H. G. DALES
W. K. HAYMAN

Esterlè’s proof of the tauberian theorem for Beurling algebras

<http://www.numdam.org/item?id=AIF_1981__31_4_141_0>

Numdam
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
1. Introduction.

In [5], J. Esterle gave a new proof of the Wiener Tauberian theorem for the algebra $L^1(\mathbb{R})$ by using some results from complex analysis and from the theory of radical Banach algebras. In this note, we show that a proof with the same idea also establishes the analogous result for Beurling algebras.

We first give the basic properties of the algebras of Beurling that we are considering.

Let φ be a non-negative, measurable function on \mathbb{R}, and set

$$L_\varphi^1 = \{ f : \| f \| = \int_{-\infty}^{\infty} |f(t)| e^{\varphi(t)} \, dt < \infty \}.$$

Then L_φ^1 is a Banach space: as usual, we equate functions equal almost everywhere. If

$$\varphi(s+t) \leq \varphi(s) + \varphi(t) \quad (s, t \in \mathbb{R}),$$

then L_φ^1 is a commutative Banach algebra with respect to convolution multiplication defined by the equation

$$(f \ast g)(t) = \int_{-\infty}^{\infty} f(t-s)g(s) \, ds \quad (f, g \in L_\varphi^1).$$

These algebras were introduced by Beurling in 1938 [1].
Condition (1) ensures the existence of the finite limits \(\alpha = \lim_{t \to -\infty} \varphi(t)/t \) and \(\beta = \lim_{t \to -\infty} \varphi(t)/t \). Let \(\Pi \) be the open strip \(\{-\infty < \text{Re} \, z < -\beta\} \), and let \(\overline{\Pi} \) be the closed strip \(\{-\alpha \leq \text{Re} \, z \leq -\beta\} \) of \(\mathbb{C} \): if \(\alpha = \beta \), then \(\overline{\Pi} \) is a line. For \(f \in L_\varphi^1 \), we define the Laplace transform, \(\hat{f} \), of \(f \) on \(\overline{\Pi} \) by
\[
\hat{f}(z) = \int_{-\infty}^{\infty} f(t)e^{-zt} \, dt \quad (z \in \overline{\Pi}).
\]
The integral converges absolutely for \(z \in \overline{\Pi} \). Let \(A_0(\overline{\Pi}) \) denote the uniform algebra of functions which are continuous on \(\overline{\Pi} \), analytic on \(\Pi \), and which converge uniformly to zero as \(z \to \infty \) with \(z \in \overline{\Pi} \). Then \(\hat{f} \in A_0(\overline{\Pi}) \).

It is well known (for example, see [6], §18) that the character space, or space of maximal modular ideals, of \(L_\varphi^1 \) can be identified with \(\overline{\Pi} \), and that the map \(f \mapsto \hat{f} \) is a monomorphism of \(L_\varphi^1 \) into \(A_0(\overline{\Pi}) \).

Let \(I \) be a closed ideal of \(L_\varphi^1 \). We are interested in conditions on \(I \) which ensure that \(I = L_\varphi^1 \). Let
\[
Z(I) = \{z \in \overline{\Pi} : \hat{f}(z) = 0 \quad (f \in I)\}.
\]

Clearly, a necessary condition for the equality \(I = L_\varphi^1 \) is that \(Z(I) = \emptyset \). Wiener posed the problem for the algebra \(L^1(\mathbb{R}) \) (for which \(\varphi = 0 \)), and he proved that, if \(Z(I) = \emptyset \), then \(I = L^1(\mathbb{R}) \). This is Wiener's Tauberian theorem; of course, the formulation of Wiener was different.

Definition. — Let \(L_\varphi^1 \) be a Beurling algebra. Then spectral analysis holds for \(L_\varphi^1 \) if each proper closed ideal of \(L_\varphi^1 \) is contained in a maximal modular ideal of \(L_\varphi^1 \).

Clearly, spectral analysis holds for \(L_\varphi^1 \) if and only if \(I = L_\varphi^1 \) for each \(I \) with \(Z(I) = \emptyset \), and Wiener's theorem is that spectral analysis holds for \(L^1(\mathbb{R}) \).

It was shown by Beurling in [1] that spectral analysis holds for the algebra \(L_\varphi^1 \) provided that the weight \(\varphi \) satisfies (1) and the additional condition that
\[
(2) \quad \int_{-\infty}^{\infty} \frac{\varphi(t)}{1 + t^2} \, dt < \infty.
\]
(Note that this condition implies that \(\alpha = \beta = 0 \), and so in this case we are identifying the character space of \(L_\varphi^1 \) with the imaginary axis.)
Modern proofs of the theorem of Beurling use only the fact, ensured by (2), that the Banach algebra \(L^1_\varphi \) is regular, in the sense that, given \(y_0 \in \mathbb{R} \) and a neighbourhood \(U \) of \(y_0 \), there exists \(f \in L^1_\varphi \) with \(f(iy_0) = 1 \) and \(f(iy) = 0 \) \((y \notin U) \): see [6], § 40, for example, for a proof of the theorem given that \(L^1_\varphi \) is regular. Indeed, Gurarii ([7], page 24) states, « all proofs of Wiener's theorem known to us make essential use of this fact of regularity, and... it is hardly possible to manage without it. » Following the ideas of Esterle in [5], we shall prove Beurling's result without using the regularity of \(L^1_\varphi \). It is not claimed that the present proof is any shorter than the usual one.

It is perhaps worth recalling how the regularity of \(L^1_\varphi \) follows from condition (2). The starting point is a result which is essentially Theorem XII of [10]: if \(\varphi \) is a non-negative, measurable function on \(\mathbb{R} \), then a necessary and sufficient condition that there exists a function \(f \) which is bounded and analytic in the open upper half-plane \(\Pi^+ \) and which is such that \(\lim_{y \to 0^+} |f(x + iy)| = \exp(-\varphi(x)) \) for almost all \(x \) is that \(\varphi \) satisfies (2).

To show the sufficiency of (2), suppose that \(\varphi \) satisfies this condition, and define \(u \) on \(\Pi^+ \) by

\[
u(x + iy) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{\varphi(t) \, dt}{(x-t)^2 + y^2}.
\]

Then \(u \) is harmonic on \(\Pi^+ \) and has non-tangential limits agreeing with \(\varphi \) at almost every point of \(\mathbb{R} \). Let \(v \) be the harmonic conjugate of \(u \), and set \(f = \exp(-u - iv) \). This function \(f \) has the required properties.

To conclude the proof that \(L^1_\varphi \) is regular if \(\varphi \) satisfies condition (2), take \(y_0 \in (a,b) \subset \mathbb{R} \). Construct a function \(f_0 \) which is analytic and bounded in \(\Pi^+ \) and which is such that

\[
|f_0(x)| < \frac{e^{-\varphi(x)}}{1 + x^2} \quad (x \in \mathbb{R}).
\]

Let \(f_1(z) = f_0(z)/(z+i) \), so that \(f_1|\mathbb{R} \in L^1_\varphi \). Also, \(|f_1(z)| \to 0 \) as \(z \to \infty \) in \(\Pi^+ \), and so \(f_1(iy) = 0 \) for \(y \leq 0 \). We can clearly choose \(\alpha \in \mathbb{R} \) so that, if \(g_1(x) = f_1(x)e^{i\alpha x} \), then \(\hat{g}_1(iy_0) \neq 0 \) and \(\hat{g}_1(iy) = 0 \) \((y < a) \). Similarly, there exists \(g_2 \in L^1_\varphi \) with \(\hat{g}_2(iy_0) \neq 0 \) and \(\hat{g}_2(iy) = 0 \) \((y > b) \). If \(h = g_1 \ast g_2 \), then \(h \in L^1_\varphi \), \(h(iy_0) \neq 0 \), and \(h(iy) = 0 \) \((y \notin (a,b)) \). This shows that \(L^1_\varphi \) is regular.

In fact, the Banach algebra \(L^1_\varphi \) is regular if and only if condition (2)
holds. The strongest result of this type is the famous theorem of Beurling
and Malliavin [2] which shows that, if φ is a non-negative, measurable
function on \mathbb{R}, then the following two conditions on φ are equivalent:

(i) for each $a > 0$, the Banach space L^1_φ contains a non-zero element
whose Fourier transform has support in $[-ia,ia]$;

(ii) φ satisfies (2) and the condition that

$$\text{ess sup} \{ |\varphi(s+t) - \varphi(s)| : s \in \mathbb{R} \} < \infty \quad (t \in \mathbb{R}).$$

Let φ be a function satisfying (1), and let α and β be the limits
defined above. The algebra L^1_φ is termed analytic if $\beta > \alpha$. If $\alpha = \beta = 0$,
then L^1_φ is quasi-analytic if the integral in (2) diverges, and L^1_φ is non-quasi-
analytic if condition (2) holds. Thus, our theorem is that spectral analysis
holds in the non-quasi-analytic case.

In fact, spectral analysis fails in both the analytic and in the quasi-
analytic cases. This was first proved by Vretblad in [11] provided that φ
satisfies some slight extra conditions. We are grateful to Professor Yngve
Domar for pointing out that the proof of Theorem 4 in [4] implicitly shows
this result without any extra conditions on φ. Thus, spectral analysis
holds for the Beurling algebra L^1_φ if and only if φ satisfies condition (2).

In the special case that $\varphi(t) = a|t|$ for a positive constant a, the
family of all proper closed ideals of L^1_φ which are not contained in any
maximal modular ideal was described by Korenblum ([9]). The family does
not seem to have been fully described in more general cases: see [7] and

2. The proof.

Theorem. — Let φ be a non-negative, measurable function on \mathbb{R} which
satisfies (1) and (2). Then spectral analysis holds for the Banach algebra L^1_φ.

The proof of this theorem depends heavily on a recent result given in
[8] which we first describe. We write Δ for the open unit disc, and, for each
$\sigma \in \mathbb{R}$, we write Π_σ for the open right half-plane $\{(x,y) : x > \sigma\}$.

Lemma 1. — Let k be a positive, continuous, increasing function on $[0,1)$.
Let f be analytic on Δ and satisfy the condition that

$$\log |f(re^{i\theta})| \leq k(r) \quad (re^{i\theta} \in \Delta).$$
If
\[(4) \quad \int_0^1 \left(\frac{k(r)}{1 - r} \right)^2 \, dr < \infty, \]
then either \(f = 0 \), or \(\limsup_{r \to 1} (1 - r) \log |f(r)| > -\infty \).

Proof. — Theorem 5 of [8] shows that, under the hypotheses (3) and (4), there exists an analytic function \(g \) on \(\Delta \) such that :

(i) \(g \) is real and increasing on \([0,1)\), with \(g(r) \to 1 \) as \(r \to 1 \) ;
(ii) \(g(\Delta) \subset \Delta \);
(iii) \(\sup \{|1 - g(r)|/|1 - r| : r \in [0,1]\} < \infty \);
(iv) \(f \circ g \) has bounded (Nevanlinna) characteristic in \(\Delta \).

It follows from (ii) and (iii) by the theory of the angular derivative that
\[(5) \quad \lim_{r \to 1^-} \frac{1 - g(r)}{1 - r} \exists \text{ in } (0,\infty). \]
(The existence of this limit can also be seen from the explicit construction of \(g \) in [8], pp. 192-193.)

Suppose that \(f \neq 0 \). By (iv), there exist bounded, non-zero, analytic functions, say \(h_1 \) and \(h_2 \), on \(\Delta \) such that \(f \circ g = h_1/h_2 \) on \(\Delta \). If \(\limsup_{r \to 1^-} (1 - r) \log |(f \circ g)(r)| = -\infty \), then \(\limsup_{r \to 1^-} (1 - r) \log |h_1(r)| = -\infty \), and so, by a result of Phragmén-Lindelöf type ([3], 1.4.3, transferred from \(\Pi_0 \) to \(\Delta \)), \(h_1 = 0 \), a contradiction. It follows that \(\limsup_{r \to 1^-} (1 - r) \log |(f \circ g)(r)| > -\infty \).

The lemma follows from the existence of the finite non-zero limit given by (5).

Condition (4) in the above lemma is necessary in the sense that, if the integral in (4) diverges, then there exists a non-zero analytic function \(f \) on \(\Delta \) satisfying (3) and such that \((1 - r) \log |f(r)| \to -\infty \) as \(r \to 1 \) : see [8], Theorem 4.

We transform this result to the half-plane \(\Pi_1 \). Throughout, if \(K \) is a positive, continuous function on \([1,\infty)\), we set
\[J(K) = \int_1^\infty \left(\frac{K(R)}{R^3} \right)^2 \, dR. \]
LEMMA 2. — Let K be a positive, continuous, increasing function on $[1, \infty)$ such that $\int K < \infty$.

Let F be analytic on Π_1, and let F satisfy the condition that

$$\log |F(\rho e^{i\psi})| \leq K\left(\frac{\rho}{\cos \psi}\right) \quad (\rho e^{i\psi} \in \Pi_1).$$

Then either $F = 0$, or $\limsup_{\rho \to \infty} \rho^{-1} \log |F(\rho)| > -\infty$.

Proof. — Let $\zeta = \xi + i\eta = \rho e^{i\psi}$ belong to Π_1, and let $z = (\zeta - 3)/((\zeta + 1)$ define a conformal map of Π_1 onto Δ. Then $\zeta = (3 + z)/(1 - z)$. Let $f(z) = F(\xi)$, so that f is an analytic function on Δ. If $|z| = r < 1$, then

$$r^2 = \frac{|\zeta - 3|^2}{\zeta + 1} = 1 - \frac{8(\xi - 1)}{(\xi + 1)^2 + \eta^2} > 1 - \frac{8\xi}{\xi^2 + \eta^2},$$

so that

$$\frac{\rho}{\cos \psi} = \frac{\xi^2 + \eta^2}{\xi} < \frac{8}{1 - r^2} < \frac{8}{1 - r}.$$

Hence, $\log |f(re^{i\theta})| \leq k(r)$ for $re^{i\theta} \in \Delta$, where

$$k(r) = K\left(\frac{8}{1 - r}\right).$$

Then k is a positive, continuous, increasing function on $[0,1)$, and

$$\int_0^1 \left(\frac{k(r)}{1 - r}\right)^{\frac{1}{2}} dr = 8^{\frac{1}{2}} \int_0^\infty \left(\frac{K(R)}{R^3}\right)^{\frac{1}{2}} dR,$$

and so k satisfies condition (4). By Lemma 1, either $f = 0$ or $\limsup_{r \to 1-} (1 - r) \log |f(r)| > -\infty$. In the former case, $F = 0$, and in the latter case, $\limsup_{\rho \to \infty} \rho^{-1} \log |F(\rho)| > -\infty$, as required.

If F is an analytic function on Π_0 such that $\sup \{\exp (-|z|^\alpha)|F(z)|\} < \infty$ for some $\alpha < 1$, then, by applying Lemma 2 with $K(R) = R^2$, we can deduce that either $F = 0$, or
lim sup $\rho^{-1} \log |F(\rho)| > -\infty$. This is Corollary 2.2 of [5], and the theorem of Esterle followed from that Corollary. The present more general result will require the stronger Lemma 2.

Now, following [5], we introduce the functions a^ζ:

$$a^\zeta(t) = \frac{1}{\sqrt{\pi \zeta}} \exp \left(-\frac{t^2}{\zeta} \right) \ (\zeta \in \Pi_0, \ t \in \mathbb{R}).$$

Since $\varphi(t) = O(|t|)$ as $|t| \to \infty$, we have $a^\zeta \in L^1_\varphi$ for each $\zeta \in \Pi_0$. It is well known and straightforward to check that the map $\zeta \mapsto a^\zeta$, $\Pi_0 \to L^1_\varphi$, is a semigroup monomorphism and an analytic map. We must calculate $\|a^\zeta\|$ in L^1_φ. We first give a technical lemma.

Lemma 3. Let φ be a non-negative, measurable function on \mathbb{R} satisfying (1) and such that $\int_0^\infty (1+t^2)^{-1} \varphi(t) \, dt < \infty$.

(i) If $\varphi_1(t) = \max \{ \varphi(s) : 0 \leq s \leq t \}$ $(t \in \mathbb{R}^+)$, then φ_1 is monotone increasing on \mathbb{R}^+, $\varphi_1(t) \geq \varphi(t)$ $(t \in \mathbb{R}^+)$, and $\int_1^\infty t^{-2} \varphi_1(t) \, dt < \infty$.

(ii) If $\varphi_2(t) = t \max \{ s^{-1} \varphi_1(s) : s \geq t \}$ $(t \in \mathbb{R}^+)$, then $t^{-2} \varphi_2(t)$ is a monotone decreasing function of t on \mathbb{R}^+, $\varphi_2(t) \geq \varphi_1(t)$ $(t \in \mathbb{R}^+)$, and $\int_1^\infty t^{-2} \varphi_2(t) \, dt < \infty$.

Proof. These results are obvious or are proved clearly in Lemmas 3.3 and 3.4 of [7]; they are originally due to Beurling.

Lemma 4. Let φ be a non-negative, measurable function on \mathbb{R} satisfying (1) and (2). Then there exists a positive, continuous, increasing function K on $[1, \infty)$ with $\int K < \infty$ such that

(7) $$\log \|a^\zeta\| \leq K \left(\frac{\rho}{\cos \psi} \right) \ (\zeta = \rho e^{i\psi} \in \Pi_1).$$

Here, $\|a^\zeta\|$ is calculated in L^1_φ.

Proof. Let $\zeta = \rho e^{i\psi} \in \Pi_1$. We have

$$\|a^\zeta\| = \frac{1}{\sqrt{\pi \rho}} \int_{-\infty}^{\infty} \exp \left(-\frac{t^2}{\rho} \cos \psi + \varphi(t) \right) dt.$$
Since $\rho \geq 1$,
\[
||a^2|| \leq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{t^2}{R} + \varphi(t) \right) dt
\]
\[
= \exp K(R), \text{ say,}
\]
where $R = \rho/\cos \psi \geq 1$. Clearly, replacing K by $\sup \{K, 0\}$, we can suppose that K is positive, continuous, and increasing on $[1, \infty)$. To show that $J(K) < \infty$, it suffices to show that $J(\log^+ \kappa) < \infty$, where
\[
\kappa(R) = \int_{0}^{\infty} \exp \left(-\frac{t^2}{R} + \varphi(t) \right) dt = R^{\frac{1}{2}} \int_{0}^{\infty} \exp \left(-s^2 + \varphi(R^2 s) \right) ds.
\]
Let φ_1 and φ_2 be as specified in Lemma 3. We can suppose that $\varphi_2(1) = 1$. For each $R \geq 1$, let
\[
\mu(R) = \sup \{t : 2\varphi_2(t)R \geq t^2\}, \quad \nu(R) = R^{-\frac{1}{2}} \mu(R).
\]
Then $\nu(R)$ is the supremum of the solutions of the inequality $\varphi_2(R^2 s) \geq \frac{1}{2} s^2$. Since $\varphi(t) = O(t)$ as $t \to \infty$, $\mu(R) = O(R)$ as $R \to \infty$.

If $s \geq \nu(R)$, then $\varphi(R^2 s) \leq \varphi_2(R^2 s) \leq \frac{1}{2} s^2$, and so
\[
\int_{\nu(R)}^{\infty} \exp \left(-s^2 + \varphi(R^2 s) \right) ds \leq \int_{0}^{\infty} \exp \left(-\frac{1}{2} s^2 \right) ds < \infty.
\]

If $s \leq \nu(R)$, then $\varphi(R^2 s) \leq \varphi_1(R^2 s) \leq \varphi_1(\mu(R)) \leq \varphi_2(\mu(R)) \leq \frac{1}{2} R^{-1}(\mu(R))^2$, and so
\[
\int_{0}^{\nu(R)} \exp \left(-s^2 + \varphi(R^2 s) \right) ds \leq R^{-\frac{1}{2}} \mu(R) \exp \left[\frac{(\mu(R))^2}{2R} \right].
\]

Thus, $\log \kappa(R) \leq \frac{1}{2} R^{-1}(\mu(R))^2 + O(\log R)$ as $R \to \infty$, and so
\[
J(\log^+ \kappa) \leq \int_{1}^{\infty} \frac{\mu(R)}{R^2} dR + O(1) \text{ as } R \to \infty.
\]
Using the definition of $\mu(R)$ and Lemma 3, we see that
\[\int_1^\infty \frac{\mu(R)}{R^2} dR - 1 = \int_1^\infty \frac{d\mu(R)}{R} = 2 \int_1^\infty \frac{\varphi_2(t)}{t^2} dt < \infty. \]
Thus, $J(\log^+ \kappa) < \infty$, as required.

Lemma 5. — If A is a radical Banach algebra, and if (a^t) is a continuous semigroup in A over R^+, then $\lim_{t \to \infty} t^{-1} \log ||a^t|| = -\infty$.

Proof. — This is [5], Lemma 2.3.

We now conclude the proof of the theorem.

Let I be a closed ideal of L_ϕ^1. We must show that, if I is not contained in a maximal modular ideal of L_ϕ^1, then $I = L_\phi^1$. Let $A = L_\phi^1/I$. Then the hypothesis is that A is a radical Banach algebra.

Let (a^t) be the analytic semigroup in L_ϕ^1 given above, and let $[a^t]$ be the coset of a^t in A. Let $\lambda \in A'$, the dual space of A, and set
\[\Phi(\zeta) = \langle [a^t], \lambda \rangle \quad (\zeta \in \Pi_0). \]
Then Φ is an analytic function over Π_0, and
\[|\Phi(\zeta)| \leq ||\lambda|| ||[a^t]|| \leq ||\lambda|| ||a^t|| \quad (\zeta \in \Pi_0). \]

By Lemma 4, there is a function K such that $J(K) < \infty$ and such that $\log |\Phi(\zeta)| \leq K(R)$ for $\zeta \in \Pi_1$, where $\zeta = \rho e^{i\psi}$ and $R = \rho/\cos \psi$. By Lemma 5, $\lim_{\rho \to \infty} \rho^{-1} \log |\Phi(\rho)| = -\infty$, and so, by Lemma 2, $\Phi = 0$. This shows that $[a^t] = 0$ in A, and hence that $a^t \in I$ for $\zeta \in \Pi_0$. However, for each $f \in L_\phi^1$, $f = \lim_{\rho \to 0^+} f \ast a^\rho$, and so $f \in I$. Thus $I = L_\phi^1$, as required.

The use of Lemma 2 in the above theorem seems to be necessary. For example, consider the case that $\varphi(t) = |t|^\beta$, where $0 < \beta < 1$, and take (a^t) as above. Then the best estimate of $||a^t||$ in terms of $\rho = |\zeta|$ which we can obtain is that $\log ||a^t|| = O(\rho^{2\beta/(2-\beta)})$ as $\rho \to \infty$ with $\zeta \in \Pi_1$: here we are using the fact that $1/\cos \theta \leq \rho$ for $\zeta \in \Pi_1$. We can thus apply [5], Corollary 2.2, only if $2\beta/(2-\beta) < 1$, that is, if $\beta < 2/3$, whereas the result holds if $\beta < 1$.

BIBLIOGRAPHY

Manuscrit reçu le 26 janvier 1981.

H. G. DALES,
School of Mathematics
University of Leeds
Leeds LS2 9JT (England).

W. K. HAYMAN,
Department of Mathematics
Imperial College of Science and Technology
London SW7 2BZ (England).