at 0 in C" such that

y /z^^^ = i . . . i x i = o ,
^+7=*/ o . . . i \ i > o .

Thus we have an expression -^r= Y 0(l/)^ . If we set
h |yT^o

p = = X - ^ • • • ^ ,
4>*7i ...$*/;

we may write p ( z , s ) = ^ p<v)(z) ̂  ,
\v\>0

where p^) are germs of meromorphic functions at 0 in C" with
p^ = 1 . For our purpose, it suffices to show that p^ = 0 if
I v | > 0. We may also write

r f log$*7= ^ a(^+ ^ ^ p^^s^ds^
\v\>Q k=l \v\>0

dlo&g= S ^ s " + i ̂  ^G^Cz)/-^^,
I ^ I ^ O f c= l \v\>Q
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where 1^ denotes the £-tuple with 1 in the fe-th component and
0 in the others, the addition and substraction of two C-tuples are
done componentwise, a^ and ^ are germs of meromorphic
1-forms and F00 and G00 are germs of meromorphic functions
at 0 in C". Note that a^ = ̂ Q). Since rflog$*7 and diogg
are both closed forms, we have

(2.6) dF^ = a^ and dG^ == ^v) .

On the other hand, from p d log g = d log $* /", we have

(2.7) a<^ = ^ pW^ and ^F^ = ^ j^pW G^
^+^==y \+JIA=V

for all v . From (2.6) and (2.7), it is not difficult to show that
p00 = 0 for \v\ > 0. Q.E.D.

In view of (1.14) Remark and (2.4) Lemma, the unfolding
theory for multiform functions /= /^ l . . . / x p satisfying (1.1),
(1.2), (1.3) and codimC(/) > 2 (as well as other conditions des-
cribed in (1.14)) is equivalent to the unfolding theory for foliations
F = (a?) with codim S(F) > 2 generated by germs u of the form
u = f\- ' - fp S \ — ' \ ^ \- ^ 0 (i ̂  j ) . In particular, from

i = 1 J i
(1.11) Theorem, we have the following

(2.8) THEOREM. - Let f= /M . . . f^ be a germ of multiform
functional 0 in C" satisfying ( 1 . 1 ) , ( 1 . 2 ) , ( 1 . 3 ) , codimC(/)>2
and the conditions ( c ) and ( d ) in ( 1 . 1 1 ) Theorem. If

dimc(F,, . . . , F,)/( f X,F,3/,) , F, = /, . . ./,. . .f, ,
/ ^i^l /

is finite, then f has a versal unfolding. In fact if f^ are the germs
in ( 1 . 1 1 ) , then the unfolding 7= 7^ . . . 7^ of f is versal.

3. Foliations with holomorphic or meromorphic first integrals.

The following application of the results in section 1 was pointed
out by K. Saito. First we observe the following
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(3.1) LEMMA. - Let f be a germ in © with /(O) = 0 and
let g be a reduced germ in © . If df=g0 for some 6 in ft, then
f is divisible by g2 .

Proof. — From the condition, we see that / vanishes on the
zero set of g . Hence g divides /; / = fg for some /' in 0.
Then we have df = gdf + fdg. Thus /' must be also divisible
by g . Q.E.D.
Similarly we have

(3.2) LEMMA. -Let f be a germ in © with f(0) = 0 and
k i fclet g be a germ in © of the form g = f^ . . . fyr for some germs

fi in Q and positive integers k^ such that ( a ) f^ are reduced, and
( b ) ff and f' are relatively prime if i ̂  j. If df == gO for some
0 in ft, then f is divisible by /^1+1 . . ./^+1 .

Let F = (a?) be a codim 1 local foliation at 0 in Cn with
codim S(o?) > 2 . Suppose a; has a holomorphic first integral
/, i.e., c j A d / = 0 for some / in © ([5] p. 470). Without
loss of generality, we may always assume that /(O) = 0. Since
codim S(o?) > 2, we may write df = g(^ for some g in © .
If g is a unit in © , F = (a?) = (df) is a Haefliger foliation and
unfoldings of F are well understood [7,10]. We may write
g = f^ 1 . . . f y r , where k^ are positive integers with k^ ^= k '
for ; ̂  7 and f^ are (non-constant) germs in © satisfying the
conditions (a) and (b) in (3.2) Lemma. Then, from (3.2) Lemma,
we have / = f^1 +1 . . . fyr+l /y+i for some /^ in ©. By comput-
ing df, we have

r+,1 df. k, + 1. . . 1 < i < r ,
(3.3) ^ =/,.../^ 1 X,-^ X,== / .

, = i J i 1. . . i - r 4- l .

Note that, since codim S(o?) > 2, /^ is reduced and that f^^
and /, are relatively prime for / = = ! , . . . , / ' . Let p = r and replace
\ by /,.̂  X, if fy+^ is a constant and let p = r + 1 otherwise.
Then from (1.11) Theorem, we have

(3.4) THEOREM. — Let F = (a?) be a codim 1 local foliation at
0 in C" with codim S(F) > 2. // a? A df == 0 /or ^om^ / m ©,
^2^2 co can be written as ( 3 . 3 ) . Moreover, if ( a ) ht(f^ /-., f^) = 3
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for distinct indexes i, 7, k = 1,. . . , p such that /p f^, f^ are non-
units, ( b ) df^ A .. . A dfp ^ 0 and ( c )

dimc(F,,...,F,)/(2: X,F,3/,), F, =/ , . . . f,... ̂  ,
/ ^'=1 /

^ /zmY6?, r/z^ F /!̂  a universal unfolding. In fact, a universal unfold-
ing is constructed explicitly as in ( 1 . 1 1 ) Theorem.

(3.5) Example. - Let F = (a?) be the foliation at 0 in
C2 = {(x , y)} generated by

co = y(3x + 2>/2) Ac + 2x(x + 2>/2) d^.

For / = x2y2(x + y2) and g = xy , we have rf/ = goj . Letting
/i = F^ = ̂  , /2 = Pi = x + y2, Xi = 2 and X^ = 1, we see
that the complex vector space

/ 2

(^^VfS ^W') == (^ +> /2,^)/(^(3^ + 2 y 2 ) , x ( x + 2y2))
I ^=1 /

is three dimensional and we may choose [x + y2] = — X^ F^ ,

[x^] = [X^F^] and [x2] = . - X^F^ - X^F^ as its basis. Thus
by (3.4) Theorem, we see that the unfolding SP == (c3) of F with
parameter space C3 = {(^ , t ^ , t^)} given by

2;=2/^ +f[df^

A = xy + ^ ^ + ^ x^ , /^ = x + j/2 + ^ - yt^

is universal. Note that df = ^5 for / = f^ f^ and ? = /i .
Here is an example of F = (co) with a holomorphic first integral

which has obstructed elements in U(F).

(3.6) Example. — Let F = (co) be the foliation at 0 in
C2 = {(x , y)} generated by

cj = y{3x + 2>0 Ac + x(3x + 4^) ̂ .

For / = x2>'3(x + y ) and ^ = x2y3 , we have df = gcj . Thus in
the previous situation, we have f^ = x , f ^ = y , f ^ = x - ^ y , X^ = 2,
X^ = 3 and X3 = 1. Note that ht(f^, ̂ , ̂ ) = 2 . If we set
h = 3x + 4y , then Adco = 17 A a? for 17 = 3dx . Hence [/;] is
in U(F) and ^<° = (S),
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S = y(3x + 2y) dx + (3x2 + 4xy + t)dy + (3x + 4^) dt

is a first order unfolding of F corresponding to [ h ] . However,
it is not difficult to show that there is no unfolding corresponding
to [/z].

Next we consider a foliation F = (a?) (codim S(a;) > 2) with

a meromorphic first integral, i.e., we suppose that a? A d ( — ) = 0v^ /

for some relatively prime germs / and g in ©. In what follows
we assume that g is reduced. Since codim S(o?) > 2, we may write

(3.7) gdf-fdg = ̂
or

f\ h
(3.8) ^(-)"c.

v j?/ j?2J^^ r
for some h in ©. Note that if h is a unit, F is generated by
gdf—fdg and unfoldings of such an F are well understood [10].
Since / and g are relatively prime and g is reduced, from (3.7),

f
we see that g and h are relatively prime. Thus by (3.8), — = c

k\ ^ kis a constant on the zero set of h. If we write h = f^ . . . f y r ,
where k^ are positive integers with k^ ~=^ k. for ; =^ / and /,. are
non-constant germs in 0 satisfying the conditions (a) and (b) in
(3.2) Lemma, then we have /- gc = /^1+1 . .. /^+1 /^ for some

^+2 in (9. We set fy^ = = ^ . By computing ^(—) , we have
6

k, + 1. . . 1 < i < r ,
y+2 ^ '

(3.9) ^ = / i . . . /,^ Z \ — > \ = - l . . . ? = r + l ,
'-1 "• l . . . , = r + 2 .

Note that, since codim S (a?) > 2, fy^ is also reduced and
that ff and f- are relatively prime for distinct indexes ;', 7 with
1 < i , 7 < r + 2. Let p = /• + 1 and replace X, by fy^ \ if
/y+2 ls a constant and let p = r + 2 otherwise. Then from (1.11)
Theorem, we have

(3.10) THEOREM. - Let F = (<A;) ^ a codim 1 local foliation

at 0 in C" wth codim S(F) > 2. Suppose a? A rf f-) = 0 for
s

some f and g in (3 such that f and g are relatively prime and
that g is reduced.
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Then ^ can be written as (3 .9 ) . If ( a ) ht(f,, fj, f^) = 3 for
distinct indexes i, 7, k = 7 , . . . , p such that f^ f., f^ are non-units,

( b ) df, A . . . A df^+ 0 and ( c ) dim^F,, . . . , Fp)/( f \.F^t) ,
/ ^=1 /

FI = /i . . . /,-. . . /p, is finite, then F has a universal unfolding.

In fact, a universal unfolding is constructed as in ( 1 . 1 1 ) Theorem.
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