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UNFOLDINGS OF FOLIATIONS
WITH MULTIFORM FIRST INTEGRALS

par Tatsuo SUWA (¥)

In this note we study unfoldings of codim 1 local foliations
F = (w) generated by germs w of the form

14 df

w=f...f, 2 N

i=1 M

for some germs f; of holomorphic functions and complex numbers
\;, generalizing the situation considered in [10].

For such a foliation F satisfying some side conditions, we
determine the set U(F) of equivalence classes of first order un-
foldings ((1.7) Proposition) and give explicitly a universal unfolding
of F ((1.11) Theorem) as an application of the versality theorem
in [7]. In section 2, it is shown that the unfolding theory for F = (w),

w=f...[, O % is equivalent to the unfolding theory for

i=1 i
the “multiform function” f= f:\ Yo f: P In section 3, we consider
foliations with holomorphic or meromorphic first integrals. In either
case, it turns out that the given generator w is of the form considered
in section 1. Thus, under the conditions of (1.11) Theorem, such a
foliation has a universal unfolding (Theorems (3.4) and (3.10)). If
the conditions are not satisfied, then the space U(F) may have obs-
tructed elements ((3.6) Example) .

This work was inspired by the extension theory of Cerveau and
Moussu for forms with holomorphic integrating factors [1,4]. An
unfolding is certainly an extension and, by the implicit function

(*) Partially supported by the National Science Foundation.
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theorem, an extension can be thought of as an unfolding. Also a
morphism in the unfolding theory is a morphism in the extension
theory. However, the converse is not true in general. Thus a versal
unfolding is a versal extension but not vice versa. In [1] and [4],
it is proved that a germ w of the form in section 1 of this note
(or more, generally, w with holomorphic integrating factor f,

ie., d (%) = (0 forsome f in ©) has a mini-versal extension.

I would like to thank K. Saito for helpful conversations.

. S
1. Unfoldingsof w =f,...f, 2 N -

Let ,0 (orsimply ©) denote the ring of germs of holomorphic
functions at the origin 0 in C" = {(z,,...,2,)} and let ,Q (or
simply £2) denote the O-module of germs of holomorphic 1-forms
at 0. For an element w in £, we denote by S(w) (the germ at
0 of) the set of zeros of w and call it the singular set of w.

Let w be anelementin ,§ of the form
P df,
w=fl"'fp>_.)\i'f_-”
i=1 i
where f; are germs in © and N\; are complex numbers. If we set

Fi=f‘...fi...fp (omit f;) for each i=1,...,p, we may

P

write. w = Y N\F;df;. Note that w is integrable; dw A w = 0.
i=1

By regrouping the f;’s, if necessary, we may always assume that

(1.1 NFENEOD, fiFE.

In what follows we also assume that codim S(w) = 2, which implies
that

(1.2) each f; is reduced, ie., for any non-unit g in O, f; is
not divisible by g2,
and that

(1.3) f; and fl are relatively prime, if i #j.

Let F be the codim 1 local foliation at O in C" generated
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by w as above ([6]4, [7]1, [8]). The set U(F) of equivalence
classes of first order unfoldings of F is given by ([6]6, [7]1).

P
UE) = 1@ /(T NFaL).,

i=1

where I(w) isanideal in © defined by

[(w)y={h€O|hdw=nAw forsome nEN}

P
and ( > NF af,> is the ideal generated by

i=1
p af. P af;
2 )\‘.F,.~f-',...,z AiFi-i-
i=1 9z, i=1 0z,
For a gq-tuple of integers iy,... 0 with 1<i <...<i<p,

let I(i,,...,i,) denote the idealin O generated by
f,.z...f,-q,...,f,-l...f,-j...ﬁq (omitf,.l.),..., il"'fiq-l'
Note that I(l,...,p)=(F,,...,Fp) (the ideal generated by

Fl,‘..,Fp). We denote by htI the height of an ideal I in ©.

(1.4) LeMMA. — Suppose ht(f;, f;, i) =3 if i, j, k are
distinctand f;, f;, f; are non-units. Then we have
1G,,...,i,)= N Iy, oo sdg-y)
1 q {]l .... ]q_l}c{il ..... iq} ! a-1
for q = 3.

Proof. — Without loss of generality, we may assume that
(iy,..., iq) =(1,...,q). Obviously, the left hand side in the
above equality is in the right hand side. Take any element 4 in
the right hand side. We set Fj, =f,...f...f...f, (omit f
and fi) for each pair of distinct indexes i, j and

Fiw=Ffi-. fioo fio fio S,
for each triple of distinct indexes i, j, k. Then we may write
(1.5) h= 2 a,.,.F,f,., a; € 0,
i#j

for each j=1,...,4. Now we show that a; is in the ideal (f;, f;)
for each i, j with i #j, which would imply that A4 isin I(l,...,q).
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This is obviously true if f; or f; is a unit. Thus we assume that f;
and f; are non-units. If k£ is an index different from i or j, we
have, from (1.5),

Fin (@ fie —au ;) = ( 2 e Fg— 2 amIF:m]) fi-
;z;et k m#i,j
By our assumption, f; and F,.l-k are relatively prime. Hence
a; [ — au f; = af;

for some a in O. Thus a;f, isin (f;,f). If fi is a unit, then
a; is in (f;,f). If f, is a non-unit, then by our assumption
ht(fi, 1, fi) = 3. Hence a; isin (f;, f). Q.E.D.

(1.6) COROLLARY. — Under the assumption of (1.4) Lemma,
....F)=nN (f, ).
(Fl > > p) i#j (f; > f))

(1.7) PROPOSITION. — If the assumption of (1.4) Lemma is satis-
fiedandif df A ... Adf, #0, thenwe have 1(w) = (F,,..., Fp),
thus

UGF) = (F,, ... ,,)/(S‘ NF;of))
i=1
Proof. — IfwesetF =f. f,flf for i #j, we have
dw= Y (N —N) Fydf; adf; .
1<i<j<p

From this we see easily that

NFdw= ¥ (O —N)Fudfy aw,

Hé)
which shows that (F,, ..., F,) CI(w). Conversely, take any element
h in I(w). Thus
(1.8) hdw =nrw

for some 1 in §2. Let U be a small neighborhood of 0 on which
the germs f,,...,f,, h and n have representatives and let S be
the set of zeros of df; A ...\ df, in U. By our assumption, the
set S is an analytic set of codim = 1. As in the proof of [10](2.1)
Lemma, from (1.8), we may write
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p
(1.9) n=Y ¢df,
i=1
(1.10) ()\i—?\i)h=>\i¢,-f,-—)\,-¢jj}
for some holomorphic functions ¢,,...,¢, on U—S. Now we

show that ¢; can be extended to holomorphic functions on U.
From (1.9) and (1.10), we have

¢w=NFEn+hr Y (\,—N)F;df
J#Fi
for each i=1,...,p. Since the right hand side is holomorphic
in U, this shows that ¢; is holomorphic in U — S(w). Therefore,
by the assumption that codim S(w) =2, ¢; can be extended to a
holomorphic function on U. Thus from (1.10) and (1.6) Corollary,
we see that # isin (F,,...,F,). Q.E.D.

For an element A in ©, we denote the corresponding element
in (9/( Y NF afi) by [h]. The following result follows from

(1.7) Proposmon and the versality theorem in [7] (cf. the proof
of [10] (2.4) Theorem).

(1.11) THEOREM. — Let F = (w) be a codim 1 local foliation

at 0 in C" generated by agerm w of the form
p df,
w=fi...f, T N

=1 fi

for some f; in © and N\; in C. Suppose the conditions (a) N\, # N\;
#0) for i#j, (b) codimS(w)=2, (c) ht(f, 5, fi) =3
for i#j#k#*i such that f;, f;, f, are non-units, and (d)
dfy n...andf, #0 are satisfied. If the dimension of the C-vector

space (F,,...,F )/(? NF af , F,=fy...fi.... f,. is finite,
i=1
then F has a universal unfolding. In fact, if

P 4 .
[2 7\iu§‘)F} {V ?\u("‘)F:‘,u,@’)EG,
i=1 1

is a C-basis of (F,,...,F )/(51 NF af then the unfolding

i=1
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g = (w) of F with parameter space C™ = {(¢t,,...,t,)} generated
~ ~ ~ b df ~
by @=f. _,fp Z N —f;’ where f; are germsin ,,,© given by
i=1 i
i=H+ Y u§ Vt,, is universal
k=1

(1.12) Cororrary (Cerveau-Lins Neto [1] Th. E;, [2] Prop. 6,
see also [9] (3.2) Th.). — If F = (w) is the codim 1 local foliation at

; n 1 dz;
0 in C" = {(z,...,2,)} generated by w=12z,...2z, ¥ N —
i=1 Z;

for some \; in C with \; # }‘i *0 (i #j), then every unfolding
of F s trivial, in fact U(F) = 0.

Proof. — We have
(Fy,...,F)= }: )\iFiaﬁ.)=(zl...2i...zn).

Hence U(F) =0.

(1.13) Remark. — The universal unfolding given in (1.11) Theo-
rem is infinitesimally versal. However, if the conditions in (1.11) are
not satisfied, U(F) may have obstructed elements (see (3.6) Example).

(1.14) Remark. — Let F = (w) be a codim 1 local foliation
at 0 in C" generated by a germ w of the form
= Sp‘kdf" NFENFO (GHFT
w—flmf,,__, i 7o NEN i#7]),
i=1 i
with codim S(w) 2 2 and let &% be an unfolding of F with para-
meter space C°. Then by a result of Cerveau and Moussu ([1] 4°
Partie, Th. C,, [4]), we have that

(1.15) ¥ has a generator @ of the form
w=f...1 2 NS fi€,400.
i=1 i
Moreover, if w has no meromorphic first integrals (Sec. 3), then
we may assume that ([1] 2° Partie, Ch. I, Prop. 1.5, [3])

(1.16) fi(z,00=f(z), i=1,...,p.
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The facts (1.15) and (1.16) also follow from (1.11) Theorem in
case the conditions in (1.11) are satisfied.

(1.17) Remark. — If a foliation F is generated by a germ w
df,

P

of the form w=f,...f, }_“ A; — , then F has a generator
i=1 i

of a similar form such that each function germ involved in the ex-

pression is a non-unit.

2. Multiform functions.

A germ of multiform function at 0 in C" 1is an expression

A A .
fll ...fp" for some germs f; in ,0 and non-zero complex

numbers A;. Two multiform functions flk‘ o fp"p and g1... g:q
are equal if they are equal as germs of multivalued functions, i.e.,
:‘1 ...f;”gl_”l...g;“q =1. Let f=flM... f:” be a multi-
form function. By regrouping the factors of the f;’s, if necessary,
we may always assume that the conditions (1.1), (1.2) and (1.3)
are satisfied. Then the expression f:‘ o f;\ P is uniquely deter-
mined up to the order of the f;’s and units of ©. The critical set

C(f) of f=f:\l . ..f;‘” is defined to be the singular set S(w)

p df.
of the I-form w=/f,...f, > N\ f—fi In this section, we consi-
i=1 i

der only multiform functions f with codim C(f) = 2.
An unfolding of f= fl)\1 o f:p is a germ f of multiform
function at 0 in C" x C™ = {(z,¢)} which can be written as

~ N}\ ~}\ ~ . . ~ .
f =f11...fp" for f; in ,,,0 with f(z,0)=f(2), i=1,...p.
We call C™ the parameter space of f .

(2.1) DEFINITION. — Let 7=7:“ .. .7;\" and g = gtl .. .g;"’
be two unfoldings of = f:\l - fp)\” with parameter spaces cm
and C%, respectively. A morphism from g to f consists of germs
of holomorphic maps & :(C* xC*,0) — (C" x C™,0) and
¢ :(C*,0) — (C™,0) such that
(a) the diagram

(C" x C*,0) > (C* x C™, 0)

I}
(c*,0) > (C™,0)
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is comnu tative, where the vertical maps are the projections,
(b) &(z,0) =(z,0) and
~ h ~ ~
© g=d*f, ie, g'...g" = @) ... @ f)7

(2.3) DEFINITION. — An unfolding ? of f is versal if for any
unfolding g of f, there is a morphism from g to f .
Note that if f = 71“ . 7“’ is an unfolding of f=f,"...f,?,

then 9 =(w), w= 2 N f , is an unfolding of
i=1
df; .
F=(w), w=f...1, Z N -f— , with the same parameter space
i=1 i
as that of f For the definition of morphisms for unfoldings of

foliations, see [10] (1.2) Definition.

i

(24) Lemma. — Let f =f,'... f.? and g=g)'...g" be
two unfoldings of f = f,}‘l - ];,}\” with parameter spaces C" and
c, respectively. A pair (P, ¢) of germs of holomorphic maps
$:(C"xC*,0) — (C"xC™",00 and ¢:(C*,0) — (C™,0)
is a morphism from g to f if and only if it is a morphism from

P de.
g =(0), 0=g,...8, 2, ,.—gi,
i=1 i
to
~ > f
g=(w), f,, ¥ N
i=1 i
Proof, — We first note that if £=f,"...f,? and
S df;
(’J—fl ~fp 3 ,'—]j'-,
i=1
df 1 .
we may write dlogf=—=——— w. Suppose (P,¢) is a
~f hef,
morphism from g to f. Thenwe have
(2.5) X0 = ®*3,
O*f, ... D7,
where x = —i——fL Since the right hand side of (2.5)
g -8

is holomorphic and codim S(0) = 2, we see that x is in ,, ,0.
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Moreover, since 7,.(2 ,0) =g,(z,0)=f;(z) and ®(z,0) =(z,0),
we have x(z,0) =1. Hence (®, ¢) is a morphism from &' to .

Conversely, suppose (P, ¢) is a morphism from &' to % . Then
thereisa germ x in ,,,© with x(z,0) =1 satisfying x - 6 = &* .
<I>*fl...<1>*fp.

g8

done, we_ have dlogg = dlog®*f . Since the restrictions of &
and ®*f to C" x {0} are both equal to f, we get g =~<I>* f,
wihich shows that (®,¢) is a morphism from g to f. Let

s =(s,,...,8) be coordinates on c'. In general, for an
element 2 in ,,,0, consider the power series expansion of A

Now we prove that x is equal to Once this is

in s; A(z,s)= Y h™(z)s*, where v denotes an R-tuple

lvi=0
(v,,...,v) of nonmnegative integers, |[v|=v, + - -+,
s =s...5% and h® are germs in 0. If KA #0,
(0)=(0,...,0), then for each v, there is a germ ¢ of
meromorphic functionat 0 in C" such that
T 0...IA]>0.
1
Thus we have an expression <= Y ¢M s . If we set
h  wizo
§,---8
p=Xs ———
o*f, ... &*F,
we may write p(z,5)= Y p¥(2)s",

v|=0

where p® are germs of meromorphic functions at 0 in C" with
p® =1. For our purpose, it suffices to show that p® =0 if
[v| > 0. We may also write

2
dlog®* f = Y a®s+ Y 3 v, F®(2) spgl"dsk,
PET k=1 [v[>0

2
dlogg= Y ¢+ ¥ Y »,G6Y02) P dsy »
v|=0 k=1 |v[=0
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where 1, denotes the (-tuple with 1 in the k-th component and
0 in the others, the addition and substraction of two K-tuples are
done componentwise, o® and B® are germs of meromorphic
1forms and F® and G® are germs of meromorphic functions
at 0 in C". Note that o® = g Since dlog ®*f and dlogg
are both closed forms, we have

(2.6) dF(v) = a(V) and dG(V) - ﬁ(V) .
On the other hand, from p d logg = d log ®* f, we have

(2‘7) a(u) — z p(X)ﬁ(“) and VkF(V) = z ”’kp()\) G(ﬂ)

A+ p=v Atu=v
for all v. From (2.6) and (2.7), it is not difficult to show that
p® =0 for |v|>0. Q.E.D.

In view of (1.14) Remark and (2.4) Lemma, the unfolding
theory for multiform functions f = f:\' e fp}“’ satisfying (1.1),
(1.2), (1.3) and codim C(f) = 2 (as well as other conditions des-
cribed in (1.14)) is equivalent to the unfolding theory for foliations

= (w) with codim S(F) = 2 generated by germs w of the form
w=f...f, 2 N f", N # N #0 (i#j). In particular, from

i=1

(1.11) Theorem, we have the following

(2.8) THEOREM. — Let f = fl)‘1 c fp)"’ be a germ of multiform
function at 0 in C" satisfying (1.1), (1.2), (1.3), codim C(f) = 2
and the conditions (c) and (d) in (1.11) Theorem. If

dimg (F,, . . . F)/(S‘ 7\Faf S Ei=f.  f Sy,

i=1
is finite, then f has a versal unfolding. In fact if E are the germs
in (1.11), then the unfolding f=T"... 7" of f is versal

3. Foliations with holomorphic or meromorphic first integrals.

The following application of the results in section 1 was pointed
out by K. Saito. First we observe the following
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(3.1) LeMMA. — Let f be a germ in © with f(0) =0 and
let g be a reduced germ in ©. If df = g0 for some 0 in Q, then
f is divisible by g2 .

Proof — From the condition, we see that f vanishes on the
zero set of g. Hence g divides f; f=f'g for some f' in O.
Then we have df =gdf’ + f'dg. Thus f' must be also divisible
by g. Q.E.D.

Similarly we have

(3.2) LeMMA. — Let f be a germ in © with f(0) =0 and
“let g beagermin © of the form g = flk1 . f,k' for some germs
f; in © and positive integers k; such that (a) f; are reduced, and
(b) f; and f; are relatively prime if i#j. If df =g0 for some
0 in Q, then f isdivisibleby fi'7. .. £

Let F=(w) be a codim1 local foliation at 0 in C" with
codim S(w) = 2. Suppose w has a holomorphic first integral
f, ie, wadf=0 for some f in © ([5] p.470). Without
loss of generality, we may always assume that f(0) = 0. Since
codim S(w) = 2, we may write df =gw for some g in O.
If g is a unit in ©, F = (w) = (df) is a Haefliger foliation and
unfoldings of F are well understood [7,10]. We may write

g = flk o f,k’, where k; are positive integers with k; #k;

for i#j and f; are (non-constant) germs in O satisfying the

conditions (a) and (b) in (3.2) Lemma. Then, from (3.2) Lemma,

we have f=flk'+l ..frk’+l f,+; forsome f,,, in ©. By comput-
ing df, we have

L df, k,+1...1<i<r,
33 w=f... o=, =90
- Tios o = l...i=r+1.

Note that, since codim S(w) =2, f,,, is reduced and that f,,,
and f; are relatively prime for i =1,...,r. Let p = r and replace
N, by f,.. N if f,,, is a constant and let p =r + 1 otherwise.
Then from (1.11) Theorem, we have

(3.4) THEOREM. — Let F = (w) be a codim 1 local foliation at
0 in C" with codimS(F)=2. If wadf=0 forsome f in O,
then w can be written as (3.3). Moreover, if (a) ht(f;, [ fi)=3
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for distinct indexes i,j,k=1,...,p such that f, f;» fr are non-
units, (b) dfy A ...ndf, #0 and (c)

dimg(F, , . .. F)/( Faf Fo=fi...fio . f,,
i=1

is finite, then F has a universal unfolding. In fact, a universal unfold-
ing is constructed explicitly asin (1.11) Theorem.

(3.5) Example. — Let F = (w) be the foliation at 0 in
2 = {(x, y)} generated by

w=yBx + 2yH)dx + 2x(x + 2y¥)dy.
For f=x?y%(x + y?) and g =xy, we have df =gw. Letting

fi=F,=xy, f,=F, =x+y* X\, =2 and N\, =1, we see
that the complex vector space

(F,,F, )/(5‘ NEDS) = (x + 72,000 Gx + 23, x(x + 23)
i=1

is three dimensional and we may choose [x + y?] = [% A, Fl],

[xy] = [\,F,] and [x%] = [% N xFp— A, sz] as its basis. Thus
by (3.4) Theorem, we see that the unfolding % = (&) of F with
parameter space C> = {(¢,,7,,%;)} given by

® =27, df, +fdf;,

~ 1 1 ~
fi=xy+ 5t +5xty, f,=x+y*+1,—yt,

2 2
is universal. Note that df =g& for f= fif, and Z =1, .

Here is an example of F = (w) with a holomorphic first integral
- which has obstructed elementsin U(F).

(3.6) Example. — Let F = (w) be the foliation at 0 in
2 = {(x,y)} generated by

w=y@B3x +2y)dx + x(3x + 4y)dy.

For f=x2y3(x +y) and g = x2y3, we have df = gw. Thus in
the previous situation, we have f, =x, f, =y, fy=x+y, \, =2,
A, =3 and A;=1. Note that ht(f,,f,,f;) =2. If we set
h=3x+4y, then hdw =nArw for n=3dx. Hence [h] is
in U(F) and " = (&),
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@ =yBx +2y)dx + 3x% + 4xy + t)dy + 3x + 4y)dt

is a first order unfolding of F corresponding to [#]. However,
it is not difficult to show that there is no unfolding corresponding
to [A].

Next we consider a foliation F = (w) (codim S(w) = 2) with
a meromorphic first integral, i.e., we suppose that w A d (g) =0

for some relatively prime germs f and g in ©. In what follows
we assume that g is reduced. Since codim S(w) = 2, we may write

(3.7) gdf — fdg = hw
or

(3.8) d(f) = g% w

for some 4 in ©. Note that if A4 is a unit, F is generated by
gdf — fdg and unfoldings of such an F are well understood [10].
Since f and g are relatively prime and g is reduced, from (3.7),

we see that g and & are relatively prime. Thus by (3.8), g =c

is a constant on the zero set of A. If we write h = flk L f,k' ,
where k; are positive integers with k; # k; for i#j and f; are
non-constant germs in © satisfying the conditions (a) and (b) in

(3.2) Lemma, then we have f— gc = lklﬂ e f,k’+l f,+, for some

f,ep in O. We set f,,, =g. By computing d(gi), we have

kot 1. 1<i<r,

r+2 df, )
(3.9)w=fl...f,+22)\,.7, N=(—loi=r+1,
=t 1...i=r+2.

Note that, since codim S(w) =2, f,,, is also reduced and
that f; and f; are relatively prime for distinct indexes i, j with
1<i, j<r+2. Let p=r+1 and replace N\, by f,,,\; if
f,+, is a constant and let p =r + 2 otherwise. Then from (1.11)
Theorem, we have

(3.10) THEOREM. — Let F = (w) be a codim 1 local foliation
at 0 in C" with codim S(F) = 2. Suppose w Ad(g‘.) =0 for

some f and g in © such that f and g are relatively prime and
that g isreduced.
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Then w can be written as (3.9). If (a) ht(f, f;, fi) =3 for
distinct indexes i,j, k=1, ..., p such that f;, f [ are non-units,

(b) dfy A...adf, #0 and (c) dimg(F,,... F) Y 7\Faf
- I—'l
F,=f...fi...f,, is finite, then F has a universal unfoldmg.

In fact, a universal unfolding is constructed as in (1.11) Theorem.
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